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7.0 MATRIX ALGEBRA 

 
 

 

 

 

 

 

 

 

 

 

 

7.1 ELEMENTARY ROW OPERATIONS (ERO) 
 

 Important method to find the inverse of a matrix and to solve the 

system of linear equations.  

 The following notations will be used while applying ERO 

 

 

 

  

 

Definition 7.1: Matrix 

Matrix is a rectangular array of numbers which called elements 

arranged in rows and columns.  A matrix with  rows and  

columns is called of order .   

 indicates the element in the  row and the  column.   

1. Interchange the  row with the  row of the matrix.  

This process is denoted as . 

2. Multiply the  row of the matrix with the scalar  

where .  This process is denoted as . 

3. Add the  row, that is multiplied by the scalar  to the 

 row that has been multiplied by the scalar , where 

.  This process can be denoted as 

.  The purpose of this process is to change the 

elements in the  row.   
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Example 7.1: 

Given the matrix , perform the following 

operations consecutively: 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

  

Notes: 

If the matrix  is transformed to the matrix  by using ERO, 

then the matrix  is called equivalent matrix to the matrix  

and can be denoted as . 
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Example of Echelon Matrix and its 
rank of matrix 

Example of Reduced Echelon 
Matrix and its rank of matrix 

 

 

 

 

 

 

Definition 7.2: Rank of a Matrix 

 

The rank of a matrix is the number of row that is non zero in that 

echelon matrix or reduced echelon matrix.  The rank of matrix  

is denoted as . 

What is echelon matrix 

and reduced echelon 

matrix? 
 

How can we get echelon 

matrix and reduced 

echelon matrix? 
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Example 7.2: 

 

Given  

 

obtain 

a) Echelon matrix 

b) Reduced echelon matrix 

c) Rank of matrix  

Solution: 

 

  

Using ERO of course! And you should know 

that the operation is not unique. 
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7.2 DETERMINANT OF A MATRIX 

 

 A scalar value that can be used to find the inverse of a matrix.   

 The inverse of the matrix will be used to solve a system of linear 

equations.  

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 

Definition 7.3 : Determinant 

The determinant of a matrix  is a scalar value and denoted by 

 or . 

 

I - The determinant of a  matrix is defined by 

 

II - The determinant of a 3  matrix is defined by 

 

 
Figure 7.1: The determinant of a 3x3 matrix can be calculated 

by its diagonal 
 

III - The determinant of a  matrix can be calculated by using 

cofactor expansion. (Note: This involves minor and cofactor so 

we will see this method after reviewing minor and cofactor of a 

matrix) 
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Example 7.3: 

 

Find the minor  for matrix  

 

Solution: 

 

 

Example 7.4: 

Given  

 

Calculate the minor of  and  

Solution: 

 

 

 

 

  

Definition 7.4: Minor 

If  

  

then the minor of , denoted by  is the determinant of the 

submatrix that results from removing the i
th

 row and j
th

 column of .  
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Example 7.5: 

 

Find the cofactor  from the given matrix 

 

 

Solution:  

 

 

 

 

 

 

 

Example 7.6: 

 

From Example 7.4, find the cofactor of  and  

 

Solution: 

 

 

  

 

Definition 7.5: Cofactor 

If  is a square matrix , then the cofactor of  is given by  
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Example 7.7: 

Compute the determinant of the following matrix 

a)     b)    

 

Solution: 

a) Expanding along the third row 

 

  

 

 

 

Theorem 7.1: Cofactor Expansion 

If  is an  matrix 

 

The determinant of  (det ) can be written as the sum of its cofactors 

multiplied by the entries that generated them.   

a) Cofactor expansion along the j
th

 column 

b) Cofactor expansion along the i
th

 row 
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Example 7.8: 

 

Given  

 

calculate the determinant of . 

