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ABSTRACT 

Biclustering is a strong data mining approach to group the clusters based on 

specific characteristic. Various biclustering methods had been proposed to identify the 

potential biomarkers for certain diseases. However, most research were done based on 

the synthetic data which may produce false positive result and overfit the data. 

Therefore, the lack of biological relevance data in biclustering analysis leads to low 

precision in identifying relevant gene clusters and decreases the accuracy of 

biomarkers detection. The purpose of this study was to implement a biclustering 

method to identify the potential biomarkers of esophageal cancer from gene expression 

data and protein-protein interaction data. In this research, the gene expression dataset 

and protein-protein interaction datasets were used in the gene selection process and 

applied in the biclustering method. Elbow method had been used to determine the 

optimum number of biclusters. Four bicusters were obtained in this study, each 

bicluster will then be observed and the genes of the biclusters were used to filter the 

gene expression dataset. The biclustering method used in this research was Plaid 

model, which selected the rows and columns exhibiting the similar pattern from the 

dataset to form biclusters. The results obtained from the biclustering algorithm 

indicated that the biclusters formed consisted only of cancerous cases, making them 

unsuitable for implementation with the Support Vector Machine classifier. Thus, the 

genes were examined and formed different type of Gene Expression Dataset for 

comparison. Subsequently, different Gene Expression Dataset were classified by the 

Support Vector Machine. Two datasets were formed, one involving genes in all 

biclusters and another involving genes that occurred in more than one biclusters. The 

Support Vector Machine was implemented on these datasets along with the original 

gene expression dataset with accuracy of 96.43%, 95% and 96.43% respectively. The 

dataset involving genes that occurred in more than one bicluster was validated with 

biological knowledgebases. The potential biomarkers for the esophageal cancer found 

in the experiment are EPHB4, LAMB3 and HOXD11. To conclude, the potential 

biomarkers for esophageal cancer found in this research have the potential to improve 

the early detection and diagnosis for esophageal cancer and improve in the available 

treatments. 
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ABSTRAK 

Biclustering ialah cara analisis data untuk mengumpulkan kluster berdasarkan 

ciri-ciri tertentu. Walaupun terdapat pelbagai kaedah biclustering, namun kebanyakan 

penyelidikan dijalankan menggunakan data sintetik yang mungkin menghasilkan 

keputusan yang positif palsu dan terlalu sesuai dengan data. Oleh itu, kekurangan data 

yang relevan secara biologi dalam analisis biclustering menyebabkan ketepatan yang 

rendah dalam mengenal pasti kluster gen yang relavan dan mengurangkan ketepatan 

pengesanan biomarker. Tujuan kajian ini adalah untuk melaksanakan kaedah 

biclustering untuk mengenal pasti biomarker yang berpotensi untuk kanser esofagus 

daripada data ekspresi gen dan interaksi protein-protein. Dalam kajian ini, data 

ekspresi gen dan data interaksi protein-protein digunakan dalam proses pemilihan gen 

dan diaplikasikan dalam kaedah biclustering. Kaedah elbow telah digunakan untuk 

menentukan bilangan kluster yang optimum. Empat bicluster diperoleh dalam kajian 

ini, dan gen-gen dalam bicluster digunakan untuk menapis dataset ekspresi gen. 

Kaedah biclustering yang digunakan ialah model Plaid, yang memilih baris dan lajur 

yang menunjukkan corak yang serupa dari dataset untuk membentuk bicluster. Hasil 

yang diperoleh menunjukkan bahawa bicluster yang terbentuk terdiri daripada kes-kes 

kanser sahaja, menjadikannya tidak sesuai dengan pengelasan Mesin Sokong Vektor. 

