

Click me to view **Presentation** Video

Click me to view **Demo Result** Video

FINAL YEAR PROJECT 2

CLASSIFICATION OF KNEE OSTEOTHRITIS USING DEEP LEARNING MODELS FUSED WITH HANDCRAFTED FEATURES

PREPARED BY: LIM YONG WEI (B22EC0025)

SUPERVISOR: TS.DR.CHAN WENG HOWE

COORDINATOR: DR.ROZILAWATI BINTI DOLLAH @ MD.ZAIN

EXAMINER 1: DR. AZURAH BT. A.SAMAH

EXAMINER 2: DR. SHAMINI A/P RAJA KUMARAN

PRESENTATION OUTLINE

1

Problem formulation & Data collection Literature review

- Research Problem
- Research Goal and Objective
- Research Scope and Importance
- Literature Review
- Data Collection

2

Research Design and Implementation

- Architecture Diagram & Propose Model
- Pre-process Images
- Split & Aug Data
- Convolutional Neutral Network
- Handcrafted Method
- Feature-level Fusion

3

Develop FFNN Model

Feed-Forward Neutral Network on 3 Models 4

Testing and Evaluation

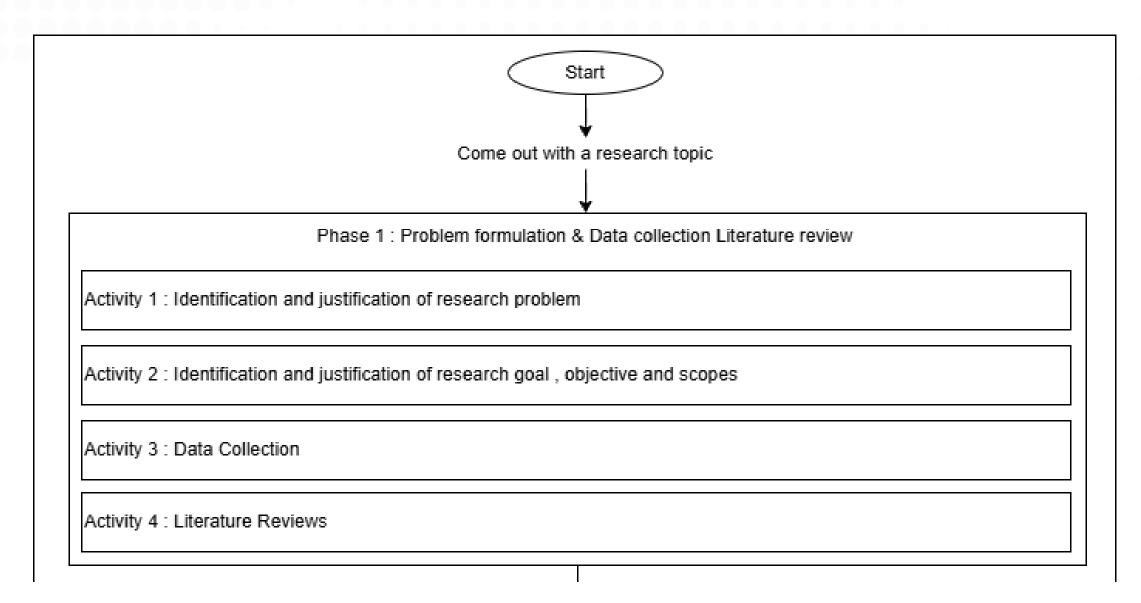
- Performance measurement on FFNN classify
- Comparison of FFNN performance
- Discussion

5

Conclusion

- Achievement on Objective
- Research Constraint
- Suggest Improvement and Future Work

Research Framework - Phase 1



Background of Study

What is KOA?

knee osteoarthritis, is a common

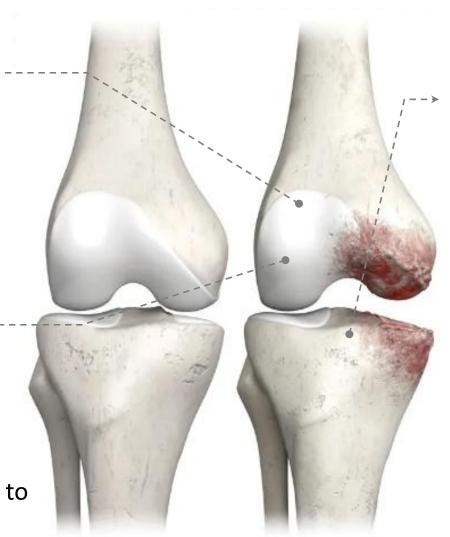
musculoskeletal disease

Why does KOA occur?

due to the **degeneration of joint**

cartilage in the knee, which leads to

joint pain and disability



Who will interact with KOA?

primarily affects elderly

individuals, but it can also impact those with risk factors such as obesity, prior joint injuries, or a

family history of osteoarthritis

Problem Statement

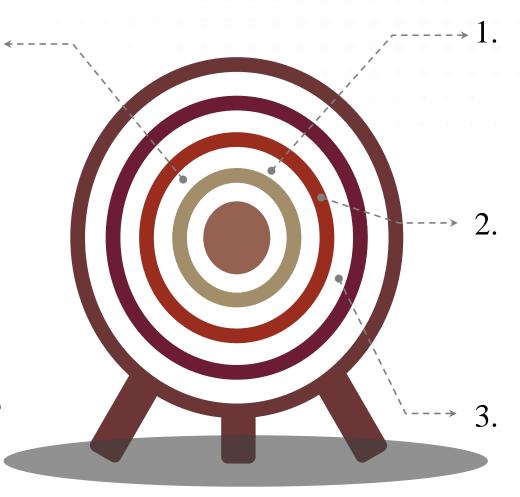
Predicting KOA is crucial because it's still caused by many factors, affects quality of life, and varies widely in how it develops.

Source: An Evolutionary Machine Learning Approach for KOA

Osteoarthritis

Goal

To **improve the** accuracy and reliability of KOA **grading**, thereby facilitating *early* detection and appropriate management **strategies** for knee osteoarthritis.



Objective

To extract features vector

from deep learning models

(CNN) for later fusion with handcrafted features.

To fuse handcrafted
features with network
features using features level
fusion.

To implement FeedForward Neutral Network
for classification of KOA
using fused features.

Scope

Covers KOA analysis using **feature** extraction, classification methods, evaluation metrics, and comparison of different approaches for accurate diagnosis and severity classification.

Importance

Enhances KOA diagnosis by combining deep learning and handrcfated features, aiming for higher accuracy, reliability, and improved patient care.

Studies for KOA using Features

Types	Reference	Approach	Methodology	Features
Deep Learning	Chen et al.,(2020)	Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss.	This study detect knee joints using a customized one-stage YOLOv2 network then fine-tune the most popular CNN models to classify the detected knee joint images with a novel adjustable ordinal loss	DenseNet, InceptionV 3, Resnet, VGG
Fusion	Prashanth a and Prakash (2022)	Feature level fusion framework for brain MR image classification using supervised deep learning and handcrafted features	This study propose an efficient fusion framework for brain magnetic resonance (MR) image classification using deep learning and handcrafted feature extraction method	Feature Level Fusion
Hand- crafted	Khalid et al.,(2023)	Automatic Analysis of MRI Images for Early Prediction of Alzheimer's Disease Stages Based on Hybrid Features of CNN and Handcrafted Features	This study extract MRI image that by deep learning technique and combine with DWT, GLCM and LBP.	DWT, GLCM, LBP, CNN

UNIVERSITI TEKNOLOGI MALAYSIA

Studies for KOA using Machine Learning

Reference	Approach	Methodology	Accuracy / F1 Score
Heisinger et al.,(2020)	Predicting total knee replacement from symptomology and radiographic structural change using artificial neural networks—data from the osteoarthritis initiative (OAI)	This study uses longitudinal assessments of radiographic changes, knee pain, function, and quality of life, then classifies by artificial neural networks (ANN)	81.2%
Kokkotis et al.,(2020)	Identification of risk factors and machine learning-based prediction models for knee osteoarthritis patients.	This study uses a robust feature selection approach combining filter, wrapper, and embedded techniques, followed by classification with SVM	74.07%
Su et al.,(2023)	Improved Prediction of Knee Osteoarthritis by the Machine Learning Model XGBoost.	This study uses a dataset combining clinical parameters, imaging data, and patient history, then classifies by Model XGBoost	0.553 (F1 Score)

Studies for KOA using Deep Learning

Reference	Approach	Methodology	Accuracy
Tiwari, Poduval and Bagaria (2021)	Using deep learning methods for orthopedic radiography, artificial intelligence models for osteoarthritis of the knee are evaluated.	This study uses AI and DL to develop a neural network-based assessment for classifying KOA severity from radiographic images annotated with KL grades	74%
Yunus et al.,(2022)	YOLOv2 is used to identify knee osteoarthritis (KOA), and convolutional neural networks are employed for classification.	This study uses 3D radiographic images with LBP features and deep features from Alex-Net and Dark-net-53, then classifies by CN N	90.6%
Mohammed et al.,(2023)	Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images	Propose the application of six pretrained DNN models, namely, VGG16, VGG19 , ResNet101 , MobileNetV2, InceptionResNetV2, and DenseNet121 for KOA diagnosis using images obtained from the Osteoarthritis Initiative (OAI) dataset.	64% (VGG19) 69% (Resnet101)

www.utm.r

Data Collection

Kellgren and Lawrence grades

Grade 0, **no reactive changes** + healthy knee.

Grade 1, indicating a possible development of osteophytes

Grade 2, **definite osteophytes**

Grade 3, exhibits moderate osteophyte growth,

Grade 4, exhibits a large amount of osteophyte growth.

