CHAPTER 1

FURTHER TRANSCENDENTAL FUNCTIONS

- 1.1 Hyperbolic Functions
 - 1.1.1 Definition of Hyperbolic Functions
 - 1.1.2 Graphs of Hyperbolic Functions
 - 1.1.3 Hyperbolic Identities
- 1.2 Inverse Functions
 - 1.2.1 Inverse Trigonometric Functions
 - 1.2.2 Inverse Trigonometric Identities
 - 1.2.3 Inverse Hyperbolic Functions
 - 1.2.4 Log Form of the Inverse Hyperbolic Functions

1.1.1 Definition of Hyperbolic Functions

❖Hyperbolic Sine, pronounced "shine".

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

*Hyperbolic Cosine, pronounced "cosh".

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

❖ Hyperbolic Tangent, pronounced "tanh".

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \equiv \frac{e^{2x} - 1}{e^{2x} + 1}$$

❖Hyperbolic Secant, pronounced "shek".

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

*Hyperbolic Cosecant, pronounced "coshek".

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

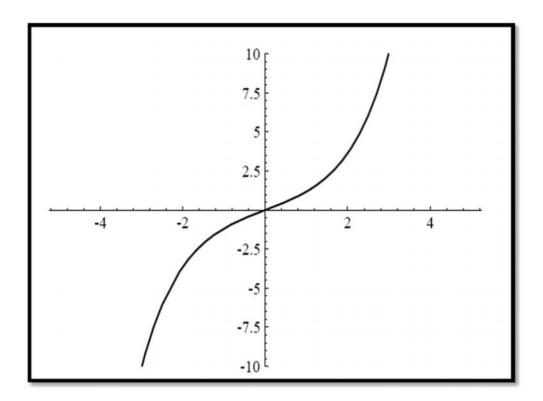
❖Hyperbolic Cotangent, pronounced "coth".

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

1.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the values of e^x and e^{-x} , its graphs is a combination of the exponential graphs.

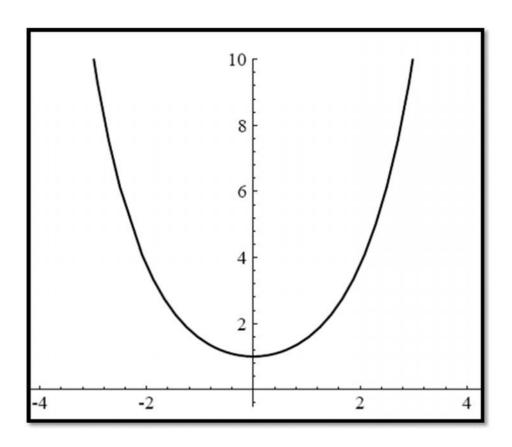
(i) Graph of sinh x



From the graph, we see

- (i) $\sinh 0 = 0$.
- (ii) The domain is all real numbers
- (iii) The curve is symmetrical about the origin, i.e. sinh(-x) = -sinh x
- (iv) It is an increasing one-to-one function.

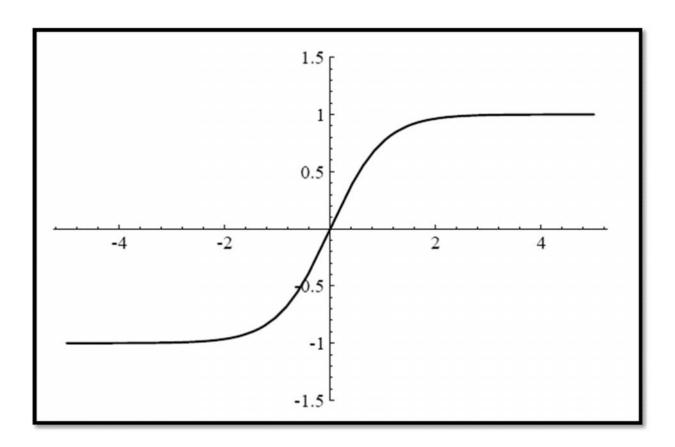
(ii) Graph of cosh x



We see from the graph of $y = \cosh x$ that:

- (i) $\cosh 0 = 1$
- (ii) The domain is all real numbers.
- (iii) The value of $\cosh x$ is never less than 1.
- (iv) The curve is symmetrical about the *y*-axis, i.e. $\cosh(-x) = \cosh x$
- (v) For any given value of $\cosh x$, there are two values of x.

