CHAPTER 5: SERIES

- 5.1 Series
- 5.1.1 Finite Series
- 5.1.2 Infinite Series
- 5.2 The Integral and Ratio Tests; The Sum of a Series
- 5.2.1 Sum of Power of 'n' Positive Integers
- 5.2.2 Sum of Series of Partial Fraction
- **5.3** Power Series
- 5.4 The Taylor and the Maclaurin Series

Review:

Finite and Infinite Sequences

- The Geometric Progression
- The Arithmetic Progression

Review:

Finite and Infinite Sequences

Sequence

A set of numbers written in a particular order

$$u_1, u_2, \ldots, u_n$$
.

We sometimes write u_1 for the first term of the sequence, u_2 for the second term and so on. We write the nth term as u_n .

Examples:

1, 3, 5, 9. – finite sequence

1, 2, 3, 4, 5, ..., n – finite sequence

1, 1, 2, 3, 5, 8, ... - infinite sequence

The Geometric Progression

Example:

The finite sequence in equation above is an example of a geometric progression having the general form:

$$a, ax, ax^2, ax^3, \dots ax^8$$

In this case,
$$a = 1$$
, $x = \frac{a_r}{a_{r-1}} = \frac{a_2}{a_1} = \frac{2}{1} = 2$ and $u_r = ax^r = 2^r$; $r = 0, 1, 2, ..., 8$.

The Arithmetic Progression

Example:

This finite sequence is an example of an arithmetic progression, because each successive term is given by a sum having the general form:

$$a, a + d, a + 2d, a + 3d, ..., a + n - 1 d.$$

In this case,
$$a = 1$$
, $d = a_r - a_{r-1} = 3 - 1 = 2$ and $1,1+2,1+2 \cdot 2,1+2 \cdot 3,...,1+2 \cdot 15$. $u_r = 1+2r$; $r = 0,1,2,...,15$.

5.1 Series

5.1.1 Finite Series

For any sequence of terms $u_1, u_2, ..., u_n$ we can form a finite series by summing the terms in the sequence up to and including the nth term:

$$S_n = u_1 + u_2 + \ldots + u_n = \sum_{r=1}^n u_r.$$

 $\sum_{r=1}^{n} u_r \text{ or } \sum u_r \text{ is the symbol of sum and } S_n \text{ denotes}$ its nth partial sum.

Example (1):

$$S_n = 1 + 2 + 2^2 + \ldots + 2^{n-1}$$
.

Evaluate this sum for n = 1, 2, 3, 4.

In general, for a geometric series obtained by summing the members of the geometric progression, the sum of the first nth is given by:

$$S_n = a + ax + ax^2 + ax^3 + \dots + ax^{n-1}$$
$$= a \left(\frac{1 - x^n}{1 - x} \right).$$

Example (2):

Find the sum of the geometric series

$$2+6+18+54+...$$

where there are 6 terms in the series.

5.1.2 Infinite Series

We can also form an infinite series from a sequence by extending the range of the dummy index to an infinite number of terms:

$$S = u_1 + u_2 + u_3 + \dots = \sum_{r=1}^{\infty} u_r$$

The summation of a finite series will always yield a finite result, but the summation of an infinite series needs careful examination to a finite result, *i.e.* the series converges.

If the sequence S_n is convergent and $\lim_{n\to\infty} S_n = S$ exists as a real number, then the series $\sum a_n$ is called convergent and we write

$$a_1 + a_2 + a_3 + \dots + a_n = S$$
 or $\sum_{r=1}^n a_r = S$.

The number S is called the sum of the series. If the sequence S_n is divergent then the series is called divergent.

An important example of an infinite series is the geometric series

$$a + ax + ax^{2} + ax^{3} + \dots + ax^{n-1} + \dots = \sum_{n=1}^{\infty} ax^{n-1} \ a \neq 0.$$

The geometric series is convergent if |x| < 1 and its sum is

$$\sum_{n=1}^{\infty} ax^{n-1} = \frac{a}{1-x}.$$

If $|x| \ge 1$, then the geometric series is divergent.

Example (3):

Find the sum of the geometric series

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$

Example (4):

Is the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ convergent or divergent?

Example (5):

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n + 1}$ is convergent and

find its sum?