Description of Datasets - OAI

Osteoarthritis Initiative (University of California, San Francisco's Osteoarthritis Initiative (OAI))

Categories	Explanation of KL Grading	Ori Amount	Aft_Select
			Amount
Grade 0	X-ray that is Healthy	3857	1468
Grade 1	X-rays showing joint restriction with tipping osteophytes	1770	855
Grade 2	Evidence of minimal osteoarthritis with constrained joint spaces and osteophytes.	2578	1643
Grade 3	X-rays show numerous osteophytes, mild sclerosis, and moderate osteoarthritis with joint space stenosis.	1286	986
Grade 4	Extensive injuries visible on X-rays include massive osteophytes, extensive sclerosis, and obvious joint constriction.	295	295
	Total	9786	5277

Research Framework - Phase 2

Phase 2 : Data Pre-process then Generate Features and Fused Features

Activity 5 : Auto Selection X-ray images then pre-process

Activity 6 : Improve X-ray images

Activity 7 : Generate handcrafted features (GLCM , DWT , LBP) then combines 3 of them

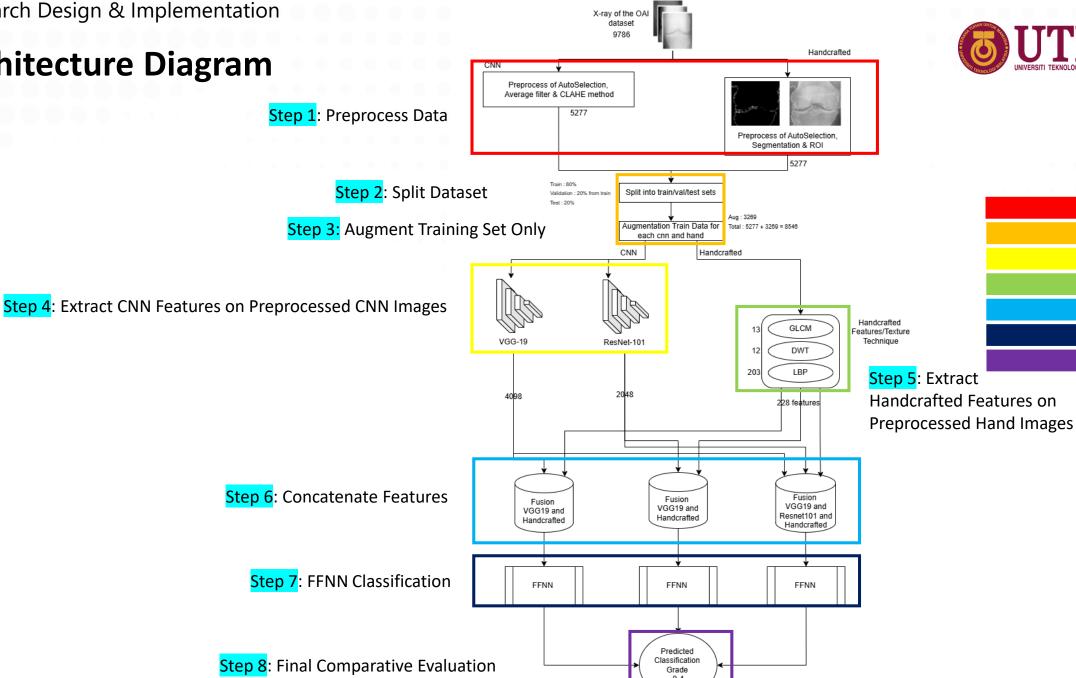
Obj 1

Activity 8 : Generate network features (VGG-19 and ResNet-101) through convolutional layers , pooling layers and some auxiliary layers after applying data augmentation technique

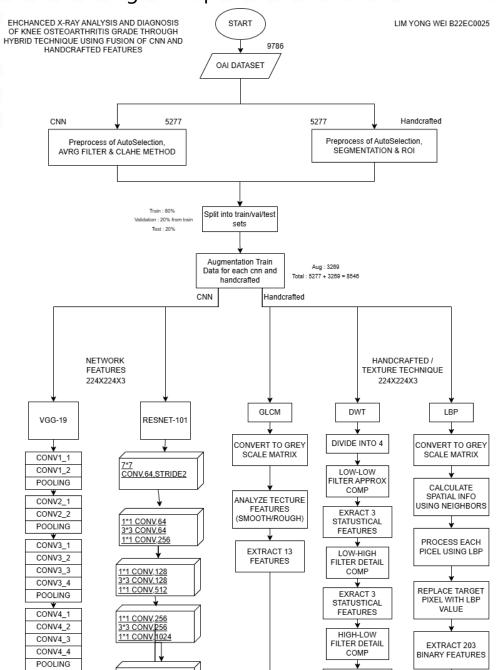
Obj 2

Activity 9 : Generate 3 fusion features by fusing VGG-19 with handcrafted features , ResNet-101 with handcrafted features and VGG-19 with Resnet-101 with handcrafted features by using feature-level fusion

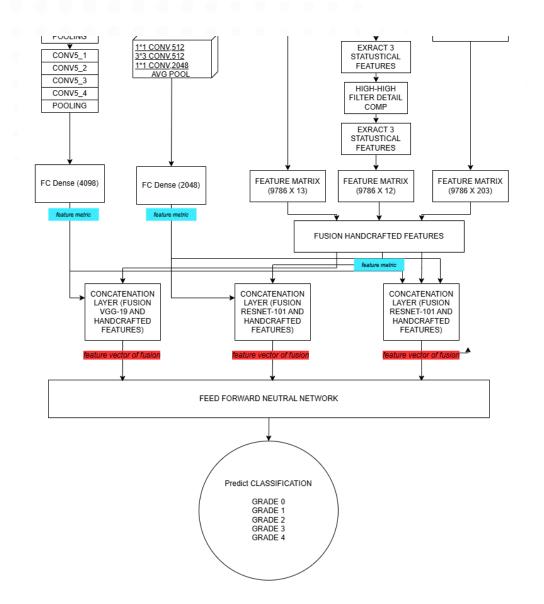
Architecture Diagram



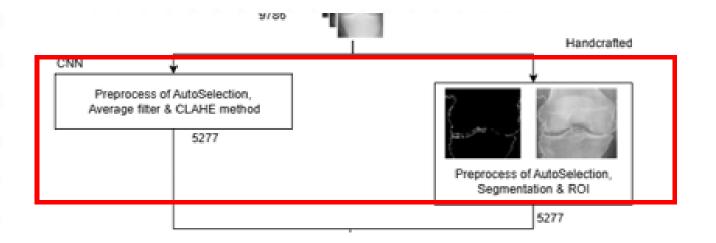
Research Design & Implementation



Proposed Model Diagram



Step 1: Preprocess Data



Datasets Pre-Processing – AutoSelection

Auto-selection Objective:

Select **only the clearest images** to ensure high-quality input for deep learning.

Exp Nonclear ORI Images

•Sharpness Measurement:

Used variance of the Laplacian operator to evaluate image clarity.

Higher variance = sharper image.

•Selection Process:

From 9,786 images, the **top sharpest 5,277 images** were retained.

Ensured balanced representation across KL grades.

Input and output size is 240×240

loating-point round-off errors from different computation orders. To turn them off, set the environment Loading and selecting data...

Total: 5277 images [0: 1468, 1: 885, 2: 1643, 3: 986, 4: 295]

After selection: 5277 images

Categories	Ori Amount	Aft_Select Amount
Grade 0	3857	1468
Grade 1	1770	855
Grade 2	2578	1643
Grade 3	1286	986
Grade 4	295	295
Total	9786	5277

Table 5 Dataset OAI bef and aft selection

Datasets Pre-Processing – Segmentation & ROI

Q Objective:

Enhance image clarity by isolating the knee joint to ensure accurate and **consistent handcrafted feature extraction**.

Input size is 240×240

Step 1 : Segmentation:

- •Convert image to grayscale.
- •Apply binary thresholding to isolate the knee joint.
- •Detect **contours** and identify the **largest contour** as the knee region.

Step 2 : Region of Interest (ROI) Cropping:

- •Crop a **rectangular region** around the detected knee joint.
- •Add **10-pixel padding** around the bounding box to retain anatomical context.
- •Resize the cropped image to a **fixed resolution of 224 x 224 pixels**.

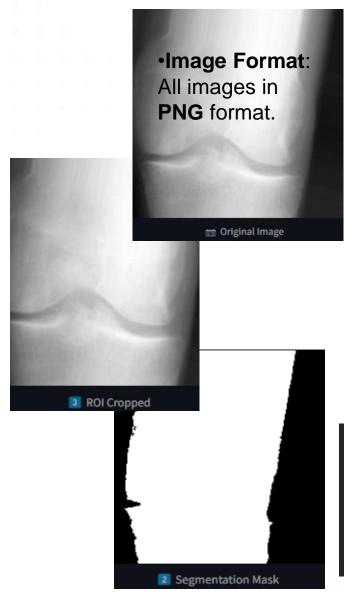
✓ Combined Benefit:

Ensures that handcrafted features (like texture and shape) are extracted from the **most meaningful part** of the image.

Post-Processing Step for Handcrafted images:

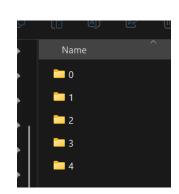
All enhanced images are saved and organized into separate folders based on their KOA grade (e.g., 0, 1, 2, 3, 4).

Preprocessed images are now ready for dataset splitting into training, validation, and testing sets.

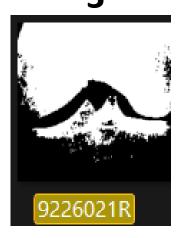


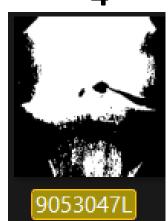
Visual Reference-Segmentation & ROI

\ori data\FYP data\hand\preproAuto









Datasets Pre-Processing – Average Filter & CLAHE

Q Objective:

Enhance visual quality of the grayscale image for better feature extraction.

Input size is 240×240

Step 1: CLAHE (Contrast Limited Adaptive Histogram Equalization)

•Improves contrast to make bones and joints clearer, especially helpful for medical images with uneven lighting.

- •Step 2: Average Filtering
- •Smooths the image by **reducing noise** while keeping important details.

Final Processing:

- •Resize to 224 × 224 × 3.
- •Convert to **three-channel image** to match CNN input format.

✓ Combined Benefit:

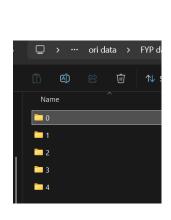
- •Balances contrast enhancement and noise reduction.
- •Produces a **clearer and cleaner image** for downstream feature extraction.

