#### **Chapter 6: Vectors**

#### **6.1** Basic concepts

## 6.2 Dot product

- Definition
- Angle between 2 vectors

#### 6.3 Cross product

- Definition
- Area of parallelogram/triangle

#### 6.4 Lines in space

- Parametric and symmetric equation
- Angle between two lines
- Intersection of two lines
- Distance from a point to a line

### 6.5 Planes in Space

- Equation of a plane
- Intersection of two planes
- Angle between two planes
- Angle between a line and a plane
- Shortest distance
  - from a point to a plane
  - between two parallel planes
  - between two skewed lines

## **6.1: Basic concepts**

**Vector:** quantity that has both magnitude and direction. E.g. Force, velocity.

A vector can be represented by a directed line segment where the

- i) length of the line represents the magnitude
- ii) direction of the line represents the direction



#### **Notation:**



## **Vector components:**

$$\bar{v} = a\underline{i} + b\underline{j}$$

a and b: scalar component

i and j: direction



In 3D:

$$\overline{v} = a\underline{i} + b\underline{j} + c\underline{k}$$
 or  $\overline{v} = \langle a,b,c \rangle$ 

Note that  $\overline{v} = \langle a, b, c \rangle \neq \overline{v} = (a, b, c)$ 

• The vector  $P\vec{Q}$  with initial point  $P(x_1, y_1, z_1]$  and terminal point  $Q(x_2, y_2, z_2]$  has the standard representation  $P\vec{Q} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$ Or  $PQ = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ 

## **Important Formulae**

Let  $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$  and  $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$  be vectors in 3D space and k is a constant.

1. Magnitude

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

2. <u>Unit vector</u> in the direction of **v** is

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle v_1, v_2, v_3 \rangle}{|\mathbf{v}|}$$

3. 
$$\mathbf{v} \pm \mathbf{w} = \langle v_1 \pm w_1, v_2 \pm w_2, v_3 \pm w_3 \rangle$$

## Example 1:

Given that  $\mathbf{a} = \langle 3, 1, -2 \rangle$ ,  $\mathbf{b} = \langle -1, 6, 4 \rangle$ . Find

- (a) a + 3b (b) |b|
- (c) a unit vector in the direction of **b**.

## Example 2: (Test 1, Sem 1 2006/07)

Given the vectors  $\mathbf{u} = 3\underline{i} + \underline{j} - 5\underline{k}$  and  $\mathbf{v} = 4\underline{i} - 2\underline{j} + 7\underline{k}$ .

a) Find a unit vector in the direction of  $2\mathbf{u} + \mathbf{v}$ .

## Example 3:

Given two points, P(1,0,1) and Q(3,2,0).

Find a unit vector **u** in the direction of  $\overline{PQ}$ .

#### **6.2** The Dot Product (The Scalar Product)

The scalar product between two vectors

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$  and  $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$  is defined as follows:

#### in components

$$\mathbf{v} \cdot \mathbf{w} = \langle v_1, v_2, v_3 \rangle \cdot \langle w_1, w_2, w_3 \rangle$$
$$= v_1 w_1 + v_2 w_2 + v_3 w_3$$

#### geometrically

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$$

 $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$  where  $\theta$  is the angle between  $\mathbf{v}$  and  $\mathbf{w}$ .

#### Example 1: (Test 1, Sem 1 2006/07)

Given the vectors  $\mathbf{u} = 3\underline{i} + \underline{j} - 5\underline{k}$  and  $\mathbf{v} = 4\underline{i} - 2\underline{j} + 7\underline{k}$ .

a) Find the angle between **u** and **v**.

#### Example 2: (Final Sem 1, 2005/06)

The coordinates of A,B and C are A(1,1,-1), B(-1,2,3) and C(-2,1,1). Find the angle ABC, giving your answer to nearest degree.

#### Example 3: (Final Sem 2, 2006/07)

Given the vectors

Find the angle between **a** and **b**.

## Example 4: (Test 1, 2005/06)

Given  $\mathbf{u} = m\mathbf{i} + \mathbf{j}$  and  $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j}$ . Find the values of m if the angle between  $\mathbf{u}$  and  $\mathbf{v}$  is  $\mathbf{-}$ .

#### Theorem 6.1:(Angle between two vectors)

The nature of an angle  $\theta$ , between two vectors  $\mathbf{u}$  and  $\mathbf{v}$ .

