

www.utm.my

Circuit Theory (SKEE 1023)

Assoc. Prof. Dr. Mohamed Afendi Mohamed Piah

Institute of High Voltage & High Current Faculty of Electrical Engineering, UTM

www.utm.my

Topics

Linearity Property, Superposition, Source Transformation, Thevenin and Norton Theorem.

www.utm.my

Linearity Property

- Linearity is the property of an element describing a linear relationship between cause and effect.
- Combination of both homogeneity (scaling) property and the additivity property.
- E.g. Resistor is a linear element because the voltage-current relationship satisfies both the homogeneity and the additivity properties.
- A linear circuit consists of only linear elements, linear dependent source and independent sources.

www.utm.my

Linearity Property

Example 4.1

Solution:

Applying KVL to the two loops, we obtain

$$12i_1 - 4i_2 + v_s = 0$$
$$-4i_1 + 16i_2 - 3v_x - v_s = 0$$

But $v_x = 2i_1$. Equation (4.1.2) becomes

$$-10i_1 + 16i_2 - v_s = 0$$

Adding Eqs. (4.1.1) and (4.1.3) yields

$$2i_1 + 12i_2 = 0$$
 \Rightarrow $i_1 = -6i_2$ When $v_s = 12 \text{ V}$,

Substituting this in Eq. (4.1.1), we get

$$-76i_2 + v_s = 0$$
 \Rightarrow $i_2 = \frac{v_s}{76}$ When $v_s = 24 \text{ V}$,

$$I_o = i_2 = \frac{12}{76} \,\mathrm{A}$$

$$I_o = i_2 = \frac{24}{76} A$$

showing that when the source value is doubled, I_o doubles.

www.utm.my

Superposition Theorem

- The voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.
- Combination of both homogeneity (scaling) property and the additivity property. Applicable to linear circuit only.
- One of the method to solve the circuit with two or more independent sources.
- The number of analysis depend on how many independent sources does the circuit has.

Superposition Theorem

Steps to apply Superposition theorem/principle.

- Choose one independent source and eliminate (turn-off) the effect of other independent sources. [Voltage source ⇒ short-circuit; Current source ⇒ open-circuit]
- Start the analysis using any circuit analysis methods/techniques and theorems. [KCL, KVL, nodal/mesh analysis, etc]
- 3. Start the analysis using any circuit analysis methods/techniques and theorems. [KCL, KVL, nodal/mesh analysis, etc]
- 4. Combine/add-ups all the value of each element for all separated analysis.

www.utm.my

Superposition Theorem

- This technique does not allow to find power at any separated circuit.
- This technique has one major disadvantage; it may very likely involve more work.
- However superposition does help reduce a complex circuit to a simpler circuit.
- Combine/add-ups all the value of each element for all separated analysis.

www.utm.my

Superposition Theorem

Problem 4.1:

Using the superposition theorem, find v_o in the circuit of Fig. P4.1. (Ans: 6 V)

Fig. P4.1

www.utm.my

Superposition Theorem

Example 4.2:

Find i_o in the circuit using superposition theorem.

www.utm.my

Superposition Theorem

The circuit involves a dependent source, which must be left intact. The i_o is given by; $i_o = i_o + i_o$

How to find i_o ?

How to find i_o "?

www.utm.my

Superposition Theorem

Problem 4.2:

Use superposition to find v_x in the circuit of Fig. P4.2. (Ans: 25 V)

Fig. P4.2

www.utm.my

Source Transformation

A source transformation is the process of replacing a voltage source V_s in series with a resistor R by a current source I_s in parallel with a resistor R, or vice versa.

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$

www.utm.my

Thevenin's Theorem

- Objective : To simplify the circuit.
- Provides a technique by which the fixed part of the circuit is replaced by an equivalent circuit.
- Developed in 1883 by M. Leon Thevenin (1857–1926), a French telegraph engineer.
- When the load are varies, all the variables (voltage & current) inside the linear circuit would also varies, thus the analysis has to be done again.

www.utm.my

Thevenin's Theorem

Thevenin's theorem states that a linear 2-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th}.

