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CHAPTER 1
INTRODUCTION
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Cancer remains a leading cause of death
worldwide, with increasing incidence and
mortality rates. Despite advances in
genomic technologies that generate
massive gene expression data, challenges
like high dimensionality, class imbalance,
and noise make accurate classification
difficult. Reliable classification is crucial
for early diagnosis, personalized therapy,
and treatment planning.

Problem Background
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The volume and complexity of gene expression
datasets, which are often characterized by high-
dimensional spaces and large feature sets, pose
significant challenges for accurate classification.

Problem Statement
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To improve the accuracy of cancer gene
expression data classification using Particle
Swarm Optimization (PSO) techniques.

Research Goal
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Research Objectives

01
To select the 
informative gene using 
Particle Swarm 
Optimization (PSO) on 
cancer gene 
expression.

To assess the impact 
of PSO feature 
selection on machine 
learning classification 
model performance.

To compare the 
performance of PSO-
enhanced 
classification 
algorithms with 
traditional methods.

02 03
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CHAPTER 2
LITERATURE REVIEW



Literature Review on Cancer 
Classification Performance

Emphasizes comparison of classifier performance with and
without PSO

Studies reviewed: Kazerani (2024), Alrefai & Ibrahim (2022)

Datasets involved: Clinical Datasets (WDBC, Coimbra) and 
Microarray Datasets (Colon, Breast)

Performance metrics: Accuracy, Sensitivity, Precision
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Dataset Types in 
Reviewed Studies

Dataset Type Source

Breast (WDBC) Clinical Kazerani (2024)

Breast (Coimbra)

Breast Microarray Alrefai and Ibrahim 
(2022)

Colon

*For this presentation, I use Coimbra dataset to show classifier comparisons.
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Classifier Performance 
(Coimbra Dataset with PSO)

Classifier Accuracy (%) Sensitivity (%) Precision (%)

SVM 91 100 85

ANN 90 92 89

AdaBoost 88 78 100

Decision Tree 87 76 100

KNN 87 87 89

Random Forest 87 95 84

Linear Regression 74 78 76

Logistic Regression 73 62 85

Naïve Bayes 72 59 86
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Key Finding from Literature

SVM: Highest sensitivity (100%), strong accuracy (91%)

ANN: High accuracy (90%) and good precision (89%)

AdaBoost: Perfect precision (100%), strong accuracy (88%)

1

2

3
*These classifiers were consistently top performers in clinical datasets, 

making them ideal for this research.
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CHAPTER 3
RESEARCH METHODOLOGY
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Research 
Framework

PSM 1

PSM 2
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Dataset
The cancer gene expression dataset was obtained from
Curated Microarray Database (CuMiDa) involving two types
of cancer, colorectal and lung cancer.

Dataset No. of Samples No. of Features No. of Classes

Colorectal 105 22,278 2

Lung 114 54,676 2
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Class Distribution

Dataset Class Distribution No. of Samples

Colorectal normal 53

tumoral 52

Lung normal 58

tumoral 56
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PROPOSED WORK
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Flowchart
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Detection and Replacing the 
Missing Data

01

Detection and Replacing the 
Outlier Data

02

Data Normalization03

Data Splitting04

Data
Preprocessing
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Detection and Replacing 
the Missing Data

• Missing data values (NaN) were replaced 
using the mean value of the respective 
column's feature.
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Detection and Replacing 
the Missing Data

Dataset Number of Missing Data

Colorectal 0

Lung 0
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Detection and Replacing 
the Outlier Data

• Outliers were detected using the Z-score 
algorithm (values with Z-score > 3 or < -3).

• These outliers were replaced by the mean
of the corresponding column (mean 
imputation).
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Detection and Replacing 
the Outlier Data

Dataset Outliers Before 
Imputation

Outliers After 
Imputation

Colorectal 26,350 14,815

Lung 50,135 20,972
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Data Normalization

• Data was normalized using Min-Max 
normalization, transforming all 
observations to a range between 0 and 1.