- 1.  $\theta$  is an acute angle if and only if  $\mathbf{u} \cdot \mathbf{v} > 0$
- 2.  $\theta$  is an obtuse angle if and only if  $\mathbf{u} \cdot \mathbf{v} < 0$
- 3.  $\theta = 90^{\circ}$  if and only if  $\mathbf{u} \cdot \mathbf{v} = 0$

#### **Example:**(Final 2004/05)

Given  $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$  and  $\mathbf{b} = \mathbf{i} + \alpha \mathbf{j} - 5\mathbf{k}$ .

a) Find the value of  $\alpha$  if the vectors **a** and **b** are orthogonal.

#### **6.3 The Cross Products (Vector Products)**

The cross product (vector product)  $\mathbf{u} \times \mathbf{v}$  is a vector perpendicular to  $\mathbf{u}$  and  $\mathbf{v}$  whose direction is determined by the right hand rule and whose length is determined by the lengths of  $\mathbf{u}$  and  $\mathbf{v}$  and the angle between them.



#### **Theorem 6.2: (cross product)**

If  $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$  and  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ , then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_{1}) \mathbf{k}$$

•

## Definition 6.1: (Magnitude of Cross Product)

If  ${\bf u}$  and  ${\bf v}$  are nonzero vectors, and  $\theta$  ( $0 < \theta < \pi$ ) is the angle between  ${\bf u}$  and  ${\bf v}$ , then

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta,$$

## Theorem 6.3 (Properties of Cross Product)

The cross product obeys the laws

(a) 
$$\mathbf{u} \times \mathbf{u} = \mathbf{0}$$

(b) 
$$\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$$

(c) 
$$\mathbf{u} \times \mathbf{v} + \mathbf{w} = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

(d) 
$$\langle \mathbf{u} \rangle \mathbf{v} = \mathbf{u} \times \langle \mathbf{v} \rangle = k \langle \mathbf{u} \times \mathbf{v} \rangle$$

(e) 
$$\mathbf{u}$$
 //  $\mathbf{v}$  if and only if  $\mathbf{u} \times \mathbf{v} = 0$ 

(f) 
$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

#### Example 1:

Given that 
$$\mathbf{u} = \langle 3,0,4 \rangle$$
 and  $\mathbf{v} = \langle 1,5,-2 \rangle$ , find

(a) 
$$\mathbf{u} \times \mathbf{v}$$
 (b)  $\mathbf{v} \times \mathbf{u}$ 

### Example 2:(Final 2004/05)

Given 
$$\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$$
 and  $\mathbf{b} = \mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$ .

Find a <u>unit vector</u> which is orthogonal to the vectors **a** and **b**.

## Example 3: (Final Sem 1, 2005/2006)

Find a unit vector perpendicular to both vectors

## Area of parallelogram & triangle



Area of a parallelogram =  $|\mathbf{u}| |\mathbf{v}| \sin \theta = |\mathbf{u} \times \mathbf{v}|$ 

Area of triangle = 
$$\frac{1}{2} |\mathbf{u} \times \mathbf{v}|$$

## Example 1: (Final Sem 2, 2006/2007)

Find an area of a parallelogram bounded by two vectors

#### Example 2:

Find an area of a triangle that is formed from vectors

$$u = i + j - 3k$$
 and  $v = -6j + 5k$ .

## Example 3:

Find the area of the triangle having vertices at P (1,3,2),

$$Q(-2,1,3)$$
 and  $R(3,-2,-1)$ .

Ans: 11.52sq units.

## 6.4 Lines in Space

## 6.4.1 How lines can be defined using vectors?



Suppose **L** is a straight line that passes through  $P(x_0, y_0, z_0)$  and is parallel to the vector  $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ .

Thus, a point Q(x, y, z) also lies on the line **L** if vectors  $\overline{PQ}$  and **v** are parallel, that is:

Say 
$$\mathbf{r}_0 = \overline{OP}$$
 and  $\mathbf{r} = \overline{OQ}$   

$$\therefore \overline{PQ} = \mathbf{r} - \mathbf{r_0}$$

$$\mathbf{r} - \mathbf{r_0} = t\mathbf{v} \quad \mathbf{r} = \mathbf{r_0} + t\mathbf{v}$$

In component form,

$$< x, y, z > = < x_0, y_0, z_0 > +t < a, b, c >$$

(equation of line in vector component)

### Theorem 1.11(Parametric Equations for a Line)

The line through the point  $P(x_0, y_0, z_0)$  and parallel to the nonzero vector  $\mathbf{V} = \langle a, b, c \rangle$  has the **parametric equations** 

$$x = x_0 + at$$
,  $y = y_0 + bt$ ,  $z = z_0 + ct$ 

## Example 1:

Give the parametric equations for the line through the point (6,4,3) and parallel to the vector  $\langle 2,0,-7\rangle$ .