Post-Processing Step for CNN images:

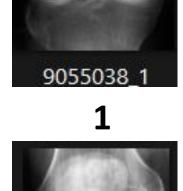
All enhanced images are saved and organized into separate folders based on their KOA grade (e.g., 0, 1, 2, 3, 4). Preprocessed images are now ready for dataset splitting into training, validation, and testing sets.

Visual Reference – Average Filter & CLAHE

\ori data\FYP data\cnn\preproAuto

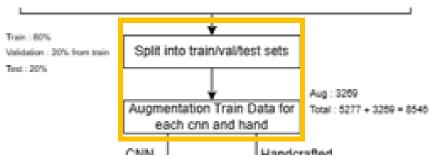


9003658R



Step 2: Split Dataset

Step 3: Augment Training Set Only

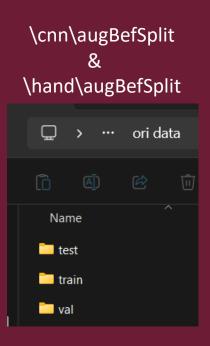


Data Division and Arrangement

The OAI dataset will be partitioned into <u>80:20 (train test) and validation sets will be obtained from 20% of training data</u> segments because to its substantial size. Accordingly, training will occupy <u>80% of the data</u>, with the <u>remaining 20% going toward testing and validation</u> for each.

Classes	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Total
	1468	885	1643	986	295	5277

Phase/Classes	Training 80% (Validation 20%)	Testing (20%)
Grade 0	<mark>940</mark> (234)	294
Grade 1	<mark>567</mark> (141)	177
Grade 2	<mark>1052</mark> (263)	328
Grade 3	<mark>630</mark> (159)	197
Grade 4	<mark>189</mark> (47)	59
Total	3378 (844)	1055



Balancing with Augmentation Data on Train Split

Enhance **model robustness** and **generalizability**, Artificially expand the dataset by creating **new**, **diverse samples** from existing images.

✓ Applied Only to:

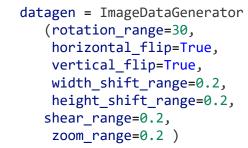
The training set

(X not on validation or test sets because to reflect true model performance in real-world scenarios).

- Augmentation Techniques Used:
- •Why It's Important:
- •Helps in **medical imaging**, where labeled data is often limited.
- •Prevents **overfitting** by increasing diversity in training data.
- •Encourages learning of general features useful for unseen cases.
- Post-Augmentation Step for CNN images and Handcrafted images:

All enhanced augmentation images are saved and organized into separate folders based on their KOA grade (e.g., 0, 1, 2, 3, 4).

Then waiting for next step: Overall Data Partitioning

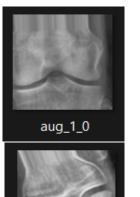


Visual Reference - Balancing with Augmentation Data on Train Split

aug_1_2

• • • • • •

Pre-Processing – **Average Filter & CLAHE**



aug_1_2

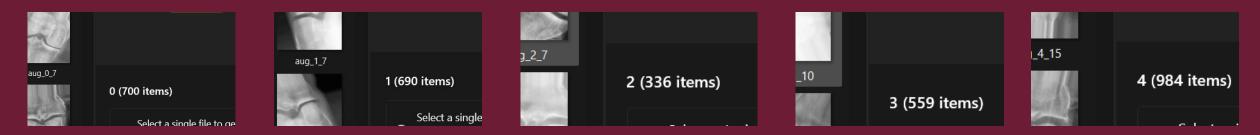
• • • • • •

.

• • • • • •

Visual Reference - Augmentation on Training Split

Most classes had roughly one image added per original, but augmentation was applied more selectively. For example, **Grade 4**, the least represented, had around **five** images added per original, while **Grade 2**, despite having more original images, received fewer augmentations (only +336).



LO	ŒŢĴ
Na	me
<u> </u>	

	Training Phase						
Classes	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Total	
Bef-aug	940	567	1052	630	189	3378	
aug	+700	+690	+336	+559	+984	3269	
Aft-aug	1640	1257	1388	1189	1173	6647	

\hand\Aug & \cnn\Aug

Table 7 Training Split Specification Summarization

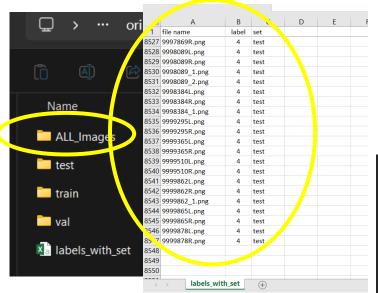
UTIM UNIVERSITI TEKNOLOGI MALAYSIA

Data Partitioning Overall After Augmentation

Phase/Classes	Training 80% + Aug	Validation (20%)	Testing 20%	Total
Grade 0	940 + 700 = <mark>164</mark>	234	394	2168
Grade 1	567 + 690 = <mark>125</mark>	5 <mark>7</mark> 141	177	1575
Grade 2	1052 + 336 = <mark>138</mark>	263	328	1979
Grade 3	630 + 559 = <mark>118</mark>	159	197	1545
Grade 4	189 + 984 = <mark>117</mark>	<mark>73</mark> 47	59	1279
Total	3378 + 3269 = <mark>664</mark>	<mark>47</mark> 844	1055	8546

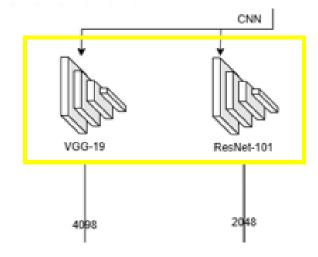
Table 8 Data Partitioning

\hand\augAftSplit & \cnn\augAftSplit



Save all each processed and aug images (CNN and Hand) in "All Images" folder. Create "labels_with_sets.csv" with filename, label, set (train/val/test).

Step 4: Extract CNN Features on Preprocessed CNN Images



Network Features Extraction

Obj 1

Activity 8 : Generate network features (VGG-19 and ResNet-101) through convolutional layers , pooling layers and some auxiliary layers after applying data augmentation technique

VGG19 and ResNet101 used as feature extractors.

Used: CNN-based **feature extraction pipeline** before classification Purpose: Run inference to extract features (not training)

Input: Use cnn preprocessed knee X-ray images.

Layer (type)	Output Shape	Param #
image (InputLayer)	(None, 224, 224, 3)	0
conv2d (Conv2D)	(None, 112, 112, 64)	9,472
max_pooling2d (MaxPooling2D)	(None, 56, 56, 64)	9
batch_normalization (BatchNormalization)	(None, 56, 56, 64)	256
conv2d_1 (Conv2D)	(None, 56, 56, 64)	4,168
conv2d_2 (Conv2D)	(None, 56, 56, 64)	36,928
conv2d_3 (Conv2D)	(None, 56, 56, 256)	16,648
batch_normalization_1 (BatchNormalization)	(None, 56, 56, 256)	1,024
conv2d_4 (Conv2D)	(None, 28, 28, 128)	32,896
conv2d_5 (Conv2D)	(None, 28, 28, 128)	147,584
conv2d_6 (Conv2D)	(None, 28, 28, 512)	66,048
batch_normalization_2 (BatchNormalization)	(None, 28, 28, 512)	2,048
conv2d_7 (Conv2D)	(None, 14, 14, 256)	131,328
conv2d_8 (Conv2D)	(None, 14, 14, 256)	590,080
conv2d_9 (Conv2D)	(None, 14, 14, 1024)	263,168
batch_normalization_3 (BatchNormalization)	(None, 14, 14, 1924)	4,096
conv2d_10 (Conv2D)	(None, 7, 7, 512)	524,800
conv2d_11 (Conv2D)	(None, 7, 7, 512)	2,359,808
conv2d_12 (Conv2D)	(None, 7, 7, 2048)	1,050,624
batch_normalization_4 (BatchNormalization)	(None, 7, 7, 2048)	8,192
global_average_pooling2d (GlobalAveragePooling2D)	(None, 2048)	8

Total params: 5,249,152 (20.02 MB) Frainable params: 5,241,344 (19.99 MB Non-trainable params: 7,808 (30.50 KB

