

P/s: This is only involved Integration and Improper Integral. Please find more exercises on Series.

1. Evaluate each of the following:

(a) $\int x^2 \cosh(3x) dx$

(b) $\int \frac{1}{\sqrt{x^2 - 4x - 5}} dx$

2. Determine the convergence of each of the following improper integrals.

(a) $\int_1^\infty \frac{1}{x^2 + 2} dx$

(b) $\int_{-2}^2 \frac{1}{(x+1)^3} dx$

3. (a) Evaluate $\int x^2 \sin^{-1} x dx$

(b) Find the constants A , B and C such that,

$$\frac{2x + 6}{(x^2 + 1)(1 - x)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{1 - x}$$

Hence, evaluate

$$\int_{-1}^0 \frac{2x+6}{(x^2+1)(1-x)} dx$$

4. (a) Determine if the integral $\int_{-\infty}^{\infty} x e^{-x^2} dx$ convergent or divergent.

(b) Evaluate $\int_0^1 \sinh^2(4x - 3) dx$.

Answers:

1 a) $\frac{x^2}{3} \sinh(3x) - \frac{2x}{9} \cosh(3x) + \frac{2}{27} \sinh(3x) + C$

b) $\cosh^{-1}\left(\frac{x-2}{3}\right) + C$

2. a) **0.675511** (converges)

b)
This integral diverges.

3. a) $\frac{x^3}{3} \sin^{-1} x + \frac{1}{6} \left[2(1-x^2)^{\frac{1}{2}} - \frac{2}{3}(1-x^2)^{\frac{3}{2}} \right] + C$

b) $\frac{\pi}{2} + 2 \ln 2$

4.a) $\int_{-\infty}^{\infty} xe^{-x^2} dx = -1 + 1 = 0$, converges

b) **12.8338**