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Review:

Finite and Infinite Sequences

Sequence
A set of numbers written in a particular order
u,u,,...,u..

We sometimes write u, for the first term of the
sequence, u, for the second term and so on. We
write the n term as u_ .

Examples:

1, 3, 5, 9. — finite sequence
1,2,3,4,5, ..., n—finite sequence
1,1,2,3,5,8, ... - Infinite sequence

The Geometric Progression

Example:
1,2,4,8, ...,256

The finite sequence In equation above Is an
example of a geometric progression having the
general form:

a,ax,ax’, ax’,...ax’



In this case, a=1, xX=—"-—-=—“==—=2 and
a,, & 1

u=ax =2";r=012,..,8.

The Arithmetic Progression

Example:
1,3,5,7,...,31

This finite sequence Is an example of an
arithmetic progression, because each successive
term is given by a sum having the general form:

a,a+d,a+2d,a+3d,...,.a+ n-1 d.

In this case, a=1,d=a —-a,_,=3-1=2 and
11+21+2-2,1+2-3,...,1+2-15.
u =1+2r;r=0,12,...,15.



5.1  Series
5.1.1 Finite Series

For any sequence of terms u,,u,,...,uU_ We can

form a finite series by summing the terms in the

sequence up to and including the n™ term;

n
Sy =U +U, +...+U =D U,.
r=1

> u,or > u,is the symbol of sumand S, denotes
=1

its n" partial sum.

Example (1):
S, =1+2+2°+...+2""

Evaluate this sum for n=1,2,3,4.



In general, for a geometric series obtained by
summing the members of the geometric
progression, the sum of the first n" is given by:

S =a+ax+ax’+ax’ +...+ax""
1-X"
=a .
1-X

Example (2):

Find the sum of the geometric series

2+6+18+54+...
where there are 6 terms in the series.



5.1.2 Infinite Series
We can also form an infinite series from a
sequence by extending the range of the dummy

Index to an infinite number of terms:
S=U +U,+Uy+...= D U,
=1

The summation of a finite series will always yield
a finite result, but the summation of an infinite
series needs careful examination to a finite result,
I.e. the series converges.

If the sequence S, Is convergent and limS_ =S

N—0

exists as a real number, then the series Zan IS

called convergent and we write

n
a,+a,+a,+...+a,=Sor »a =S.
r=1



The number S is called the sum of the series. If

the sequence S, Is divergent then the series Is

called divergent.
An important example of an infinite series is the

geometric series

a+ax+ax2+ax3+...+ax”‘1+...=Zax”‘1 a=0.
]

The geometric series is convergent if |x| <1 and

Its sum IS

PV
> ax =T

If |x| >1, then the geometric series is divergent.



Example (3):
Find the sum of the geometric series
10 20 40
S——+———+...
3 9 27

Example (4):

s the series 222”31‘” convergent or divergent?
n=1

Example (5):

e 1 .
Show that the series Z IS convergent and
—n n+1l

find its sum?



. Theorem 1 ::

If the series ) a, is convergent, then lima, =0.

Nn—o0
n=1

Proof
Let S, =a,+a,+a,+...+a,. Thena, =S -S, .

Since ) a_Is convergent, the sequence S_ IS
n n

convergent. Let limS, =S. Since n—1— o as

N—o0

n — oo we also have limS, _, =S. Therefore

N—»c0

lima, =lim S-S,

N—o0 N—0
=limS, -limS,_, =S-S=0.
N—o0 N—0

Note: The converse of the theorem Is not true In

general. If lima, =0, we cannot conclude that

n—o0

> a,is convergent.
n=1



The Test for Divergence

If lima, does not exist or If lima, =0 then the

N—o0 N—0

series ) a, is divergent.
n=1

The test for Divergence follows from Theorem 1
because If the series iIs not divergent, then it is

convergent, and so lima, =0.

N—o0

Example (6):

2

Show that the series Z

diverges?
“~5n° +4
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Properties of Convergent Series

If > a,and > b, are convergent series and c is a

constant then

(1) ican = cian,
n=1 n=1

(2) i a +b = ian +ibn,
n=1 n=1 n=1

o0 o0

(3) i a,—b, =>a ->h.

n=1
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Example (7):

Find the sum of the series Z( 3 n + Zln ]?
n n+

Example (8):
Determine whether the series is convergent or

divergent. If the series is convergent find its sum.

10 20 40
(8) 5-=
A

(b) i 3—n8n+l
n=1
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5.2  The Integral and Ratio Tests; The

Sum of a Series

In this section, we develop tests that enable us to
determine whether a series Is convergent or
divergent without explicitly finding its sum. In
some case, however, our methods will enable us

to find good estimates of the sum.

The Integral Test
Suppose f Is a continuous, positive, decreasing

functionon 1,0 andleta = f n . Then the

series Zan IS convergent if and only If the
n=1

Improper integral ff X dx 1s convergent. In

other words

13



(a) If ff x dx is convergent, then > a, is
n=1
convergent.
(b) If ff x dx is divergent, then > a, is
n=1

divergent.

Note: Use this test when f x Iseasy to

Integrate.
Example (1):
In n
Determine whether the series Z converges
n=1 n
or diverges.
Example (2):

: = 1
For what values of P is the series Z—P
=1

convergent?
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The Ratio Test

a'n+1
an

() If lim

N—>o0

= L <1, then the series ) a, is
n=1

absolutely convergent.

a'n+1
an

n+1

a‘n

=L>1orlim = o0, then the

N—o0

(b) If lim

N—o0

series ) a, is divergent.
n=1

Note: The test is very useful in determining

whether a given series is absolutely convergent.