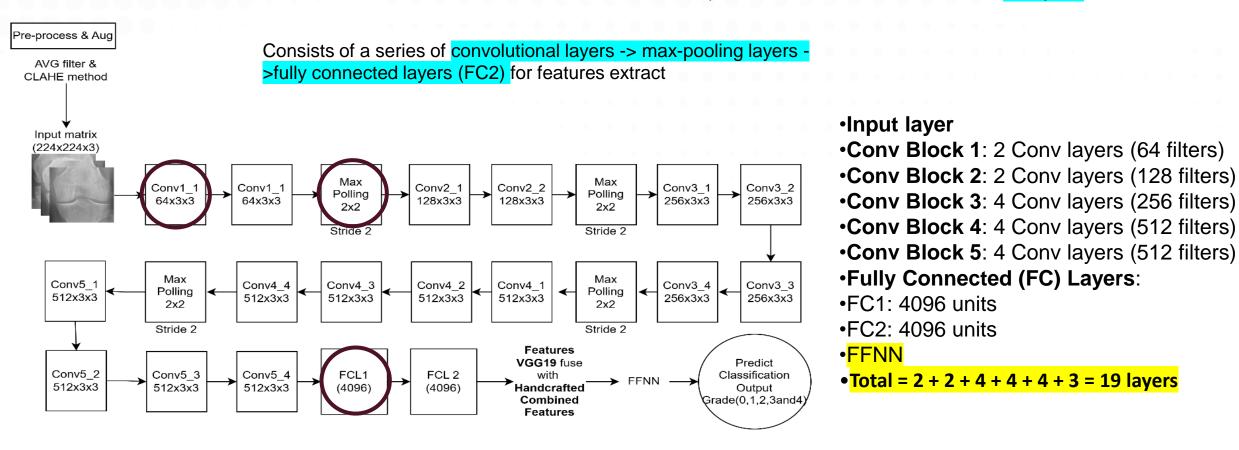
	FEKNOLOGI	IVERSIII TERNOLOG
ModelSummary Model: "functional_1"		
Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 224, 224, 3)	0
conv2d (Conv2D)	(None, 224, 224, 64)	1,792
re_lu (ReLU)	(None, 224, 224, 64)	
conv2d_1 (Conv2D)	(None, 224, 224, 64)	36,928
re_lu_1 (ReLU)	(None, 224, 224, 64)	
max_pooling2d (MaxPooling2D)	(None, 112, 112, 64)	0
conv2d_2 (Conv2D)	(None, 112, 112, 128)	73,856
re_lu_2 (ReLU)	(None, 112, 112, 128)	8
conv2d_3 (Conv2D)	(None, 112, 112, 128)	147,584
re_lu_3 (ReLU)	(None, 112, 112, 128)	θ
max_pooling2d_1 (MaxPooling2D)	(None, 56, 56, 128)	θ
conv2d_4 (Conv2D)	(None, 56, 56, 256)	295,168
re_lu_4 (ReLU)	(None, 56, 56, 256)	0
conv2d_5 (Conv2D)	(None, 56, 56, 256)	590,080
re_lu_5 (ReLU)	(None, 56, 56, 256)	0
conv2d_6 (Conv2D)	(None, 56, 56, 256)	590,080
re_lu_6 (ReLU)	(None, 56, 56, 256)	0
conv2d_7 (Conv2D)	(None, 56, 56, 256)	590,080
re_lu_7 (ReLU)	(None, 56, 56, 256)	0
max_pooling2d_2 (MaxPooling2D)	(None, 28, 28, 256)	8
conv2d_8 (Conv2D)	(None, 28, 28, 512)	1,180,160
re_lu_8 (ReLU)	(None, 28, 28, 512)	0
conv2d_9 (Conv2D)	(None, 28, 28, 512)	2,359,808
re_lu_9 (ReLU)	(None, 28, 28, 512)	0
conv2d_10 (Conv2D)	(None, 28, 28, 512)	2,359,808
re_lu_10 (ReLU)	(None, 28, 28, 512)	8
conv2d_11 (Conv2D)	(None, 28, 28, 512)	2,359,808
re_lu_11 (ReLU)	(None, 28, 28, 512)	θ.
max_pooling2d_3 (MaxPooling2D)	(None, 14, 14, 512)	θ
conv2d_12 (Conv2D)	(None, 14, 14, 512)	2,359,808
re_lu_12 (ReLU)	(None, 14, 14, 512)	
conv2d_13 (Conv2D)	(None, 14, 14, 512)	2,359,808
re_lu_13 (ReLU)	(None, 14, 14, 512)	0
conv2d_14 (Conv2D)	(None, 14, 14, 512)	2,359,808
		-,,
re_lu_14 (ReLU)	(None, 14, 14, 512)	-i
conv2d_15 (Conv2D)	(None, 14, 14, 512)	2,359,808
re_lu_15 (ReLU)	(None, 14, 14, 512)	0
max_pooling2d_4 (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	0
dense (Dense)	(None, 4096)	102,764,544
re_lu_16 (ReLU)	(None, 4896)	0
dense_1 (Dense)	(None, 4096)	16,781,312
re_lu_17 (ReLU)	(None, 4096)	0
feature_output (Dense)	(None, 2048)	8,390,656
Total params: 147.968.896 (564.43 MB)		

Total params: 147,968,896 (564.43 MB)
Trainable params: 147,968,896 (564.43 MB)
Non-trainable params: 9 (8.98 R)

CNN (VGG-19)

Visual Geometry Group 19-layer network

It's a deep convolutional neural network with 19 layers.



convolution filters throughout the network, which allows for deeper architectures

CNN (VGG-19) – Result Visualization show in Streamlit & Proposed Model

st.title("Optimized KOA Feature Extraction Pipeline")

handcrafted_images_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\hand\augSplitAfter\ALL_Images'
handcrafted_labels_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\hand\augSplitAfter\labels_with_set.csv
cnn images path = r'C:\UTM Degree\y4s2\PSM1 Dr Nies\KOA\data\ori data\FYP data\cnn\augSplitAfter\ALL Images'

Input method to extract features

cnn_labels_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\cnn\augSplitAfter\labels_with_set.csv'

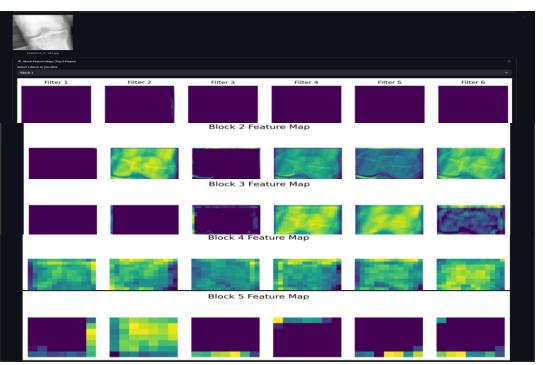
Output directory

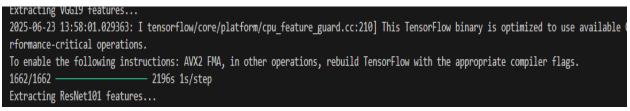
save_dir = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\AugPre\features'

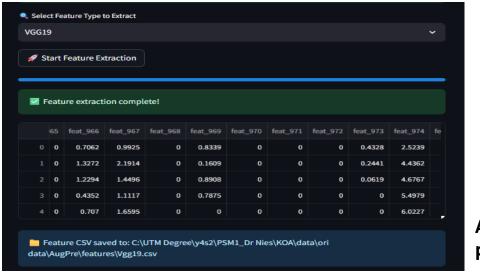
os.makedirs(save_dir, exist_ok=True)

Method of a pre-trained Keras model

Stage	Samples Size	Batch	Batch per Epoch
Network Features	6277	4	6277/4 = 1662
Extraction			







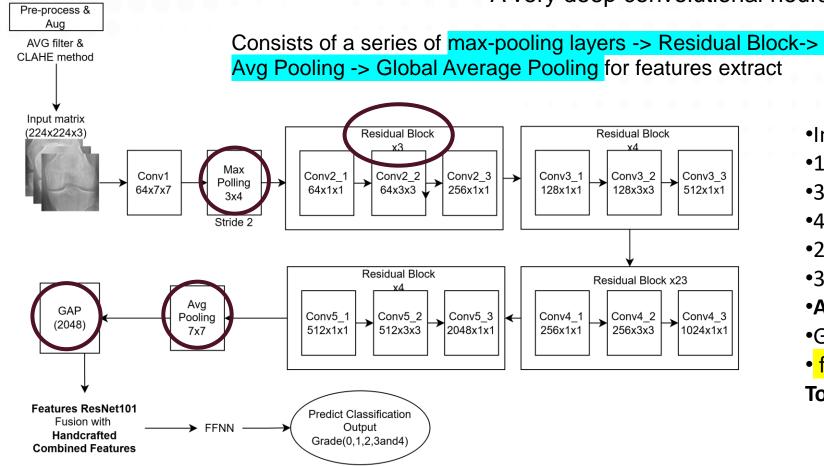
Show top 5 exp output in Streamlit

Auto save in path dir

CNN (ResNet-101)

Residual Network with 101 layers.

A very deep convolutional neural network with 101 layers.



- •Input Layer
- •1 conv layer (Conv1)
- •3 blocks (conv2 x) \times 3 layers = 9
- •4 blocks (conv3_x) \times 3 layers = 12
- •23 blocks (conv4 x) \times 3 layers = 69
- •3 blocks (conv5 x) \times 3 layers = 9
- •Average Pooling Layer (after Conv5_x)
- •Global Average Pooling Layer
- fully connected layer (FFNN)

Total = 1 + 9 + 12 + 69 + 9 + 1 = 101 layers

A **residual block** contains a few convolutional layers **plus a shortcut (skip connection)**, allows the network to learn **residuals** (what needs to change), rather than mapping everything from scratch to help avoid **vanishing gradients**

CNN (Resnet-101) – Result Visualization show in Streamlit & Proposed Model

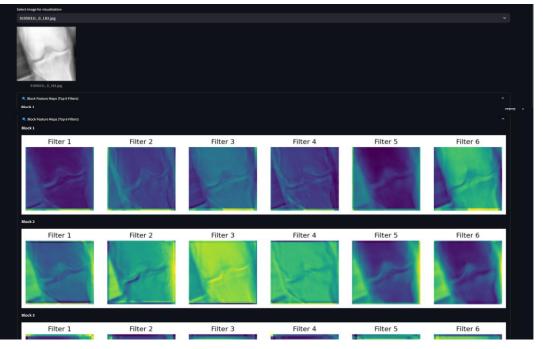

```
st.title("Optimized KOA Feature Extraction Pipeline")
handcrafted_images_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\hand\augSplitAfter\ALL_Images'
handcrafted_labels_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\hand\augSplitAfter\labels_with_set.csv'
cnn_images_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\cnn\augSplitAfter\ALL_Images'
cnn_labels_path = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\FYP data\cnn\augSplitAfter\labels_with_set.csv'
# Output directory
save_dir = r'C:\UTM Degree\y4s2\PSM1_Dr Nies\KOA\data\ori data\AugPre\features'
os.makedirs(save dir, exist ok=True)
```

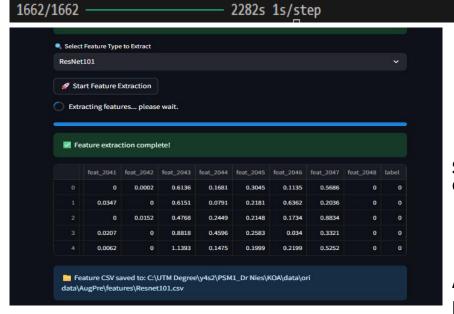
Input method to extract features

Method of a pre-trained Keras model

Extracting ResNet101 features...