(ii) Graph of tanh x



We see

- (i) $\tanh 0 = 0$
- (ii) $\tanh x$ always lies between y = -1 and y = 1.
- (iii) $\tanh(-x) = -\tanh x$
- (iv) It has horizontal asymptotes $y = \pm 1$.

1.1.3 Hyperbolic Identities

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed by hyperbolic functions.

$$1. \quad \cosh^2 x - \sinh^2 x = 1$$

$$2. \quad 1 - \tanh^2 x = \sec h^2 x$$

$$3. \quad \coth^2 x - 1 = \cos e c h^2 x$$

4.
$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

5.
$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

6.
$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

7.
$$\sinh 2x = 2 \sinh x \cosh x$$

8.
$$\cosh 2x = \cosh^2 x + \sinh^2 x$$
$$= 2\cosh^2 x - 1$$
$$= 2\sinh^2 x + 1$$

9.
$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in sign.

Trig. Identities

Hyperbolic Identities

$$\sec\theta \equiv \frac{1}{\cos\theta}$$

$$\csc\theta \equiv \frac{1}{\sin\theta}$$

$$\cot\theta \equiv \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\tanh\theta}$$

$$\cot\theta = \frac{1}{\tanh\theta$$

Examples 1.1

- 1. By using definition of hyperbolic functions,
 - a) Evaluate sinh(-4) to four decimal places.
 - b) Show that $2 \cosh^2 x 1 = \cosh 2x$
- 2. a) By using identities of hyperbolic functions, show that

$$\frac{1 - \tanh^2 x}{1 + \tanh^2 x} = \operatorname{sech} 2x$$

- b) Solve the following for x, giving your answer in 4dcp. $\cosh 2x = \sinh x + 1$
- 3. Solve for x if given $2\cosh x \sinh x = 2$.
- 4. a) By using definition of hyperbolic functions, proof that $\cosh^2 x \sinh^2 x = 1$
 - b) Solve $\cosh x = 4 \sinh x$. Use 4 dcp.

1.2 Inverse Functions

Definition 1.2 (Inverse Functions)

If $f: X \to Y$ is a one-to-one function with the domain X and the range Y, then there exists an inverse function,

$$f^{-1}: Y \to X$$

where the domain is Y and the range is X such that

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Thus, $f^{-1}(f(x)) = x$ for all values of x in the domain f.

Note:

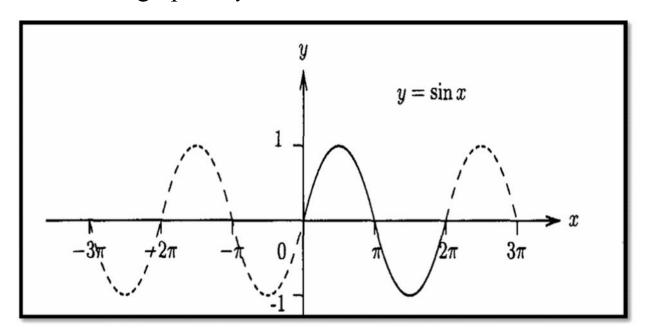
The graph of inverse function is reflections about the line y = x.

1.2.1 Inverse Trigonometric Functions

Trigonometric functions are **periodic** hence they are **not one-to one**. However, if we **restrict the domain** to a chosen interval, then the restricted function is one-to-one and invertible.

(i) Inverse Sine Function

Look at the graph of $y = \sin x$ shown below



The function $f(x) = \sin x$ is not one to one. But if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then f(x) is one to one.

Definition:

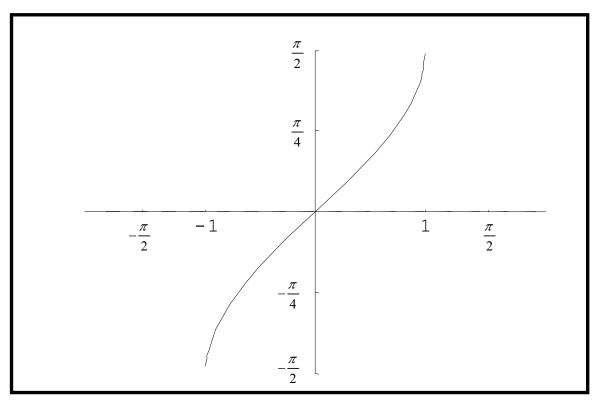
The inverse sine function is defined as

$$y = \sin^{-1} x \iff x = \sin y$$

where
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
 and $-1 \le x \le 1$.

