

Welding Design Exposure and Application in Construction

Types Of Welds & Classification Requirement (BV)

OJT CARD 4_001

Types of Welds

- Two BV rules to consider :
 - Rules for the Classification of Naval Ships NR 483 Nov 2011
 - requirements given in Pt B, Ch 11
 - cover design & scantlings of welds and edge preparation
 - 2. Rules on materials and Welding NR 216 Feb 2013
 - requirements given in Ch 5
 - cover approval of welding consumables and welding procedures
- ▶ BV Rules for naval Ships (NR483) →2 main types of connecting welding:

Butt Welds

- ▶ In general:
 - Full penetration
 - Welded on both sides (except special procedures or techniques considered equivalent by BV)

NB: Full pen compulsory for lengths of longitudinals of shell & strength deck plating in 0.6L amidships or elements with high stresses

- Butt welding also possible on permanent backing:
 - Backed by flange of face plate of a stiffener
 - Preparation to be qualified by yard (ref: part 5): type of bevel, gap between plates

- ► Tapering: in case of welding of plates with difference in thickness
 - ≥ 3 mm if thinner plate has thickness ≤ 10 mm
 - ≥ 4 mm if thinner plate has thickness > 10mm

NB: If difference in thickness is less than above → change in thickness is accommodated in weld joint

Slope of tapering governed by stress flow: to be adjusted to minimize stress concentration iwo change in thickness

> Slope 1:4 (about 15°) if tapering perpendicular to main stress direction

 Slope 1:3 (about 20°) if tapering parallel to main stress direction

- ► Typical preparation :
 - given in BV Rules as guidance only
 - different edge preparation may be accepted on basis of welding procedure specification (ref : part 5)
- Some examples (manual welding)

Fillet Welds

- Fillet welding types:
 - Continuous fillet welding (continuous fillet on each side of abutting plate)
 - Intermittent fillet welding: 3 main types (p: spacing or pitch , d: weld length)

- ► T connections : generally ordinary fillet welding without bevel
- ▶ Partial of full T penetration welding required for connections subjected to high stresses (details where fatigue analysis is required / strength deck – side shell / tank top – vertical bulkhead corrugations)

Partial penetration

Partial penetration

Typical:

f: between 3mm and T/3

 α : between 45° & 60°

 α : between 45° & 60°

Back gouging generally required

Full penetration

Full penetration

Fillet Welds (Lap Welding)

► Lap-joint welding

- ► Lap-welding acceptable for:
 - Peripheral connection of doublers

- Internal structural elements subjected to very loaw stresses
- ► Continuous welding generally adopted (corrosion)

Fillet Welds (Slot Welding)

Slot welding

Subject to BV agreement, slot-welding acceptable for :

connection of doublers (except on strength deck and shell in 0.6L

amidships)

 only where stresses act in predominant direction: slot welds to be aligned in this direction

Fillet Welds (Plug Welding)

▶ Plug welding

Plug-welding acceptable only on case by case basis, subject to BV agreement

Typical exemple: welding of rudder plating on internal structure