:: Theorem 1 ::

If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

Proof

Let
$$S_n = a_1 + a_2 + a_3 + ... + a_n$$
. Then $a_n = S_n - S_{n-1}$.

Since $\sum a_n$ is convergent, the sequence S_n is

convergent. Let $\lim_{n\to\infty} S_n = S$. Since $n-1\to\infty$ as

 $n \to \infty$ we also have $\lim_{n \to \infty} S_{n-1} = S$. Therefore

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - S_{n-1}$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

Note: The converse of the theorem is not true in general. If $\lim_{n\to\infty} a_n = 0$, we cannot conclude that

$$\sum_{n=1}^{\infty} a_n$$
 is convergent.

The Test for Divergence

If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$ then the

series
$$\sum_{n=1}^{\infty} a_n$$
 is divergent.

The test for Divergence follows from Theorem 1 because if the series is not divergent, then it is convergent, and so $\lim_{n\to\infty} a_n = 0$.

Example (6):

Show that the series
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
 diverges?

Properties of Convergent Series

If $\sum a_n$ and $\sum b_n$ are convergent series and c is a constant then

(1)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
,

(2)
$$\sum_{n=1}^{\infty} a_n + b_n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
,

(3)
$$\sum_{n=1}^{\infty} a_n - b_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$
.

Example (7):

Find the sum of the series
$$\sum_{n=1}^{\infty} \left(\frac{3}{n + 1} + \frac{1}{2^n} \right)$$
?

Example (8):

Determine whether the series is convergent or divergent. If the series is convergent find its sum.

(a)
$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$

(b)
$$\sum_{n=1}^{\infty} 3^{-n} 8^{n+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n + 2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$$

5.2 The Integral and Ratio Tests; The Sum of a Series

In this section, we develop tests that enable us to determine whether a series is convergent or divergent without explicitly finding its sum. In some case, however, our methods will enable us to find good estimates of the sum.

The Integral Test

other words

Suppose f is a continuous, positive, decreasing function on $1,\infty$ and let $a_n=f$ n. Then the series $\sum_{n=1}^{\infty}a_n$ is convergent if and only if the improper integral $\int_1^{\infty}f$ x dx is convergent. In

- (a) If $\int_{1}^{\infty} f \, x \, dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (b) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Note: Use this test when f(x) is easy to integrate.

Example (1):

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.

Example (2):

For what values of *P* is the series $\sum_{n=1}^{\infty} \frac{1}{n^{P}}$ convergent?

The Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is

absolutely convergent.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the

series
$$\sum_{n=1}^{\infty} a_n$$
 is divergent.

Note: The test is very useful in determining whether a given series is absolutely convergent.

Example (3):

Test the convergent of the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.

Example (4):

Test the series $\sum_{n=1}^{\infty} -1^n \frac{n^3}{3^n}$ for absolutely convergence.

Example (5):

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$...

The Sum of a Series

5.2.1 Sum of Power of 'n' Positive Integers

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \ldots + n = \frac{n + 1}{2}$$

$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n \quad n+1 \quad 2n+1$$

$$\sum_{r=1}^{n} r^{3} = 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left\{ \frac{n + 1}{2} \right\}^{2}$$

Example (6):

Evaluate
$$\sum_{r=1}^{20} r^2$$
 and $\sum_{r=1}^{25} r^3$.

Example (7):

Evaluate
$$\sum_{r=1}^{10} 2r - 1^{2}$$
.

Example (8):

used.

Find the sum for each of the following series:

(a)
$$1 \cdot 3 + 4 \cdot 5 + 7 \cdot 7 + \dots$$
 to 30 terms

(b)
$$2^2 + 4^2 + 6^2 + ... + 2n^2$$

5.2.2 Sum of Series of Partial Fraction

The sum of the series $\sum_{r=1}^{n} u_r$ can be determined if

the rth term can be expressed as the difference method. Thus

$$u_r = \frac{1}{c} [f \ r - f \ r - 1], \text{ then}$$

$$\sum_{r=1}^{n} u_r = \frac{1}{k} \left[f \quad n \quad -f \quad 0 \quad \right].$$

Note: If we fail to express u_r into this form, $\frac{1}{c} \left[f \ r - f \ r - 1 \right]$, then this method cannot be

Example (9):

Express the following series in terms of rth. Hence by using the difference method, find the sum of the first n terms.