The function $\sin^{-1} x$ is sometimes written as arcsin x.

The graph of $y = \sin^{-1} x$ is shown below

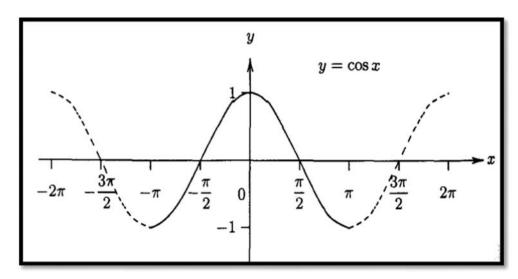


$$f(x) = \sin^{-1} x$$

$$f(x) = \arcsin x$$

ii) Inverse Cosine Function

Look at the graph of $y = \cos x$ shown below



The function $f(x) = \cos x$ is not one to one. But if the domain is restricted to $[0, \pi]$, then f(x) is one to one.

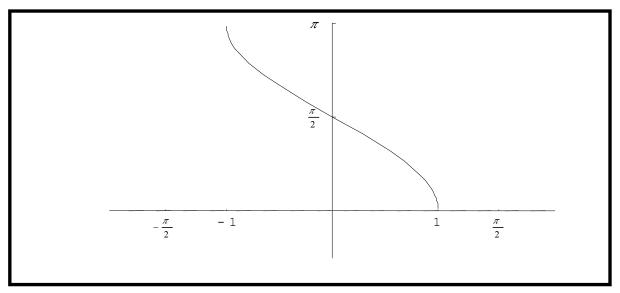
Definition:

The inverse cosine function is defined as

$$y = \cos^{-1} x \iff x = \cos y$$

where $0 \le y \le \pi$ and $-1 \le x \le 1$.

The graph of $y = \cos^{-1} x$ is shown below

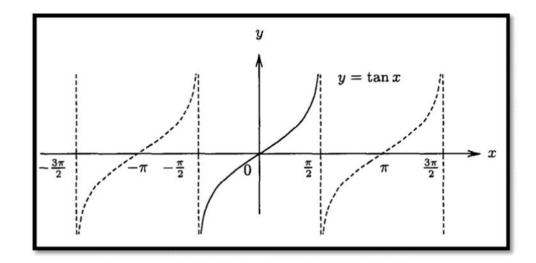


$$f(x) = \cos^{-1} x$$

$$f(x) = \arccos x$$

(iii) Inverse Tangent Function

Look at the graph of $y = \tan x$ shown below



The function $f(x) = \tan x$ is not one to one. But if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then f(x) is one to one.

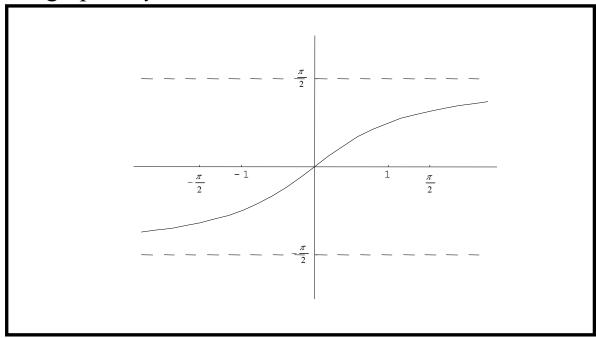
Definition:

The inverse tangent function is defined as

$$y = \tan^{-1} x \iff x = \tan y$$

where
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
 and $-\infty \le x \le \infty$.