#### Example 2: (Final 2004/05)

The position vectors of points A and B are

and . Find the parametric equation of the line

AB.

#### Theorem 6.4 (Symmetric Equations for a line)

The line through the point  $P(x_0, y_0, z_0)$  and parallel to the nonzero vector  $\mathbf{V} = \langle a, b, c \rangle$  has the **symmetrical equations** 

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

#### Example 1:

Given that the symmetrical equations of a line in space is

$$\frac{2x+1}{3} = \frac{3-y}{4} = \frac{z+4}{2}$$
, find

- (a) a point on the line.
- (b) a vector that is parallel to the line.

#### Example 2: (Test 1, 2006/07)

The line l is passing through the points X(2,0,5) and Y(-3,7,4). Write the equation of l in symmetrical form.

#### Example 3: (Test 1, 2005/06)

Given a line L:

Write the equation of L in symmetrical form.

#### **6.4.2** Angle Between Two Lines

Consider two straight lines

$$l_1: \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

and  $l_2: \frac{x - x_2}{d} = \frac{y - y_2}{e} = \frac{z - z_2}{f}$ 

The line  $l_1$  parallel to the vector  $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$  and the line  $l_2$  parallel to the vector  $\mathbf{v} = d\mathbf{i} + e\mathbf{j} + f\mathbf{k}$ . Since the lines  $l_1$  and  $l_2$  are parallel to the vectors  $\mathbf{u}$  and  $\mathbf{v}$  respectively, then the angle,  $\theta$  between the two lines is given by

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$$

## Example 1:

Find an acute angle between line

$$l_1 = \mathbf{i} + 2\mathbf{j} + \mathbf{t}(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

and line

$$l_2 = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + s(3\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}).$$

## Example 2: (Test 1, 2006/07)

Find the angle between lines  $l_1$  and  $l_2$  which are defined by

## **6.4.3 Intersection of Two Lines**

In three-dimensional coordinates (space), two lines can be in one of the three cases as shown below





a) intersect b) parallel c)skewed

Let  $l_1$  and  $l_2$  are given by:

$$l_1: \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$
 and (1)

$$l_2: \frac{x - x_2}{d} = \frac{y - y_2}{e} = \frac{z - z_2}{f} \tag{2}$$

From (1), we have  $\mathbf{v}_1 = \langle a, b, c \rangle$ 

From (2), we have  $\mathbf{v}_2 = \langle d, e, f \rangle$ 

Two lines are <u>parallel</u> if we can write

$$\mathbf{v}_1 = \lambda \mathbf{v}_2$$

The parametric equations of  $l_1$  and  $l_2$  are:

$$l_1: \quad x = x_1 + at$$

$$y = y_1 + bt$$

$$z = z_1 + ct$$

$$l_2: \quad x = x_2 + ds$$

$$y = y_2 + es$$

$$z = z_2 + fs$$

$$(3)$$

Two lines are <u>intersect</u> if there exist unique values of *t* and *s* such that:

$$x_1 + at = x_2 + ds$$
$$y_1 + bt = y_2 + es$$
$$z_1 + ct = z_2 + fs$$

Substitute the value of t and s in (3) to get x, y and z. The point of intersection = (x, y, z)

Two lines are <u>skewed</u> if they are neither parallel nor intersect.