- V_{Th} is the open-circuit voltage at the terminals, and R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.
- It is easy to find the open-circuit voltage (v_{oc}) and short-circuit current (i_{sc}) at terminal a-b through experimental method.
- Thus, $V_{Th} = v_{oc}$ and $R_{Th} = v_{oc}/i_{sc}$

www.utm.my

Thevenin's Theorem

 \triangleright How to find V_{Th} (Thevenin voltage) and R_{Th} (Thevenin resistance)?

www.utm.my

Thevenin's Theorem

- A linear circuit without dependent source.
 - 1. Find v_{oc} across the two terminal (either using mesh/nodal, etc). The Thevenin voltage (V_{Th}) is equal to v_{oc} .
 - 2. Simply turn off all the independent sources.
 - 3. Find the equivalent resistance (R_{eq}) between the two terminal. The Thevenin resistor (R_{Th}) is equal to the R_{eq} .

www.utm.my

Thevenin's Theorem

A linear circuit with dependent source

- 1. Find v_{oc} across the two terminal (either using mesh/nodal, etc). The Thevenin voltage (V_{Th}) is equal to v_{oc} .
- 2. Simply turn off all the independent sources. The dependent sources should remain intact/unchanged.
- 3. Inject a voltage source (v_o) OR current source (i_o) across the two terminal. Then determine current supplied by voltage source OR voltage across the current source.
- 4. The value of $R_{Th} = v_o/i_o$

www.utm.my

Thevenin's Theorem

Finding R_{Th} when circuit has dependent sources.

We may assume any value of v_o and i_o . For example, we may use v_o = 1V or i_o = 1A, or even use unspecified values of v_o or i_o .

www.utm.my

Thevenin's Theorem

A circuit with a load: (a) original circuit, (b) Thevenin equivalent

www.utm.my

Thevenin's Theorem

Example 4.3:

Find the Thevenin equivlent circuit of the circuit shown in Fig. E4.3, to the left of the terminals a-b. Then find the current through R_L = 6, 16 and 36 Ω .

Fig. E4.3

www.utm.my

Thevenin's Theorem

Example 4.4:

Find the Thevenin equivlent circuit of the circuit in Fig. E4.4 at terminals *a-b*.

Fig. E4.4

www.utm.my

Thevenin's Theorem

Example 4.4 (cont.):

Finding R_{Th} and V_{Th} at terminals a-b.

Finding R_{Th}

Finding V_{Th}

www.utm.my

Norton's Theorem

- Similar with Thevenin's theorem.
- Proposed by E.L. Norton (1926), an American engineer at Bell Telephone Laboratories.
- Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source (I_N) in parallel with a resistor, R_N.

Original circuit

Norton equivalent circuit

www.utm.my

Norton's Theorem

- I_N is the short-circuit current (i_{sc}) through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.
- Method to find R_N is same with $R_{Th} \Rightarrow R_N = R_{Th}$
- By using "Source Transformation" method, the conversion between Thevenin and Norton theorems are possible.
- Correlation between Thevenin and Norton parameters are given as follows;

$$I_N = \frac{V_{Th}}{R_{Th}}$$
; $V_{Th} = v_{oc}$ and $I_N = i_{sc}$ $R_{Th} = \frac{v_{oc}}{i_{sc}} = R_N$

www.utm.my

Norton's Theorem

Example 4.5:

Find the Norton equivalent circuit of the circuit of Fig. E4.5.

Fig. E4.5

www.utm.my

Norton's Theorem

Finding (a) R_N , (b) $I_N = i_{sc}$, (c) $V_{Th} = v_{oc}$.

www.utm.my

Norton's Theorem

Problem 4.3:

Find the Norton equivalent circuit of the circuit in Fig. P4.3 at terminals *a-b*.

(Ans: $R_N = 1 \Omega$, $I_N = 10 A$)

Fig. P4.3

www.utm.my

Maximum Power Transfer

- A circuit is purposely designed to suit the demand of the loads (in terms of voltage/current/power).
- If the load (resistive load) is variable, then what is the maximum power that can be transferred to the load?

www.utm.my

Maximum Power Transfer

Thevenin equivalent is useful in finding the maximum power that the linear circuit can deliver to a load.

Power absorbed by the load;

$$p = i^2 R_L = \left(\frac{V_{\rm Th}}{R_{\rm Th} + R_L}\right)^2 R_L$$

Maximum Power Transfer

By varying the load resistance R_L , the power delivered to the load varies as sketched in figure below;

Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen from the load $(R_L = R_{Th})$

www.utm.my

Maximum Power Transfer

Example 4.6:

Find the value of R_L for maximum power transfer in the circuit of Fig. E4.6. Find maximum power. (Ans: $R_L = 9 \Omega$, 13.44 W)

Fig. E4.6