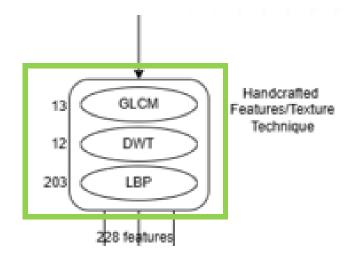
Stage	Samples Size	Batch	Batch per Epoch
Network Features	6277	4	6277/4 = 1662
Extraction			





Show top 5 exp output in Streamlit

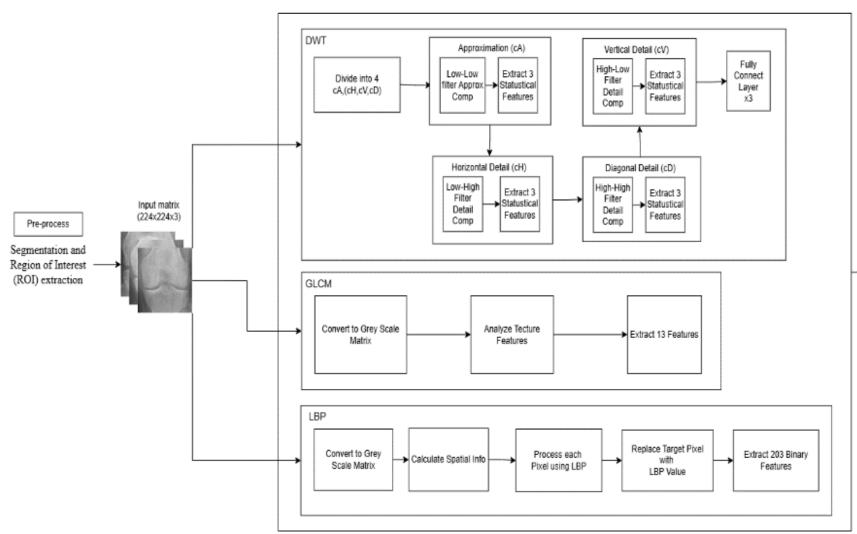
Auto save in path dir



Step 5: Extract Handcrafted Features on Preprocessed Hand Images

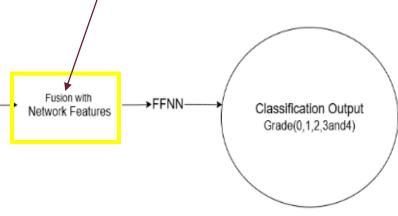
UNIVERSITI TEKNOLOGI MAL

Proposed Model – Handcrafted (DWT, GLCM and LBP)



Concatenate with

- Vgg19 features extract
- Resnet101 features extract



Handcrafted Features (DWT)

Connect

Layer

• Purpose: Captures both frequency and spatial details of the image.

Input: Use handcrafted preprocessed knee X-ray images.

Extract 3

DWT Decomposition:

Apply Discrete Wavelet Transform (Haar) to split the image into four subbands:

- Approximation (cA)
- Horizontal (cH)
- Vertical (cV)
- Diagonal (cD)

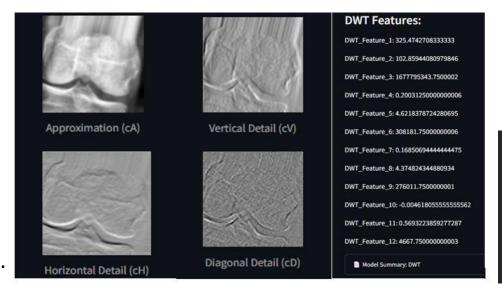
Feature Calculation (per subband):

Extract 3 statistical features from each subband:

- Mean
- Standard Deviation
- Energy

✓ Output:

Combine all stats into a 12-dimensional feature vector (4 subbands \times 3 stats). This captures both spatial and frequency details for classification.



Comp

Handcrafted Features (GLCM)

Q Purpose: Measures texture by analyzing pixel intensity relationships.

(3) Input: Use handcrafted preprocessed knee X-ray images.

GLCM Generation:

Create a **Gray-Level Co-occurrence Matrix** using pixel pairs at:

- •1-pixel distance
- •4 angles: 0°, 45°, 90°, 135°

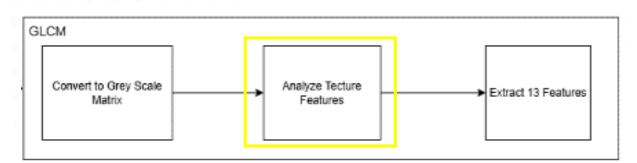
Feature Calculation:

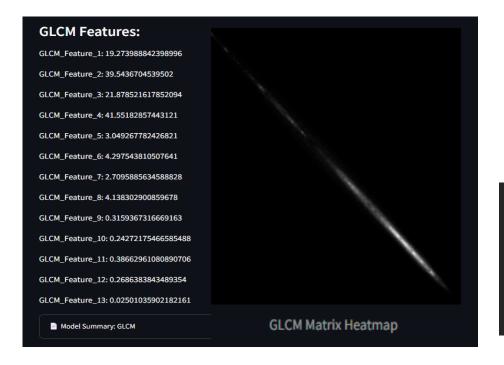
From the GLCM, extract 5 texture features across angles:

- Contrast
- Dissimilarity
- Homogeneity
- Energy
- Correlation

⊘ Output:

Combine into a 13-dimensional feature vector (padded if needed). This captures spatial texture patterns important for diagnosis.





VERSITI TEKNOLOGI MALAYSIA

Handcrafted Features (LBP)

Purpose: Detects local patterns and textures around each pixel.

(3) Input: Use handcrafted preprocessed knee X-ray images.

Convert to Grey Scale Matrix Calculate Spatial Info Process each Pixel using LBP Replace Target Pixel with LBP Value Extract 203 Binary Features

LBP Calculation:

For each pixel, compare it with its 8 surrounding neighbors.

- If neighbor > center pixel → assign 1, else 0.
- •Convert the 8-bit binary pattern into a decimal value (0–255).

Histogram Generation:

- •Build a histogram of all LBP values across the image.
- •Normalize the histogram to ensure uniformity.

✓ Output:

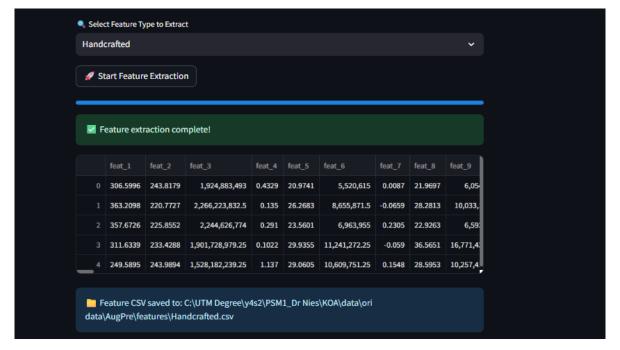
- •Extract the **first 203 values** from the histogram as the LBP feature vector.
- Captures local texture patterns and edge structures important in medical imaging.

Handcrafted Features Extraction in Streamlit (DWT, GLCM and LBP)

Input method to extract features

Show top 5 exp output in Streamlit

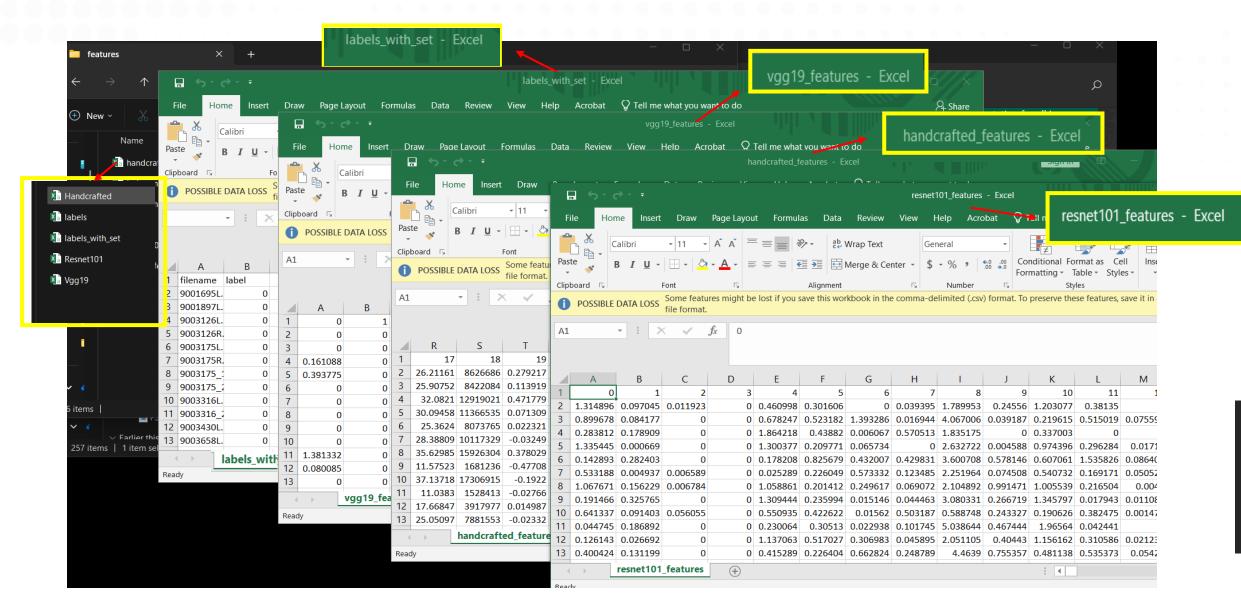
Auto save in path dir



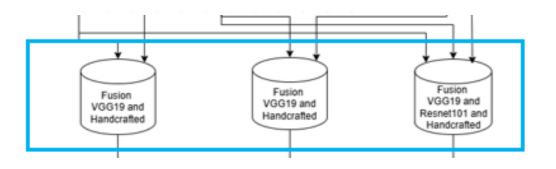
Exp:

feat_0	feat_1	feat_2	 feat_0	feat_1	feat_2	 feat_0	feat_1	 Label
			 			 		 0

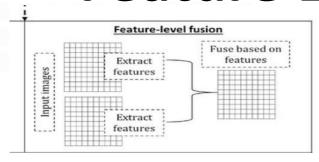
•All features extracted will store in csv file (Vgg19, Resnet101 and Handcrafteds)



Step 6: Concatenate Features

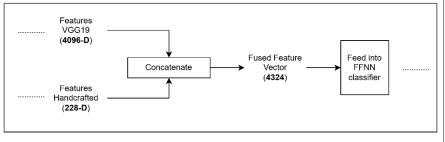


Feature Level Fusion



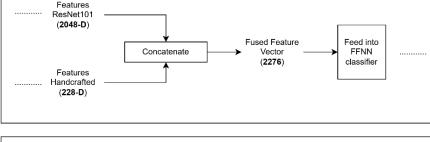
Obj 2

Activity 9 : Generate 2 fusion features by fuse VGG-19 and handcrafted features & fuse ResNet-101 and handcrafted features by using feature-level fusion



Fusion Features = Feature Level Fusion

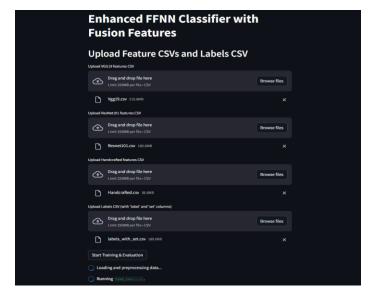
is a technique where features extracted from multiple sources or models are combined into a single, extracted by from different models to create richer, more informative representations for the final classification task.