• Formula: 

𝑋𝑁 =
𝑋𝑖 −min(𝑥)

max 𝑥 −min(𝑥)
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Data Normalization

Colorectal Cancer Dataset 
Before Normalization

Colorectal Cancer Dataset 
After Normalization
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Data Normalization

Lung Cancer Dataset Before 
Normalization

Lung Cancer Dataset After 
Normalization
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Data Splitting

Data Division for Colorectal 
Cancer

Data Division for Lung Cancer

Phase Data Total

Training (80%) 1-84 84

Testing (20%) 85-105 21

Phase Data Total

Training (80%) 1-91 91

Testing (20%) 92-114 23
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No Feature Selection01

Chi-Square Feature Selection02

SVM-RFE Feature Selection03

Random Forest Feature 
Selection

04

Feature 
Selection

PSO Feature Selection05
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Prefiltering Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

prefilter_n

(Selected top-
ranked 
features)

100, 200, 500 Colorectal: 200
Lung: 100

To reduce computational 
complexity and search space 
before applying more 
intensive feature selection.

Higher: Keeps more 
genes, potentially more 
informative but slower.
Lower: Reduces genes 
more aggressively, faster 
but risks losing important 
ones.

score_func

(Scoring 
function)

Chi-Square, 
ANOVA F-test, 

T-test

Chi-Square To identify the most effective 
statistical test for ranking 
genes during the prefiltering 
step, ensuring that the most 
informative features are 
retained for downstream 
analysis.

Comparing scoring 
functions helps choose 
the best way to find 
relevant genes, making 
data reduction more 
effective for later analysis.
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No Feature Selection

• Used all features without selection

• No tuning needed

• Purpose:
1. Provide performance benchmark
2. Compare impact of feature selection
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Chi-Square FS Tuning

Parameter Range Tuned 
Value

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

k 

(Number of 
features 
retained)

10, 30, 50, 70, 
100

100 To find the optimal 
number of features for the 
best classification 
accuracy.

Higher: Includes more 
genes (can capture 
more patterns, but 
might be too complex).
Lower: Focuses on 
fewer, most important 
genes (simpler model, 
less noise).
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SVM-RFE FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

k 

(Number of 
features 
retained)

10, 30, 50 70, 
100

All To find the optimal number 
of features for the best 
classification accuracy.

Higher: Includes more 
genes (can capture more 
patterns, but might be too 
complex).
Lower: Focuses on fewer, 
most important genes 
(simpler model, less 
noise).

step_size

(Elimination 
step size)

1, 5, 10, 20 All To control how many 
features are removed at each 
step of the process.

Larger: Faster but might 
accidentally remove 
important features too 
quickly.
Smaller: Slower but more 
precise.
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SVM-RFE FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

C 

(SVM 
Regularization 
Parameter)

0.01, 0.1, 1, 10, 
100

All To balance between fitting 
the training data perfectly 
and making a model that 
works well on new data.

Higher: Makes the model 
try to fit the training data 
very closely (risks 
overfitting).
Lower: Makes the model 
simpler and better at 
generalizing to new data 
(less overfitting).

kernel

(Kernel Type)
- Linear Kernel To allow the method to 

properly rank features and 
keep calculations 
straightforward.

A linear kernel is chosen 
because it allows for clear 
ranking of feature 
importance, which is 
essential for SVM-RFE.
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Random Forest FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

k 

(Number of 
features retained)

10, 30, 50 70, 
100

Colorectal: 30
Lung: 10

To find the optimal number 
of features for the best 
classification accuracy.

Higher: Includes more 
genes (can capture more 
patterns, but might be too 
complex).
Lower: Focuses on fewer, 
most important genes 
(simpler model, less 
noise).

n_estimators

(Number of trees)
50, 100, 200 100, 200 To decide how many 

"decision trees" are built in 
the forest.

More: Give better, more 
stable predictions but 
take longer to compute. 
Fewer: Faster but might 
be less accurate.
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Random Forest FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

max_depth

(Maximum depth)
None, 5, 10 All To control how complex 

each individual decision 
tree can become.

No limit (None): Can lead to 
overfitting (memorizing 
training data).
Limiting depth: Makes trees 
simpler and helps them 
generalize better to new 
data.

min_samples_

split

(Minimum 
samples to split)

2, 5 All To set the minimum 
number of data points 
needed before a tree can 
split a node.