## Example 1:

Determine whether  $l_1$  and  $l_2$  are parallel, intersect or skewed.

a) 
$$l_1: x = 3+3t$$
,  $y = 1-4t$ ,  $z = -4-7t$   
 $l_2: x = 2+3s$ ,  $y = 5-4s$ ,  $z = 3-7s$ 

b) 
$$l_1: \frac{x-1}{1} = \frac{2-y}{4} = z$$
  
 $l_2: \frac{x-4}{-1} = y-3 = \frac{z+2}{3}$ 

## **Solutions:**

a) for  $l_1$ :

point on the line, P = (3, 1, -4)vector that parallel to line,  $\mathbf{v}_1 = <3, -4, -7>$  $\underline{\text{for } l_2}$ :

point on the line, Q = (2, 5, 3)

vector that parallel to line,  $\mathbf{v}_2 = <3,-4,-7>$ 

$$\mathbf{v}_1 = \lambda \mathbf{v}_2$$
 ?  $\mathbf{v}_1 = \mathbf{v}_2$  where  $\lambda = 1$ 

Therefore, lines  $l_1$  and  $l_2$  are parallel.

b) Symmetrical eq's of  $l_1$  and  $l_2$  can be rewrite as:

$$l_1: \frac{x-1}{1} = \frac{y-2}{-4} = \frac{z-0}{1}$$
$$l_2: \frac{x-4}{-1} = \frac{y-3}{1} = \frac{z-(-2)}{3}$$

Therefore:

for 
$$l_1$$
: P = (1, 2, 0) ,  $\mathbf{v}_1$  =< 1,-4,1 >
for  $l_2$ : Q = (4, 3, -2) ,  $\mathbf{v}_2$  =< -1,1,3 >
 $\mathbf{v}_1 = \lambda \mathbf{v}_2$  ?
 $\mathbf{v}_1 \neq \lambda \mathbf{v}_2$  → not parallel.

In parametric eq's:

$$l_1: x = 1 + t$$
,  $y = 2 - 4t$ ,  $z = t$   
 $l_2: x = 4 - s$ ,  $y = 3 + s$ ,  $z = -2 + 3s$ 

$$1+t = 4-s \tag{1}$$

$$2 - 4t = 3 + s \tag{2}$$

$$t = -2 + 3s \tag{3}$$

Solve the simultaneous equations (1), (2), and (3) to get t and s.

$$s = \frac{5}{4} \quad \text{and} \quad t = \frac{7}{4}$$

The value of t and s must satisfy (1), (2), and (3). Clearly they are not satisfying (2) i.e

$$2 - \frac{7}{4} = 3 + \frac{5}{4} ?$$

$$\frac{1}{4} \neq \frac{17}{4}$$

Therefore, lines  $l_1$  and  $l_2$  are not intersect. This implies the lines are skewed!

## **6.4.4** Distance From A Point To A Line



Distance from a point Q to a line that passes through point P parallel to vector  $\mathbf{v}$  is equal to the length of the component of PQ perpendicular to the line.

$$d = \left| \overline{PQ} \right| \sin \theta$$
$$= \left| \overline{PQ} \right| \times \mathbf{v}$$
$$\mathbf{v}$$

## Example 1:(Test 1, 2005/06)

Given a line L:

Find the shortest distance from a point Q(4,1,-2) to the line L.

## Example 2:

Find the shortest distance from the point M(1,-2,2) to the line

27

#### **6.5** Planes in Space

#### **6.5.1 Equation of a Plane**

Suppose that  $\alpha$  is a plane. Point  $P(x_0, y_0, z_0)$  and Q(x, y, z) lie on it. If  $\overline{N} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$  is a non-null vector perpendicular (ortoghonal) to  $\alpha$ , then N is perpendicular to PQ.



#### **Conclusion:**

The equation of a plane can be determined if a point on the plane and a vector orthogonal to the plane are known.

## Theorem 6.5 (Equation of a Plane)

The plane through the point  $P(x_0, y_0, z_0)$  and with the nonzero normal vector  $\mathbf{N} = \langle a, b, c \rangle$  has the equation

Point-normal form:

$$a (x - x_0) + b (y - y_0) + c (z - z_0) = 0$$

Standard form:

$$ax + by + cz = d$$
 with  $d = ax_0 + by_0 + cz_0$ 

#### Example 1:

Give an equation for the plane through the point (2, 3, 4) and perpendicular to the vector  $\langle -6,5,-4 \rangle$ .

#### Example 2: (Final 2006/07)

Find the equation of a plane through (2,3,-5) and perpendicular to the line l: —

## Example 3: (Test 1, 2005/06)

Given the plane that contains points A(2,1,7), B(4,-2,-1), and C(3,5,-2). Find:

- a) The normal vector to the plane
- b) The equation of the plane in standard form

## Example 4:

Find the parametric equations for the line through the point (5, -3, 2) and perpendicular to the plane 6x + 2y - 7z = 5.