Features VGG19 (4096-D) Feed into Features Fused Feature ResNet101 Concatenate FFNN Vector (2048-D) (6327)classifier Features -landcrafted (228-D)

Input method to fusion features

st.header("Upload Feature CSVs and Labels
CSV")
vgg_csv = st.file_uploader("Upload VGG19
features CSV", type=['csv'])
resnet_csv = st.file_uploader("Upload
ResNet101 features CSV", type=['csv'])
handcrafted_csv = st.file_uploader("Upload
Handcrafted features CSV", type=['csv'])
labels_csv = st.file_uploader("Upload Labels
CSV", type=['csv'])



Feature Level Fusion - After 'receive' the features vector

Step 1: Load Features & Labels

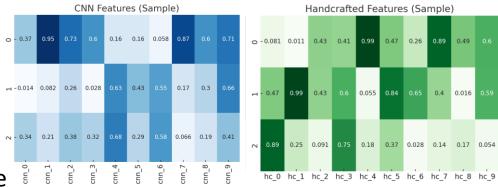
- Load VGG19, ResNet101, and handcrafted feature sets.
- Load the corresponding KOA grade labels.
- Convert the labels into a format suitable for classification.

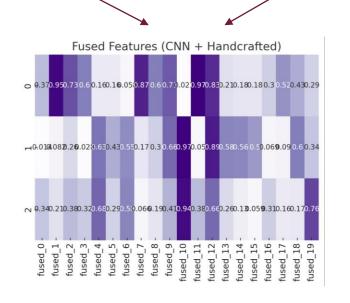
Step 2: Combine Features

- VGG19 + Handcrafted: Merge both into one combined feature set.
- ResNet101 + Handcrafted: Merge these into another combined set.
- All Features Together: Combine VGG19, ResNet101, and handcrafted into a single rich feature set.

Step 3: Normalize Features

• Standardize each feature set so they are on the same scale for better learning performance.



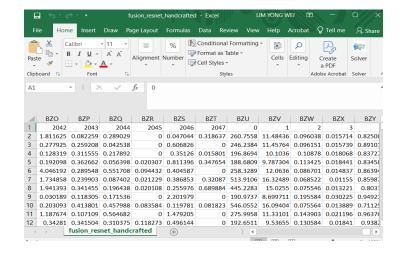


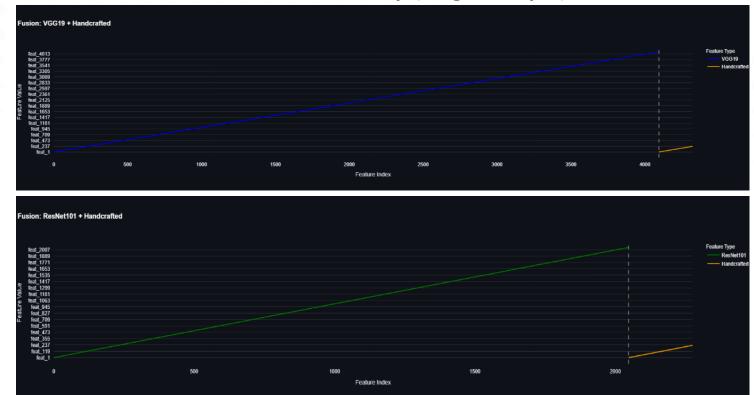
www.utm.my

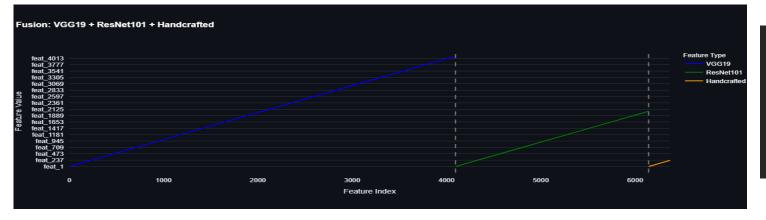
Feature Level Fusion Visualization in Streamlit

Feature Index Map (Single Sample)

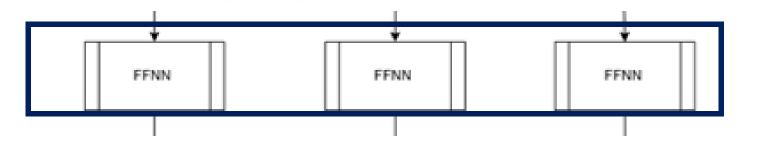
Exp Features Resnet101 + Handcrafted







Step 7: FFNN Classification



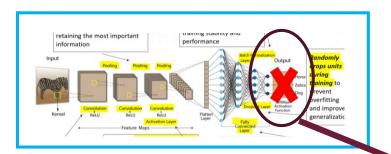
Feed-Forward Neutral Network

Obj 3

Activity 10: Feed Forward Neutral Network (FFNN) with Model 1, VGG-19 with handcrafted features

Activity 11 : Feed Forward Neutral Network (FFNN) with Model 2, ResNet-101 with handcrafted features

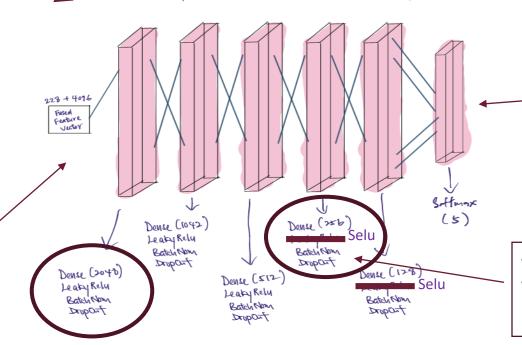
Activity 12: Feed Forward Neutral Network (FFNN) with Model 3, VGG-19 with Resnet-101 with handcrafted features



FFNN Feed- Forward Neutral Network)

type of *artificial neural network* where each neuron in one layer is connected to every neuron in the next layer.

set of features extracted from an image



Hidden Layer

- Produces the final predictions
- For classification tasks, it might use a softmax activation function to output probabilities

- Consist of 5 hidden layers of neurons
- Learn to capture complex patterns and relationships in the data

After fusing the features, the dataset is still divided into:

•Training set: Used to train the model.

- ensure you get an honest estimate of model performance.
- •Evaluation set (Validation + Test): Used to measure model performance.
- •The training features and labels are separated from the evaluation ones based on the "set" column (train, val, test).

FFNN Train

recognize patterns in your training data by adjusting its internal weights.

FFNN Model Architecture

 \rightarrow Define the network structure: dense layers(2048 \rightarrow 1024 \rightarrow 512 \rightarrow 256 \rightarrow 128), activation functions(Leaky ReLU and SELU), batch normalization, dropout and output layer (Softmax)

Optimizer, Early Stopping, and Learning Rate Reduction

→ Set up training strategies: **ADAM** optimizer to adjust weights, early stopping to prevent overfitting, and learning rate reduction for fine-tuning.

Fitting the Model

- → Train the model using training data, validate on a small portion, and apply callbacks during training.
- → The model was trained using batches of 64 samples over a maximum of 100 epochs.

(3) Update Model Weights to Minimize Loss

→ During each epoch, weights are updated to reduce the classification error using the chosen loss function (e.g., categorical crossentropy).

Exp FFNN Train Code

UTM UNIVERSITI TEKNOLOGI MALAYSIA

FFNN Model Architecture train the model.

```
def build_ffnn(input_dim, num_classes):
    model = Sequential([
        Dense(2048, input_shape=(input dim,)),
        LeakyReLU(alpha=0.1),
        BatchNormalization(),
        Dropout(0.5),
        Dense(1024),
        LeakyReLU(alpha=0.1),
        BatchNormalization(),
                                      Regulization
        Dropout(0.4),
        Dense(512),
        LeakyReLU(alpha=0.1),
        BatchNormalization(),
        Dropout(0.3),
        Dense(256, activation='selu'),
        BatchNormalization(),
        Dropout(0.2),
        Dense(128, activation='selu'),
        BatchNormalization(),
        Dense(num classes, activation='softmax')
    return model
```

Updates the model weights to minimize the loss function

```
# After load validation/test sets
# After Fusion Features of model performance.

# Split by 'set'
    train_idx = np.where(set == 'train')[0]
    eval_idx = np.where((set == 'val') | (set == 'test'))[0]

# Prepare train/eval sets

X_train = features_vgg_handcrafted[train_idx]
    y_train = y_cat[train_idx]

X_eval = features_vgg_handcrafted[eval_idx]
    y_eval = y_cat[eval_idx]
    y eval labels = y[eval idx]
```

Optimizer, Early stopping and Learning Rate Reduction

```
help prevent overfitting
and adapt the learning
rate.
```

Fitting Model

```
history_vgg_hc = model_vgg_hc.fit(
    X_train, y_train,
    epochs=100,
    batch_size=64,
    validation_split=0.1,
    verbose=1,
    callbacks=[early stop, reduce lr]

model sees the training data in 64 batches and multiple passes by 100

monitor validation performance during training.
```

FFNN Evaluate

measured on unseen data, metrics are reported

Fitting Model to compute loss and accuracy on the evaluation set

```
# FFNN EVALUATION
     eval_loss, eval_acc = model_vgg_hc.evaluate(X_eval, y_eval, batch_size=32, verbose=1)
```

Model predict get predicted classes for the evaluation set.

```
y_pred = np.argmax(model_vgg_hc.predict(X_eval, batch_size=32), axis=1)
st.write("Classification Report:")
st.text(classification_report(y_eval_labels, y_pred))
st.write("Confusion Matrix:")
fig2, ax2 = plt.subplots(figsize=(6, 5))
sns.heatmap(confusion_matrix(y_eval_labels, y_pred), annot=True, fmt="d", cmap="Blues", ax=ax2)
st.pyplot(fig2)
```

•Metrics like accuracy, classification report, and confusion matrix are calculated to assess performance.