Higher: Lead to simpler 
trees that generalize better 
by avoiding tiny, noisy splits.
Lower: Allow more detailed 
splits, potentially capturing 
fine patterns but risking 
overfitting. 
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Random Forest FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

min_samples_

leaf

(Minimum 
samples at leaf)

1, 2 All To control how complex 
each individual decision 
tree can become.

Higher: Provide more 
reliable leaves and help 
prevent overfitting.
Lower: Allow leaves to be 
very specific to single data 
points, risking overfitting.

max_features

(Number of 
features 
considered at 
each split)

sqrt, log2 All To set the minimum 
number of data points 
needed before a tree can 
split a node.

Considering only a subset of 
features at each split makes 
the forest more diverse and 
robust, reducing overfitting 
and speeding up training.
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PSO FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

k 

(Number of 
features retained)

10, 30, 50 70, 
100

10 To find the optimal number 
of features for the best 
classification accuracy.

Higher: Includes more 
genes (can capture more 
patterns, but might be too 
complex).
Lower: Focuses on fewer, 
most important genes 
(simpler model, less 
noise).

n_particles

(Number of 
particles)

10, 20, 30 10 To control how many 
"candidate solutions" 
(particles) are searching for 
the best set of genes. More 
particles mean a more 
thorough search.

More: Increase search 
diversity (better solutions, 
but slower).
Fewer: Faster (but less 
thorough).
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PSO FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

c1 

(Cognitive 
coefficient)

1.5, 2.0, 2.5 1.5 To control how much a 
particle sticks to its own 
best-found path.

Higher: Means particles 
follow their own past 
success more.
Lower: Allows more 
influence from the group 
or new exploration.

c2

(Social coefficient)
1.5, 2.0, 2.5 Colorectal: 1.5, 2.0

Lung: 1.5
To control how much a 
particle follows the best 
path found by the entire 
group.

Higher: Means particles 
are more influenced by 
the group's best. 
Lower: Means less group 
influence, more individual 
search.



w
w

w
.u

tm
.m

y

PSO FS Tuning

Parameter Range Tuned 
Value/Test

Chosen Tuned 
Value

Why Tune the Parameter Explanation 

w

(Inertia weight)
0.7, 0.9 All To balance exploring new 

areas versus refining current 
promising ones.

Higher: Encourages 
exploration (finds new 
areas).
Lower: Focuses on 
refining current solutions.

max_iter

(Number of 
iterations)

20, 30, 50 All To determine how long the 
search for the best gene set 
continues.

Higher: Allow for better 
refinement (higher 
quality, but slower). 
Fewer: Faster (but may 
stop too early).
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Results:
Colorectal Dataset
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Accuracy
(Colorectal)

Highest Accuracy (0.95): Achieved 
by SVM-RFE and Random Forest 
with various classifiers, and PSO + 
SVM.

Lowest Accuracy (0.71): Observed 
with PSO combined with 
AdaBoost.

*Key: Method choice significantly 
impacts performance accuracy.
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Sensitivity
(Colorectal)

Perfect Sensitivity (1.00): Achieved by 
SVM-RFE (all classifiers) and PSO + SVM.

Significant Drop (0.60): PSO combined 
with AdaBoost showed a notable 
decrease in detecting true positive cases.

Other Methods: Remained stable around 
0.90–0.91.

*Key: SVM-RFE is highly reliable for 
identifying actual positive cases, crucial 
for medical diagnosis. PSO + AdaBoost 
performed poorly in this aspect.
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Specificity
(Colorectal)

Perfect Specificity (1.00): Achieved by all 
Random Forest combinations (SVM, NN, 
AdaBoost).

Lowest Specificity (0.82): Seen with PSO + 
AdaBoost and No Feature Selection + 
AdaBoost (indicating more false 
positives).

Most Others: Maintained high specificity 
(~0.91).

*Key: Random Forest excels at avoiding 
false alarms, while PSO + AdaBoost is less 
effective at distinguishing negative cases.
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Precision
(Colorectal)

High Precision (0.91): Achieved by SVM-
RFE and Random Forest with various 
classifiers, and PSO + SVM.