 

Solution: 
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PROPERTIES OF THE DETERMINANT 

 

PROPERTY 1: If  is a square matrix, then   For 

example, 

 

PROPERTY 2: If the matrix  is obtained by interchanging with any 

two rows or two columns of the matrix , then .  For 

example,   

 

PROPERTY 3: If any two rows (or columns) of the matrix  are 

identical, then .  For example, 

 

PROPERTY 4: If the matrix  is obtained by multiplying every 

element in the row or the column of the matrix  with a scalar , 

then .  For example, 

 

PROPERTY 5: If the matrix  is obtained by multiplying a scalar  

of one row of the matrix  is added to another row of , then 

  This operation is denoted as .  For 

example, 

 

PROPERTY 6:  If the matrix  has a zero row, then .  For 

example,  
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Example 7.9: 

Evaluate   

 

Solution: 
 

  

By using the right properties, we can find the determinant by 

using the ERO. 
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exist 

not exist 

7.3 INVERSE MATRICES 
 

 

 

 

 

 

 
 

 

7.3.1 Finding Inverse Matrices using ERO 

 

 
  

Inverse 
Matrices

Remarks

If A-1

Non-singular matrix

Singular matrix

(AB)-1=B-1A-1

If the inverse exists, then the inverse is 
unique

A square matrix A has an inverse if and 
only if |A|≠0

Methods

ERO

Adjoint Method

Definition 7.6: Inverse Matrix 

If  and  are  matrices, then the matrix  is the inverse of 

matrix  (or vice versa) if and only if . 

STEP 1:  

Write  in the form of augmented matrix . 

 

STEP 2:  

Perform ERO until we get the new augmented matrix . 

 

STEP 3:   

Therefore . 
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Example 7.11: 

Calculate the inverse of the following matrix 

 

Solution: 

STEP 1: 

 

 

STEP 2: 
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7.3.2 Adjoint Method 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Definition 7.7: Adjoint of a Matrix 

The adjoints of  a square matrix  is the transpose matrix 

obtained by interchanging every element  with the cofactor  

and denoted as adj . 

If , then  exists.  Therefore,  

 

 

STEPS TO FIND THE INVERSE MATRIX USING 

ADJOINT METHOD. 

 

STEP 1: Calculate the determinant of . 

i) If , stop the calculation because the inverse does not exist. 

ii) If , continue to STEP 2. 

 

STEP 2: Calculate the cofactor matrix . 

 

STEP 3: Find the adjoint matrix  by finding the transpose of 

the cofactor matrix , that is  

 

STEP 4: Substitute the results from STEP 1 to STEP 3 in the 

formula  
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Example 7.12: 

Calculate the inverse of the following matrix 

 

 

Solution: 
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EXERCISE: 

 

1. Calculate the inverse of the following matrices by using 

(i) Elementary Row Operations (ERO) methods 

(ii) Adjoint Method 

 

(a)  

 

b)  

 

c)   
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7.4  SYSTEMS OF LINEAR EQUATIONS 
 

 A system of linear equations with  linear equations and  

number of variables can be written as,  

 

 

 

 

 

 A solution to a linear system are real values of  

which satisfy every equations in the linear systems.   

 

 If the solution does not exist, then the system is inconsistent. 

 

 
 

  

Solving the 
linear systems

ERO
Gauss

Gauss-Jordan

Matrix's method

Inverse Matrix

Cramer's Rule
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7.4.1 Gauss Elimination Method 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7.13: 

Solve the following system by using Gauss Elimination method.   

 

 

 

 
 

Solution: 

 

  

 

 

Gauss Elimination is a method of solving a linear system 

   by bringing the augmented matrix 

to an echelon matrix 

Then the solution is found by using back substitution. 
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7.4.2 Gauss-Jordan Elimination Method 

 

 

 

 

 

 

 

 

 

Example 7.14: 

 

By using the same matrix in Example 7.13, find the inverse matrix 

by using Gauss-Jordan Elimination method.   