Stage	Samples Size	Batch	Batch per Epoch
Network features Extraction	6647	4	6277/4 = 1662
FFNN Training	6647	64	6647/64 = 104
FFNN Evaluate	1055	32	1055/32= 33

Table 9 Batch Processing Configuration for Network Feature Extraction and FFNN Training & Evaluation

warnings.warn(

Result of FFNN and learning curve for VGG19 with Handcrafted

Result of FFNN and learning curve for Resnet101 with Handcrafted

Result of FFNN and learning curve for VGG19 with Resnet101 with Handcrafted Epoch 20: ReduceLROnPlateau reducing learning rate to 1.9999999494757503e-05.

Epoch 30: ReduceLROnPlateau reducing learning rate to 3.999999898951501e-06.

Epoch 40: ReduceLROnPlateau reducing learning rate to 7.999999979801942e-07.

Epoch 50: ReduceLROnPlateau reducing learning rate to 1.600000018697756e-07.

Epoch 60: ReduceLROnPlateau reducing learning rate to 1e-07.

33/33

1s 17ms/step

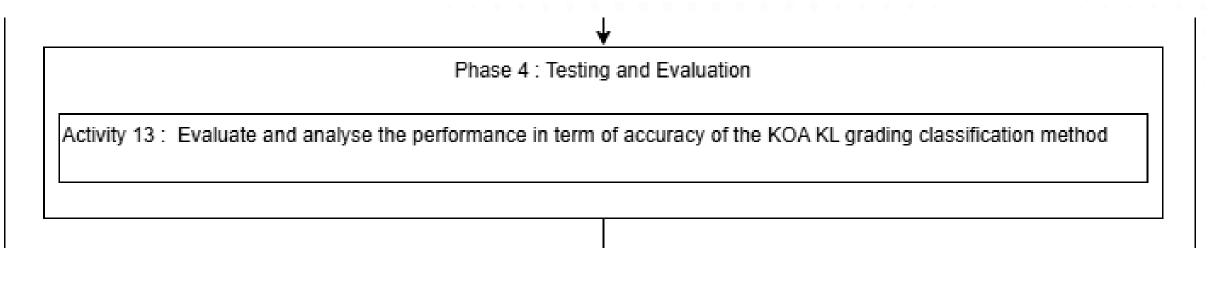
9s 8ms/step

In all three training runs, the ReduceLROnPlateau callback is actively reducing the learning rate at regular intervals (every 10 epochs or so)

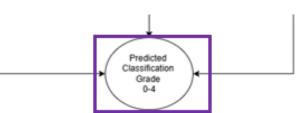
Aspect	Value/Setting	Purpose/Effect
Epochs	50 or 100 (with early stop)	Controls max training duration, stops if no progress
Batch Size	32 (eval)	Efficient training and stable evaluation
Learning Rate	0.0001 (adaptive reduction)	Enables steady learning and fine- tuning

Table 10 Summary

Research Framework - Phase 4



Step 8: Final Comparative Evaluation



Performance Confusion Metric Calculation of FFNN Classifier

is a table that **summarizes the performance** of a classification model

	Predicted (Healthy)	Predicted (OA)
	Grade 0-1	Grade 2-4
Actual (Healthy)	True Negative	False Positive
Grade 0-1	(TN)	(FP)
Actual (OA)	False Negative	True Positive
Grade 2-4	(FN)	(TP)

Table 11 Confusion Matrix of FFNN Classifier

			Predicted		
Actual	0	1	2	3	4
0	TN	FP	FP	FP	FP
	(True Grade 0)	(Missclassified	(Missclassified	(Missclassified	(Missclassified
		Grade 1)	Grade 2)	Grade 3)	Grade 4)
1	FN	TP	FP	FP	FP
	(Missclassified	(True Grade 1)	(Missclassified	(Missclassified	(Missclassified
	Grade 0)		Grade 2)	Grade 3)	Grade 4)
2	FN	FN	TP	FP	FP
	(Missclassified	(Missclassified	(True Grade 2)	(Missclassified	(Missclassified
	Grade 0)	Grade 1)		Grade 3)	Grade 4)
3	FN	FN	FN	TP	FP
	(Missclassified	(Missclassified	(Missclassified	(True Grade 3)	(Missclassified
	Grade 0)	Grade 1)	Grade 2)		Grade 4)
4	FN	FN	FN	FN	<mark>TP</mark>
	(Missclassified	(Missclassified	(Missclassified	(Missclassified	(True Grade 4)
	Grade 0)	Grade 1)	Grade 2)	Grade 2)	

Table 12 Overall Confusion Matrix of FFNN classifier

www.utm.n

Performance Measurement Calculation

Then, the systems' performance as determined by the evaluation scales listed in

$$Accuracy = rac{TN + TP}{TN + TP + FN + FP} imes 100\%$$
 overall correct predictions

Sensitivity =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} \times 100\%$$
 ability to detect KOA cases

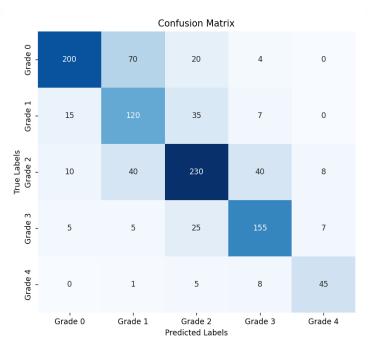
$$ext{Specificity} = rac{ ext{TN}}{ ext{TN} + ext{FP}} imes 100$$
 ability to detect healthy cases

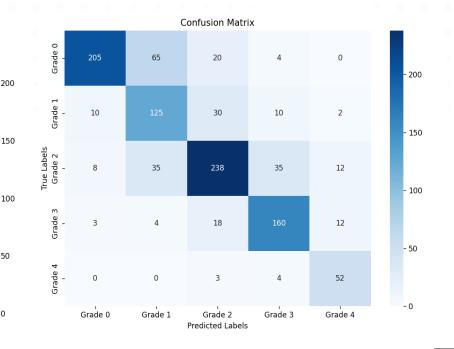
$$ext{Precision} = rac{ ext{TP}}{ ext{TP} + ext{FP}} imes 100\%$$
 correctness of positive predictions

$$ext{AUC} = rac{ ext{TPRate}}{ ext{FPRate}} imes 100\%$$

www.utm.my

Result Confusion Metric for 3 Models:





VGG19 + Handcrafted

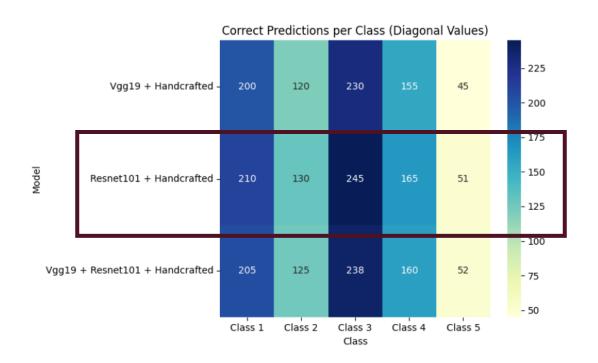
Resnet101 + Handcrafted

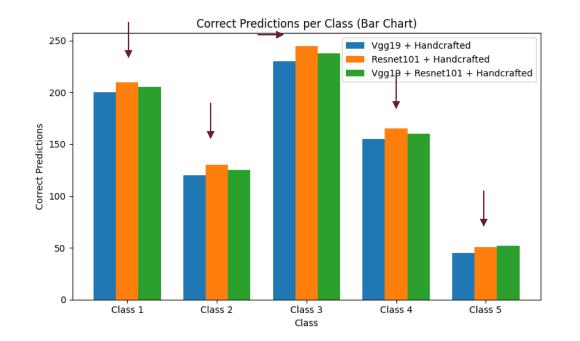
VGG19 + Resnet101 + Handcrafted

Correct Prediction Comparison between 3 Models

	,		-	
Phase/Classes	Testing 20%	Model 1	Model 2	Model 3
Grade 0	<mark>394</mark>	200	<mark>210</mark>	205
Grade 1	<mark>177</mark>	120	<mark>120</mark>	125
Grade 2	<mark>328</mark>	230	<mark>245</mark>	238
Grade 3	<mark>197</mark>	155	<mark>165</mark>	160
Grade 4	<mark>59</mark>	35	<mark>51</mark>	52
Total	<mark>1055</mark>	750	<mark>801</mark>	780
Grade 2 Grade 3 Grade 4	328 197 59	230 155 35	245 165 51	238 160 52

Table 8 Correct Prediction on 3 Models





www.utm.my

Comparison of FFNN Performance between 3 Models

No. del	01		6	C	B	A110
Model	Grade	Accuracy	Sensitivity	Specificity	Precision	AUC
	0	0.822	0.680	0.941	0.680	0.810
	1	0.848	0.680	0.939	0.680	0.810
VGG19 +	2	0.821	0.700	0.892	0.700	0.796
Handcrafted	3	0.889	0.790	0.963	0.790	0.877
	4	0.976	0.760	0.996	0.760	0.878
	0	0.840	0.720	0.947	0.720	0.834
	1	0.865	0.740	0.945	0.740	0.843
Resnet101 +	2	0.842	0.750	0.899	0.750	0.825
Handcrafted	3	0.899	0.840	0.966	0.840	0.903
	4	0.980	0.860	0.997	0.860	0.928
	0	0.830	0.700	0.944	0.700	0.822
VGG19 +	1	0.855	0.710	0.938	0.710	0.824
Resnet101 +	2	0.828	0.730	0.891	0.730	0.811
Handcrafted	3	0.892	0.810	0.963	0.810	0.887
	4	0.978	0.880	0.997	0.880	0.939

Table 13 Performance Result on FFNN

Model	Training Accuracy	Training Loss	Validation Accuracy	Validation Loss	Testing Accuracy	Sensitivity	Specificity	Precisio n
VGG19+	0.8249	0.4757	0.6732	0.8463	0.6771	0.5809	0.9208	0.5806
Handcrafted								
Resnet101+	0.8553	0.4104	0.709	0.7786	<mark>0.7122</mark>	0.621	0.9296	0.6199
Handcrafted								
VGG19+	0.8243	0.4831	0.688	0.7667	0.702	0.599	0.9271	0.5892
Resnet101+								
Handcrafted								

 Table 14
 Model Performance Summary

Comparison of ACC from 3 models

Why ResNet101 fusion Handcrafted performed well?