The graph of $y = \tan^{-1} x$ is shown below



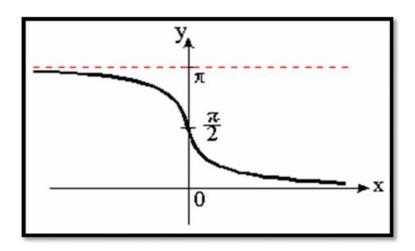
$$f(x) = \tan^{-1} x$$

$$f(x) = \arctan x$$

(iv) Inverse Cotangent Function

Domain:

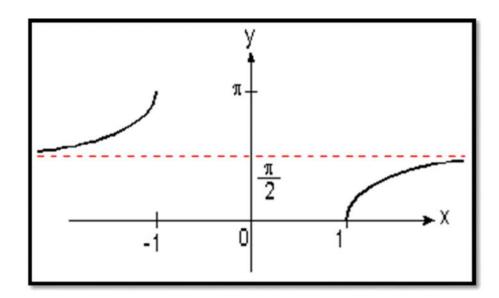
Range:



(v) Inverse Secant Function

Domain:

Range:



(vi) Inverse Cosecant Function

Domain:

Range:

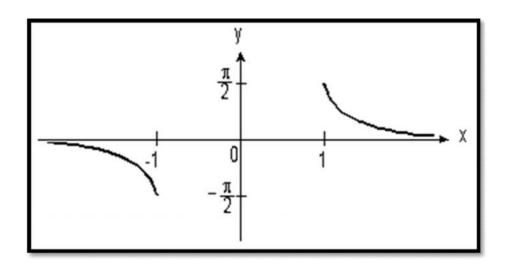


Table of Inverse Trigonometric Functions

Functions	Domain	Range	Quadrants
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	I & IV
$y = \cos^{-1} x$	[-1, 1]	$[0,\pi]$	I & II
$y = \tan^{-1} x$	$(-\infty \ , \infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	I & IV
$y = \csc^{-1} x$	$ x \ge 1$	$\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$	I & IV
$y = \sec^{-1} x$	$ x \ge 1$	$\left[0,\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\pi\right]$	I & II
$y = \cot^{-1} x$	$(-\infty, \infty)$	$(0,\pi)$	I & II

➤ It is easier to remember the restrictions on the domain and range if you do so in terms of quadrants.

$$> \sin^{-1} x \neq \frac{1}{\sin x}$$
 whereas $(\sin x)^{-1} = \frac{1}{\sin x}$.

1.2.2 Inverse Trigonometric Identities

The definition of the inverse functions yields several formulas.

Inversion formulas

$$\sin(\sin^{-1} x) = x$$

$$\sin(\sin^{-1} x) = y$$

$$\tan(\tan^{-1} x) = x$$

$$\tan(\tan^{-1} (\tan y) = y$$

These formulas are valid only on the specified domain

Basic Relation

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
 for $0 \le x \le 1$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
 for $0 \le x \le 1$

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$
 for $0 \le x \le 1$

Negative Argument Formulas

$\sin^{-1}(-x) = -\sin^{-1}x$	$\sec^{-1}(-x) = \pi - \sec^{-1}x$
$\tan^{-1}(-x) = -\tan^{-1}x$	$\csc^{-1}(-x) = -\csc^{-1}x$
$\cos^{-1}(-x) = \pi - \cos^{-1}x$	$\cot^{-1}(-x) = \pi - \cot^{-1}x$

Reciprocal Identities

$$csc^{-1} x = sin^{-1} \left(\frac{1}{x}\right) \qquad for |x| \ge 1$$

$$sec^{-1} x = cos^{-1} \left(\frac{1}{x}\right) \qquad for |x| \ge 1$$

$$cot^{-1} x = \frac{\pi}{2} - tan^{-1} x \qquad for all x$$

Examples 1.2:

- 1. Evaluate the given functions.
- (i) $\sin (\sin^{-1} 0.5)$ (ii) $\sin (\sin^{-1} 2)$
- (iii) $\sin^{-1}(\sin 0.5)$ (iv) $\sin^{-1}(\sin 2)$

- 2. Evaluate the given functions.
- (i) arcsec(-2)

- (ii) $\csc^{-1}(\sqrt{2})$
- (iii) $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
- **3.** For $-1 \le x \le 1$, show that

(i)
$$\sin^{-1}(-x) = -\sin^{-1}x$$

(ii)
$$\cos(\sin^{-1} x) = \sqrt{1 - x^2}$$

1.2.3 Inverse Hyperbolic Functions

The three basic inverse hyperbolic functions are $\sinh^{-1} x$, $\cosh^{-1} x$, and $\tanh^{-1} x$.