Oleh itu, gen-gen diperiksa dan pelbagai data ekspresi gen diklasifikasikan oleh Mesin 

Sokongan Vektor. Dua dataset dibentuk, satu melibatkan gen dalam semua bicluster 

dan satu melibatkan gen yang terdapat dalam lebih daripada satu bicluster. Mesin 

Sokongan Vektor diterapkan pada data tersebut bersama dengan data ekspresi gen asal 

dengan ketepatkan masing-masing sebanyak 96.43%, 95% dan 96.43%. Dataset yang 

melibatkan gen yang terdapat dalam lebih daripada satu bicluster disahkan dengan 

pangkalan pengetahuan biologi. Biomarker berpotensi untuk kanser esofagus yang 

ditemui dalam eksperimen adalah EPHB4, LAMB3 dan HOXD11. Secara 

kesimpulannya, biomarker berpotensi untuk kanser esofagus yang ditemui dalam 

penyelidikan ini mempunyai potensi untuk meningkatkan pengesanan awal dan 

diagnosis untuk kanser esofagus serta meningkatkan rawatan yang tersedia.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Esophageal cancer (EC) is the world's eighth most frequent cancer (World 

Cancer Research Fund International, no date). EC is a type of cancer that develops in 

esophagus. Due to a lack of early symptoms, the diagnosis occurs in the middle and 

late stages and the risk of recurrence after therapy is significant causing the 5-year 

survival rate for EC is still poor (Wan, Smith and Wei, 2018). According to 

Karimizadeh et al (2019), the identification of molecular pathways and complicated 

disease mechanisms can be facilitated by combining different biological data useful to 

certain biological queries, which can also boost the accuracy of results. By performing 

gene expression analysis, thousands of genes' levels of expression in a tissue or cell 

type are simultaneously measured (Karimizadeh et al, 2019). Gene expression data 

give information about the levels of gene activity but do not fully capture the 

complexity of biological systems (Karimizadeh et al, 2019). By focusing just on gene 

expression, we run the risk of ignoring significant regulatory processes and missing 

important information required for a complete understanding. Hence, in order to have 

a full understanding on the connection between genes’ activity, several data had been 

applying together with gene expression such as genomic data, proteomic data, 

metabolomics data and protein-protein interaction (PPI). Applying conserved 

pathways and protein complexes, alignment and mapping of PPI networks offers a 

chance to learn more about the evolutionary links across species (Athanasios, 2017). 

Additionally, it has been demonstrated that within sequence homology clusters, 

information from protein-protein interaction networks can predict functional 

orthologous proteins (Athanasios, 2017). As a result, the integration of information on 

PPI and gene expression enables the discovery of possible biomarkers and advances 

our understanding of disease.  
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According to National Cancer Institute, a biomarker is a biological molecule 

that can be detected in tissues, body fluids, or blood that can indicate if a certain 

process, condition, or disease is normal or pathological (National Cancer Institute, no 

date). The body's reaction to a sickness or condition's therapy can be monitored using 

biomarkers. Hence, by identifying biomarkers for EC have the potential to lower 

morbidity and death. Machine learning methods are a viable alternative to traditional 

data analysis approaches and be widely used in the biomarker discovery since they 

automatically discover patterns and relationships from data without explicit 

programming (Xie et al, 2021). Supervised learning such as decision trees, naïve bayes 

and neural network, unsupervised learning such as K-means clustering are the methods 

that available in the machine learning. For your information, biclustering is a strong 

data mining approach that enables grouping of rows and columns concurrently in a 

matrix format dataset (Xie et al, 2019). Biclustering methods are useful for analysing 

gene expression and PPI data because they identify sections of genes with comparable 

expression patterns across sample subsets or situations (Xie et al, 2019). Identifying 

the subsets of genes by combining genes and samples based on their expression 

patterns able to reduce the complexity of large datasets and identify networks of related 

genes that are co-expressed in specific sample subsets. Therefore, the biclustering 

method is a useful tool that can be used to analyse esophageal cancers through the gene 

expression data and PPI data to detect gene clusters specific to EC cancer. 

1.2 Problem Background 

The pattern of gene expression in a cell or tissue dictates its form and function. 