 

 

Gauss Elimination is a method of solving a linear system 

   by bringing the augmented matrix 

to a reduced echelon form. Then the solution is found by 

using back substitution. 
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Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXERCISE: 

 

1. Solve the linear system by using  

(i) Gauss elimination method 

(ii) Gauss-Jordan elimination method 

 

a) ,   

 ,    

 

 

b) ,   
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7.4.3 Inverse Matrix Method 

 

 

 
 

 

 

Example 7.15: 

 

Use the method of inverse matrix to determine the solution to the 

following system of linear equations. 

 

 

 

Solution: 

 

 

 

  

 

If  and   represents the linear equations 

where  is an  matrix and  is an  matrix, then 

the solution for the system is given as 
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EXERCISE 

 

1) Solve the following system linear equations by using Inverse 

Matrix Method 

(a)  

 

 

 

(b)  
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7.4.4 Cramer’s Rule 

 

 

 

 

 

 

 

 

 

 

 

Example 7.16: 

 

Use Cramer’s rule to determine the solution to the following system 

of linear equations. 

 

 

 

Solution: 
 

 

  

 

Given the system of linear equations , where  is an 

 matrix,  and  are  matrices.  If , then 

the solution to the system is given by, 

 

 

for  where  is the matrix found by replacing 

the  column of  with . 
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EXERCISE:  
 

Solve the following system linear equations by using Cramer’s 

Rule Method. 

 

(a)  

 

 

 

(b)  
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7.5 EIGENVALUES & EIGENVECTORS 
 

7.5.1 Eigenvalues & Eigenvectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7.17: 

Show that  is an eigenvector of .  Hence, find the 

corresponding eigenvalue. 

 

Solution: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

 

Definition 7.8: Eigenvalues & Eigenvectors 

Let  be an  matrix and the scalar  is called an eigenvalue of  

if there is a non zero vector  such that  

 

 

The scalar  is called an eigenvalue of  corresponding to the 

eigenvector . 

 

Definition 7.9: Eigenvalues 

The eigenvalues of an  matrix  are the  zeroes of the 

polynomial  or equivalently the  roots of the  

degree polynomial equation  
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Example 7.18: 

 

Determine the eigenvalues and eigenvector for the matrix  

 

Solution: 

 



 

28 

 

7.5.2 Vector Space 
 

 

 
 

 

 

 

 

 

 

Properties of Vector Space 

(1) =  

(2)  + w =  

(3) There is an element  in  such that  

(4) There is an element –  in  such that  

(5)  

(6)  

(7)  

(8)  

 

7.5.3 Linear Combinations and Span 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 7.10: Vector Space 

A vector space is a set  on which two operations called vector 

addition and scalar multiplication are defined so that for any 

elements and  in  and any scalar  and , the sum  and 

the scalar multiple  are unique elements of , and satisfy the 

following properties. 

 

 

Definition 7.11: Linear Combinations 

A vector  is a linear combination of a vector in a subset  of a 

vector space  if there exist  in  and scalars 

 such that  

 

 

The scalars are called the coefficients of the linear combination.  
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Example 7.19: 

Let for the following question, find if  is a linear 

combination of  and .  If yes, write out the linear combination and 

determine whether . 

 

a)  

b)  

Solution: 

 

  

Definition 7.12: Span 

The span of a non-empty subset of  of a vector space  is the set 

of all linear combinations of vectors in .  This set is denoted by 

Span . 

If , then  

Span . 
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Example 7.20: 

 

Write the linear combination of matrix  in terms of 

matrices  and . Determine whether  is 

the span , where  

 

Solution: 
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Example 7.21: 

 

Let   

Determine whether  is in span . 

 

Solution: 
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7.5.4 Linearly Independence 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7.22: 

 

Determine if the following sets of vectors are linearly dependent or 

linearly dependent.  

a)  and . 

b) ,  and  

Solution: 

 

 

 

Definition 7.13: Linearly Independent 

A set  is linearly independent if  

for all  

 

If not all  are zero such that 

we say that  is linearly dependent. 