(a)
$$1 \cdot 3 + 3 \cdot 5 + 3 \cdot 7 + \dots$$
 to 30 terms

(b)
$$\frac{1}{4 \cdot 5} + \frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \dots$$

Example (10):

Use the difference method; find the sum of the

series
$$\sum_{r=1}^{n} \frac{2}{r+1 + 3}$$
.

5.3 Power Series

Definition

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

in which the center a and the coefficients $a_0, a_1, a_2, ..., a_n, ...$ are constants.

Expansion of Exponent Function

The power series of the exponent function can be written as

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots$$

The expansion is true for all values of x. In general,

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}.$$

Example (1):

Given

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots + \frac{1}{n!}x^{n} + \dots$$

Write down the first five terms of the expansion of the following functions

- (a) e^{2x}
- (b) e^{x-1}

Example (2):

Write down the first five terms on the expansion of the function, $1+x^2e^{-x}$ in the form of power series.

Expansion of Logarithmic Function

The expansion of logarithmic function can be written as

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5$$
$$-\frac{1}{6}x^6 + \frac{1}{7}x^7 - \dots$$

The series converges for $-1 < x \le 1$. Thus the series $\ln 1 + x$ is valid for $-1 < x \le 1$.

By assuming x with -x, we obtain

$$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5$$
$$-\frac{1}{6}x^6 - \frac{1}{7}x^7 - \dots$$

Thus, this result is true for $-1 < -x \le 1$ or $-1 \le x < 1$.

Example (3):

Write down the first five terms of the expansion of the following functions

- (a) $\ln 1 + 3x$
- (b) $3 \ln 1 2x^2 + 1 + 3x$

Example (4):

Find the first four terms of the expansion of the function, $1+x^2 \ln 1+2x^3$.

Expansion of Trigonometric Function

The power series for trigonometric functions can be written as

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Both series are valid for all values of x.

Example (5):

Given

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Find the expansion of $\cos 2x$ and $\cos 3x$. Hence, by using an appropriate trigonometric identity find the first four terms of the expansion of the following functions:

- (a) $\sin^2 x$
- (b) $\cos^3 x$

5.4 The Taylor and the Maclaurin Series

Definition 5.9 (TAYLOR AND MACLAURIN SERIES)

If f(x) has a derivatives of all orders at x = a, then we call the series as **Taylor's Series** for f(x) about x = a and is given by

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots + \frac{(x-a)^r}{r!}f^r(a) + \dots$$

or

$$f(x+a) = f(a) + x f'(a) + \frac{x^2}{2!} f''(a) + \frac{x^3}{3!} f'''(a) + \dots + \frac{x^r}{r!} f^r(a) + \dots$$

In the special case where a = 0, this series becomes the **Maclaurin Series** for f(x) and is given by

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x}{r!}f^r(0) + \dots \quad \diamondsuit$$

Example (1):

Obtain the Taylor series for $f(x) = 3x^2 - 6x + 5$ around the point x = 1.

Example (2):

Obtain Maclaurin series expansion for the first four terms of e^x and five terms of $\sin x$. Hence, deduct that Maclaurin series for $e^x \sin x$ is given by

$$x + x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 + \dots$$

Example (3):

Use Taylor's theorem to obtain a series expansion of first five terms for $\cos\left(x + \frac{\pi}{3}\right)$. Hence find $\cos 62^\circ$ correct to 4 dcp.

Example (4):

If $y = \ln \cos x$, show that

$$\frac{d^2y}{dx^2} + 1 + \left(\frac{dy}{dx}\right)^2 = 0$$

Hence, by differentiating the above expression several times, obtain the Maclaurin's series of $y = \ln \cos x$ in the ascending power of x up to the term containing x^4 .

Finding Limits with Taylor Series and Maclaurin Series.

Example (5):

Find
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$
.

Example (6):

Evaluate
$$\lim_{x\to 0} \frac{x^2 + 2\cos x - 2}{3x^4}$$
.

Evaluating Definite Integrals with Taylor Series and Maclaurin Series.

Example (7):

Use Maclaurin series to approximate the following definite integral.

(a)
$$\int_{0}^{1} e^{-x^{2}} dx$$

(b)
$$\int_{0}^{1} x \cos(x^{3}) dx$$