#### **6.5.2** Intersection Of Two Planes

Intersection of two planes is a line. (L)



To obtain the equation of the intersecting line, we need

- 1) a point on the line L
- 2) a vector that is parallel to the line L which is given by  $= N_1 \times N_2$

If  $\overline{N} = \langle a, b, c \rangle$ , then the equation of the line L is

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
 (symmetric)

or

$$x = x_0 + at$$
,  $y = y_0 + bt$ ,  $z = z_0 + ct$  (parametric)

## Example 1:

Find the equation of the line passing through P(2,3,1) and parallel to the line of intersection of the planes x + 2y - 3z = 4 and x - 2y + z = 0.

## **6.5.3** Angle Between Two Planes

#### **Properties of two planes**

(a) An angle between the crossing planes is an angle between their normal vectors.

$$\cos\theta = \frac{N_1 \cdot N_2}{|N_1||N_2|}$$

- (b) Two planes are parallel if and only if their normal vectors are parallel,  $N_1 = \lambda N_2$
- (c) Two planes are orthogonal if and only if  $N_1 \cdot N_2 = 0$ .

#### Example 1:

Find the angle between plane 3x + 4y = 0 and plane 2x + y - 2z = 5.

#### 6.5.4 Angle Between A Line And A Plane



Let  $\alpha$  be the angle between the normal vector  $\mathbf N$  to a plane  $\pi$  and the line L. Then we have

where  $\mathbf{v}$  is vector parallel to L.

If heta is the angle between the line L and the plane  $\pi$  , then

$$\alpha + \theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{2} - \alpha$$

and

$$\sin\theta = \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

Therefore, the angle between a line and a plane is

$$\sin \theta = \frac{\mathbf{v} \cdot \mathbf{N}}{|\mathbf{v}||\mathbf{N}|}$$

## Example 1: (Final exam, 2006/07)

Calculate the angle between the plane x - 2y + z = 4 and the

line — — .

#### **6.5.5 Shortest Distance Involving Planes**

## (a) From a Point to a Plane

### -Theorem-

The distance D between a point  $P(x_1, y_1, z_1)$  and the plane ax + by + cz = d is

$$D = \left| \frac{\mathbf{N} \cdot \overline{QP}}{|\mathbf{N}|} \right| = \left| \frac{ax_1 + by_1 + cz_1 - d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

Where  $Q(x_0, y_0, z_0)$  is any point on the plane.



# Example 1: (Test 1, 2006/07)

Find the distance D between the point (4, 5, -8) and the plane 2x - 6y + 3z + 4 = 0.

# Example 2:

i. Show that the line

$$\frac{x-1}{3} = \frac{y}{-2} = \frac{z+1}{1}$$

is parallel to the plane 3x - 2y + z = 1.

ii. Find the distance from the line to the plane in part (a).

# (b) Between two parallel planes

The distance between two parallel planes  $ax + by + cz = d_1$  and  $ax + by + cz = d_2$  is given by

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

## Example 1:

Find the distance between two parallel planes x + 2y - 2z = 3 and 2x + 4y - 4z = 7.

# (c) Between two skewed lines



Assume L1 and L2 are skew lines in space containing the points P and Q and are parallel to vectors  $\mathbf{u}$  and  $\mathbf{v}$  respectively.

Then the shortest distance between *L1* and *L2* is the perpendicular distance between the two lines and its direction is given by a vector normal to both lines.

So, the distance between the two lines is

$$d = |PQ \cos \theta|$$

$$= \left| \frac{N \cdot PQ}{|N|} \right| = \left| \frac{u \times v \cdot PQ}{|u \times v|} \right|$$

# Example 1:

Find the shortest distance between the skewed lines.

$$l_1: x = 1+2t, y = -1+t, z = 2+4t$$

$$l_2: x = -2+4s, y = -3s, z = -1+s$$

# Example 2:

Find the distance between the lines

$$L_1: i + 2j + 3k + t(i - k)$$
  
 $L_2: x = 0, y = 1 + 2t, z = 3 + t$ 

# Example 3:

Find the distance between the lines  $L_1$  through the points A(1, 0, -1) and B(-1, 1, 0) and the line  $L_2$  through the points C(3, 1, -1) and D(4, 5, -2).