Lowest Precision (0.75): Seen with PSO + 
AdaBoost.

Most Others: Remained stable around 
0.90–0.91.

*Key: SVM-RFE, Random Forest, and PSO 
+ SVM show strong reliability in correctly 
identifying positive cases; PSO + AdaBoost 
performs considerably worse in this 
aspect.
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F1-Score
(Colorectal)

High F1-Score (0.95): Achieved by SVM-
RFE and Random Forest with various 
classifiers, and PSO + SVM.

Other F1-Scores: No Feature Selection + 
AdaBoost (0.86), PSO + Neural Network 
(0.84). Most others maintained ~0.90.

Lowest F1-Score (0.67): Observed with 
PSO + AdaBoost.

*Key: SVM-RFE, Random Forest, and PSO 
with SVM show strong balanced 
performance; PSO + AdaBoost 
consistently struggles.



w
w

w
.u

tm
.m

y

Results:
Lung Dataset
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Accuracy
(Lung)

Highest Accuracy (0.96): Achieved by 
Random Forest + AdaBoost.

Other Accuracy: No Feature Selection + 
SVM/NN (0.87); most others maintained 
0.91.

Lowest Accuracy (0.83): Observed with 
No Feature Selection + AdaBoost.

*Key: Random Forest + AdaBoost 
delivered the highest overall correct 
predictions, while combinations without 
feature selection performed less 
optimally.
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Sensitivity
(Lung)

Perfect Sensitivity (1.00): Achieved by 
Random Forest + AdaBoost.

Other Sensitivity: Most others 
maintained ~0.91.

Lowest Sensitivity (0.82): Observed with 
No Feature Selection + AdaBoost.

*Key: Random Forest + AdaBoost 
achieved perfect sensitivity (1.00), 
effectively detecting all positive cases, 
while lacking feature selection with 
AdaBoost yielded the lowest sensitivity 
(0.82), indicating more missed diagnoses.
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Specificity
(Lung)

Highest Specificity (0.92): Achieved by 
Chi-Square, SVM-RFE, and PSO with all 
classifiers.

Middle Specificity (0.91): Observed with 
Random Forest (all classifiers).

Lowest Specificity (0.83): Observed with 
No Feature Selection (all classifiers).

*Key: Feature selection, especially with 
Chi-Square, SVM-RFE, or PSO, significantly 
improves the correct identification of 
healthy cases, minimizing false alarms.
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Precision
(Lung)

Perfect Precision (1.00): Achieved by 
Random Forest + AdaBoost.

Other Precision: Random Forest + 
SVM/NN (0.92), mostly ~0.91, No Feature 
Selection + SVM/NN (0.83)

Lowest Precision (0.82): Observed with No 
Feature Selection + AdaBoost.

*Key: Random Forest + AdaBoost provides 
the most reliable positive predictions, 
while the absence of feature selection, 
particularly with AdaBoost, results in less 
trustworthy positive diagnoses.
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F1-Score
(Lung)

Highest F1-Score (0.95): Achieved by 
Random Forest + AdaBoost.

Other F1-Score: Mostly ~0.91; No Feature 
Selection + SVM/NN (0.87)

Lowest F1-Score (0.82): Observed with No 
Feature Selection + AdaBoost.

*Key: Random Forest + AdaBoost 
consistently delivers the strongest 
balanced performance, while no feature 
selection (especially with AdaBoost) leads 
to the lowest F1-score.
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Key Conclusion

• PSO is effective in certain settings (lung cancer + SVM).

• However, classifier compatibility and dataset type
matter.

• No one-size-fits-all solution—careful method selection
is important.
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01
PSO performance 
inconsistency 
across classifiers.

High 
computational 
cost for tuning 
(especially SVM-
RFE, PSO).

Limited datasets 
(colorectal & lung 
only).

02 03

Research Constraints
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Future Work

01
Apply to more diverse 
cancer datasets such 

multi-class.

02
Use hybrid PSO 

versions 
(PSO-GA, fuzzy PSO, 

chaotic PSO).

03
Explore deep learning 

and ensemble 
classifiers for further 
performance gains.
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