Definition (Inverse Hyperbolic Function)

$$y = \sinh^{-1} x$$
 \Leftrightarrow $x = \sinh y$ for all x and $y \in \Re$

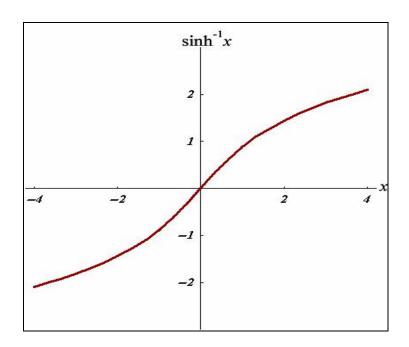
$$y = \cosh^{-1} x \Leftrightarrow x = \cosh y \text{ for } x \ge 1 \text{ and } y \ge 0$$

$$y = \tanh^{-1} x \Leftrightarrow x = \tanh y \text{ for } -1 \le x \le 1, y \in \Re$$

Graphs of Inverse Hyperbolic Functions

(i)
$$y = \sinh^{-1} x$$

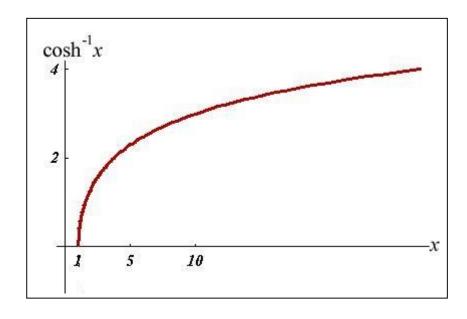
Domain: Range:



(ii)
$$y = \cosh^{-1} x$$

Domain:

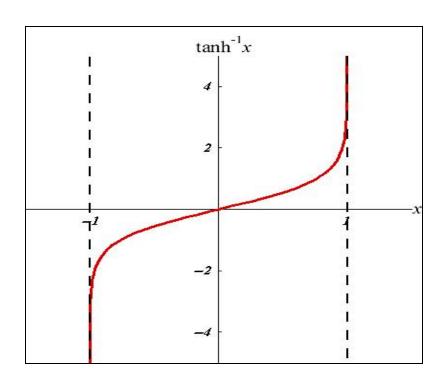
Range:



(iii)
$$y = \tanh^{-1} x$$

Domain:

Range:



1.2.4 Log Form of the Inverse Hyperbolic Functions

It may be shown that

(a)
$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$$

(b)
$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

(c)
$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

(d)
$$\coth^{-1} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$$

(e)
$$\sec h^{-1} x = \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right)$$

(f)
$$\cos ech^{-1}x = \ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}\right)$$

Inverse Hyperbolic Cosine (Proof)

If we let $y = \cosh^{-1} x$, then

$$x = \cosh y = \frac{e^y + e^{-y}}{2}$$

Hence,

$$2x = e^{y} + e^{-y}$$

On rearrangement,

$$(e^y)^2 - 2xe^y + 1 = 0$$

Hence, (using formula $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$)

$$e^{y} = \frac{2x \pm \sqrt{4x^2 - 4}}{2} = x \pm \sqrt{x^2 - 1}$$

Since $e^y > 0$,

$$.. e^{y} = x + \sqrt{x^2 - 1}$$

Taking natural logarithms,

$$y = \cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$$

Proof for $sinh^{-1}x$

$$y = \sinh^{-1} x$$

$$x = \sinh y = \frac{e^y - e^{-y}}{2}$$

∴
$$2x = e^y - e^{-y}$$
 (multiply with e^y)

$$2xe^{y} = e^{2y} - 1$$

$$e^{2y} - 2xe^y - 1 = 0$$

$$e^{y} = x \pm \sqrt{x^2 + 1}$$

Since
$$e^y > 0$$
,

$$e^y = x + \sqrt{x^2 + 1}$$

Taking natural logarithms,

$$y = \sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

In the same way, we can find the expression for $tanh^{-1}x$ in logarithmic form.

Examples 1.3: Evaluate

- 1) $\sinh^{-1}(0.5)$
- $2)\cosh^{-1}(0.5)$
- 3) $\tanh^{-1}(-0.6)$