First, it conduct with a Deep architecture with residual connections (if compare with VGG19) which helps in learning both low-level and high-level features, preventing vanishing gradients.

Second, with a Powerful hybrid features which combination of deep semantic features from ResNet101 and handcrafted features (GLCM, LBP, DWT) boosts discriminative power.

Then only generate Strong metrics like highest accuracy, sensitivity and class-wise prediction performance, especially for difficult cases like Class 5 (Grade 4)

Discussion

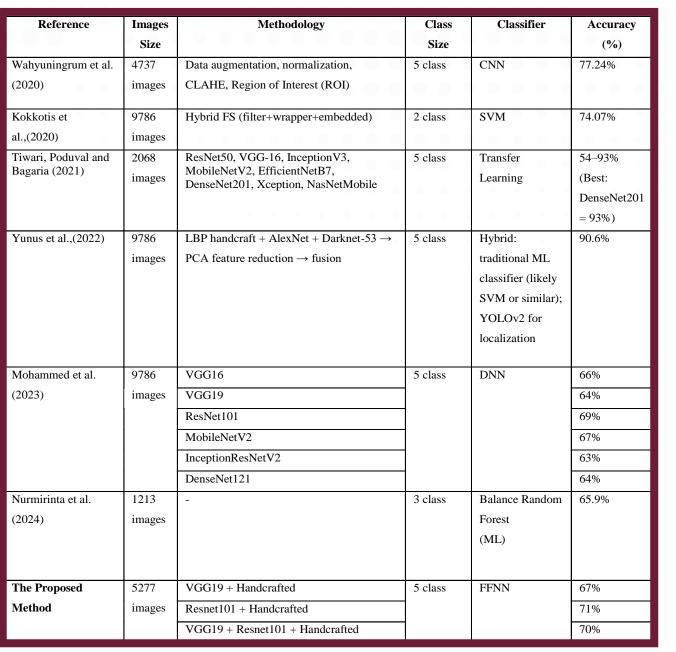


Table 15 Comparative Analysis of Studies for KOA Severity Classification

Discussion

This suggests architecture matters; we chose ResNet101 for its residual learning, but deeper models like DenseNet could be considered to boost performance

They also used handcrafted + CNN feat localization (YOLOv2) and PCA.

Their results validate that fusion with handcrafted features adds value—our model reached 71.22% vs their 69% using ResNet101 alone.

Reference	Images Size	Methodology	Class Size	Classifier	Accuracy (%)
Wahyuningrum et al.	4737	Data augmentation, normalization,	5 class	CNN	77.24%
2020)	images	CLAHE, Region of Interest (ROI)			0 0 0
Kokkotis et	9786	Hybrid FS (filter+wrapper+embedded)	2 class	SVM	74.07%
al.,(2020)	images		0 0 1	0 0 0 0	0 0 0
Tiwari, Poduval and Bagaria (2021)	2068	ResNet50, VGG-16, InceptionV3, MobileNetV2, EfficientNetB7,	5 class	Transfer	54–93%
Dagaria (2021)	images	DenseNet201, Xception, NasNetMobile		Learning	(Best:
					DenseNet201
					= 93%)
Yunus et al.,(2022)	9786	LBP handcraft + AlexNet + Darknet-53 →	5 class	Hybrid:	90.6%
	images	PCA feature reduction → fusion	-	traditional ML	Stronge
es but improve	ed perfo	ormance using		classifier (likely	
				SVM or similar);	they u
				YOLOv2 for	featur
				localization	
Mohammed et al.	9786	VGG16	5 class	DNN	66%
(2023)	images	VGG19 Similar backbon	- no fue	ion (62, 60%)	64%
		ResNet101 Similar backbon	e, no rus	1011 (63–69%)	69%
		MobileNetV2	-		67%
		InceptionResNetV2	1		63%
		DenseNet121			64%
Nurmirinta et al.	1213	-	3 class	Balance Random	65.9%
(2024)	images			Forest	
				(ML)	
The Proposed	5277	VGG19 + Handcrafted	5 class	FFNN	67%
Method	images	Resnet101 + Handcrafted	1		71%
		VGG19 + Resnet101 + Handcrafted	†		70%

Highlights the **impact of CNN selection** DenseNet201 showed best results).

Strongest baseline (90.6%)

they used ROI localization and PCA to reduce feature dimensionality

*Relevant to your model architecture and method *Illustrative of your model's strengths and weaknesses *Diverse in methodology

Table 15 Comparative Analysis of Studies for KOA Severity Classification

⁰n

Corresponding Hyperparameters definition and Ranges UTTM

Element index	Corresponding hyperparameters definition	Corresponding range
1.	Learning Rate	[1e-5 – 1e-3] Very small numbers, e.g., 0.00001 to 0.001
2.	Batch Size	[20 - 100]
3.	Epochs	[20 - 500]
4.	Dropout Rates	[0.2 - 0.5]
5.	Dense Layer Sizes	[128 – 2048]
6.	Activation Function (Hidden layer and Output layer)	[ReLU, LeakyReLU (α=0.1), SELU, Tanh, ELU, Softmax]
7.	EarlyStopping Patience	[5 - 50]
8.	Class Weights	[None, Inverse frequency, Median frequency]
9.	The value of rotation (If YES)	0 ∘ →30∘
10.	The value of width shift (If YES)	[0-0.2]
11.	The value of height shift (If YES)	[0-0.2]
12.	The value of shear (If YES)	[0-0.2]
13.	The value of zoom (If YES)	[0-0.2]
14.	The value of horizontal flipping flag (If YES)	[Yes, No]
15.	The value of vertical flipping flag (If YES)	[Yes, No]

Configuration

Configuration	Specifications
Datasets	Table 3.2
Apply data shuffling?	Yes
Input images size	224x224x3
Hyperparameters optimizer	Convolutional Neutral Network
Train split ratio	80% to 20%(80% for training9and validation) and 20% for testing)
Activation Function (Hidden layer and	[ReLU, LeakyReLU (α=0.1), SELU, Tanh, ELU,
Output layer)	Softmax]
Pre-trained models	VGG-19, ResNet-101
Pre-trained parameters initializers	Table 4.2
Hyperparameters	Table 4.3
Scripting language	Python
Python major packages	Streamlit, Tensorflow, Keras, NumPy,
	OpenCV, Matplotlib, Skimage and PIL
Working environment	Visual Studio

Table 17 Configuration

5

Conclusion

- Achievement on Objective
- Research Constraint
- Suggest Improvement and Future Work

Achievement of Project Objective

CNN Feature Insight

- •Analyzed how convolutional neural networks (CNNs), such as VGG19 and ResNet101, extract abstract and hierarchical features from medical images.
- •These insights helped shape a hybrid approach that leverages the best of both feature extraction methods.

Feature-Level Fusion Approach

- •Implemented feature-level fusion to combine features from VGG19, ResNet101, and handcrafted methods.
- •Handcrafted features included **DWT (frequency domain)**, **GLCM (texture)**, and **LBP (local patterns)**.
- •Fusion of deep and handcrafted features enhanced the model's ability to capture both global and fine-grained details.

Classification and Results

- •Used a Feedforward Neural Network (FFNN) to classify the fused feature vectors.
- •The ResNet101 + handcrafted fusion model achieved the best testing accuracy of 71.22%.
- •It also achieved a **sensitivity of 62.1%** for severe KOA cases.
- •The results demonstrate the effectiveness of hybrid models for complex medical image classification tasks like KOA grading.

Research Constraints

• The study faced key constraints including high computational demands, class imbalance in the dataset, and the complexity of fusing deep learning and handcrafted features. These challenges highlight the need for more efficient processing strategies, improved data balancing techniques, and scalable solutions to enhance the model's accessibility in future KOA classification research.

Suggestions for Improvement and Future Works

Suggested Improvement:

- To overcome current hardware limitations, increasing memory and applying better feature selection methods can help improve processing speed, training stability, overall model performance and increasing dataset size for better generalization.
- Future improvements can be guided by previous successful approaches, such as applying dimensionality reduction methods like PCA and localization techniques (as seen in Yunus et al., 2022), to reduce feature redundancy and improve efficiency.

Future Work:

For future KOA research, it is recommended to explore advanced feature selection, multimodal fusion, explainable AI, and Real-time diagnosis tools for clinical deployment.

What I had done?

Activities	Done in PSM 1	Done in PSM2
Phase 1 : Problem Formulation & Data Collection Literature Review	\square	
Activity 1: Identification and justification of research problem	abla	
Activity 2: Identification and justification of research goal, objective and scopes	\square	
Activity 3 : Data Collection	lacksquare	
Activity 4 : Literature Review	abla	
Phase 2: Data Pre-process then Generate Features and Fused Features		
Activity 5 : X-ray images pre-process	\square	
Activity 6 : Improve X-ray images (Network features)	\square	
Activity 7 : Generate handcrafted features (DWT , GLCM , LBP)		
Activity 8: Generate network features (VGG-19 and ResNet-101)	lacksquare	
Activity 9: Generate 2 fusion features (Network fuse with handcrafted features)		
Phase 3 : Develop FFNN model		
Activity 10 : FFNN Classifier Model 1 (VGG-19 + Handcrafted)		✓
Activity 11 : FFNN Classifier Model 2 (Resnet101 + Handcrafted)		
Activity 12 : FFNN Classifier Model 3 (VGG19 + Resnet101 + Handcrafted)		
Phase 4: Testing and Evaluation		
Activity 12: Evaluate and analysis the performance in term of accuracy of the KOA KL grading classification method		abla

THANK YOU

QnA