15



Example (3):

Test the convergent of the series Z

n=1 n! |
Example (4):
o0 nn3
Test the series -1 e for absolutely
n=1
convergence.
Example (5):

. &n”
Test the convergence of the series Z—I..
=1 N:

16



The Sum of a Series
5.2.1 Sum of Power of n’ Positive Integers

n n+1
2

Zr:1+2+3+...+n:
=1

r’=1"+2°+3"+...+n° :%n n+1 2n+1

>

2
n n+1
r3:13+23+33+...+n3:{ 2+ }

r=1

Example (6):

20 25
Evaluate Zrz and Zr’*.
=1 =1

Example (7):

10
Evaluate Z or—1°.
=1
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Example (8):
Find the sum for each of the following series:
(@) 1-3+4-5+7-7+...1t0 30 terms

(0) 22 +4%+62+...+ 2n °

5.2.2 Sum of Series of Partial Fraction

The sum of the series Zurcan be determined If
r=1

the r™ term can be expressed as the difference

method. Thus

1
ur:E[f r —f r—1 |, then

n

r

1
U :E[f n —f O].

r=1

Note: If we fail to express u, into this form,
E[f r —f r—1 |, then this method cannot be
C

used.
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Example (9):
Express the following series in terms of r™. Hence
by using the difference method, find the sum of
the first n terms.

(@) 1-3+3-5+3-7+...to 30 terms

(b) 1+1+1+...
4.5 5.6 6-7

Example (10):
Use the difference method:; find the sum of the
l 2

Series .
— +1 r+3
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5.3 Power Series
Definition

A power series about x =0 Is a series of the form

Dax" =a +ax+ax +ax +...+ax +...
n=0

A power series about X =a Is a series of the form

ian(x—a)” =a,+a,(x-a)+a,(x-a) +...+a (x-a)" +...
n=0

In which the center a and the coefficients
a,,8,,d, ...,a,,... are constants.

Expansion of Exponent Function

The power series of the exponent function can be
written as

e* =1+x+ix2+£x3+£x4+...
21 3! !

The expansion is true for all values of Xx. In
general,

20



n=0n'
Example (1):
Given
e :1+x+£x2 +£x3+£x4+...+ix” ¥...
l 3! 41 n!

Write down the first five terms of the expansion
of the following functions

(a) er
(b) e

Example (2):
Write down the first five terms on the expansion

of the function, 1+x “e* in the form of power
series.

21



Expansion of Logarithmic Function

The expansion of logarithmic function can be

written as
In(1+x):x—1x2+1x3—1x4+1x5
2 3 4 5
BN
6 {

The series converges for —1<x<1. Thus the
series In 1+ x isvalid for -1< x <1.

By assuming X with —x, we obtain
1 1, 1 1 -

In(l—x):—x—Exz—gx _ZX4_§X
BN
6 {

Thus, this result 1s true for -1<-x<1 or
-1<x<1.
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Example (3):

Write down the first five terms of the expansion
of the following functions
(@) In 1+3x

(b) 3In 1-2x* 1+3x

Example (4):
Find the first four terms of the expansion of the
function, 1+x “In 1+2x .

23



Expansion of Trigonometric Function

The power series for trigonometric functions can

be written as

x> x° x' X

+———t——...
31 51 71 9l

x> x* x® X

cosx=1-——+———+——...
21 41 61 8l

Both series are valid for all values of x.

SINX = X—

Example (5):

Given

x> x* x® X8

cosx=1-—4———4——...
21 41 6! 8l

Find the expansion of cos 2x and cos 3x .

Hence, by using an appropriate trigonometric
Identity find the first four terms of the expansion
of the following functions:

(a) sin® X
(b) cos® X
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5.4  The Taylor and the Maclaurin Series

— —_—

Definition 5.9 (TAYLOR AND MACLAURIN SERIES)

If f(z) has & derivatives of all orders at z = a, then we call the series as Taylor’s Series
for f{z) about £ = ¢ and is given by

)= fo)+ (- + 2 P

g s g

or
2

K] r
flz+a)=fla)+zf(a)+ %f”(a] + %'!-fm{ﬂ}-i' e %fr(ﬂ)Jr

In the special case where a = (, this series becomes the Maclaurin Series for f(z) and is
given by

1 3 :
o) = JO) 2 Q)+ 'O+ 70+ + 5@+ 0

Example (1):

Obtain the Taylor series for f (x) =3x"—6Xx+5
around the point x =1.

- - — e —— a—— — = — == e —l-_I
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Example (2):

Obtain Maclaurin series expansion for the first
four terms of e* and five terms of sinx. Hence,
deduct that Maclaurin series for e*sinx Is given

by

. 1o, 1,
XX X = X

Example (3):
Use Taylor’s theorem to obtain a series expansion

of first five terms for cos(x + gj Hence find

C0s62°correct to 4 dcp.
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Example (4):

If y =Incosx, show that
d’y +1+ (dyj =0
dx’ dx
Hence, by differentiating the above expression
several times, obtain the Maclaurin’s series of
y = Incos x In the ascending power of x up to the

term containing x".
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Finding Limits with Taylor Series and
Maclaurin Series.

Example (5):

. . ef=-1-x
Find lim .
x—0 X2

Example (6):

X*+2COSX—2

4

Evaluate Iim
Xx—0 3X
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Evaluating Definite Integrals with Taylor Series
and Maclaurin Series.
Example (7):

Use Maclaurin series to approximate the
following definite integral.

(a) e dx

(b) 1xcos(x*)dx
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