While there's over a thousand genes on a microarray chip, there are only a few samples. 

As a result, the curse of dimensionality, noise, and randomness of this data are 

significant issues that arise in the interpretation of microarray data and present 

numerous data mining and machine learning obstacles (Moteghae, Maghooli and 

Garshasbi, 2018). However, biclustering can decrease the high-dimensional character 

of gene expression datasets by focusing on these co-expressed genes, which can 

increase classification accuracy by decreasing noise and highlighting pertinent 
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features. For example, biclustering grouped genes and samples based on their patterns 

by finding the co-expressed subset of data. 

Even the performance of classification can be improved by the biclustering 

algorithm, but the biclustering algorithm still had limitations to run the experiment. 

According to Eren et al. (2013), synthetic datasets frequently don't perform as well as 

gene expression datasets. At the same time, the performance of each algorithm varies 

depending on the circumstances bicluster model. Hence, it is necessary to consider the 

data and parameters used before choosing a biclustering algorithm. 

1.3 Problem Statement 

EC is extremely aggressive (Napier, Scheerer and Misra, 2014). Early 

detection of esophageal cancer able to produce effective patient outcome despite 

improvements in available treatments (Rai, Abdo and Agrawal, 2023). However, using 

only synthetic data to find biomarkers can produce false-positive results and overfit 

the data (Rashidi et al, 2022). Synthetic data is made by combining real world 

information to create a dataset that resembles actual data but does not reveal any 

personal information (Rashidi et al, 2022). As synthetic data do not capture full 

patterns present in real world data, thus the result obtained may not be accurately and 

caused overfitting. As a result, we must determine the biological significance of the 

data to increase the possibility of discovering a true and informative biomarker. PPI 

and gene expression data are biological relevance data because they provide the 

interactions between genes and show the pattern of gene expression (Rao et al, 2014; 

National Human Genome Research Institute, 2023). Hence, PPI and gene expression 

data can be used to identify potential EC biomarkers, which could help with early 

detection and the creation of targeted treatments. To increase the precision of 

biomarker detection, biclustering algorithms have offer a solution to identify the co -

expressed genes (Branders, Schaus and Dupont, 2019). Therefore, the problem 

statement of this study is that the lack of the biological relevance data in biclustering 

analysis leading to low precision in identifying relevant gene clusters and decrease the 

accuracy of biomarkers detection. 
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1.4 Research Goal 

The goal of this research is to implement a biclustering method to identify the 

potential biomarkers of esophageal cancer from gene expression data and PPI.  

1.5 Research Objectives 

The objectives of the research are: 

(a) To derive input data from esophageal cancer gene expression and protein-

protein interaction data.  

(b) To implement biclustering algorithm in identification of potential biomarkers 

from the derived input data. 

(c) To evaluate the selected potential biomarkers using Support Vector Machine 

through ten-fold cross validation and confusion matrix. 

(d) To verify the identified potential biomarkers with biological knowledgebases 

such as NCBI. 

1.6 Research Scope 

The scopes of the research are: 

(a) Concentrate on a plaid biclustering method to identify esophageal cancer 

biomarkers. 

(b) Programming languages for the study are Python and R. 

(c) Esophageal cancer data retrieved from Gene Expression Omnibus which the 

dataset named GSE20347 and derived from Search Tool for the Retrieval of 
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Interacting Genes/Proteins which the PPI network consists of the interaction 

between human genes. 

(d) Limitations of this study: 

• Availability of high-quality data 

• Difficulties in discovering relevant biomarkers. 

• Computational complexity of the datasets being processed. 

• Interpretation of gene clusters 

1.7 Research Contribution 

This research is aimed to contribute a biclustering method which able to 

identify potential biomarkers of esophageal cancer effectively. By developing an 

effective biclustring method, the accuracy and reliability of biomarker identification 

would be improved. This could lead to the development of effective diagnostic 

strategies for esophageal cancer. Since there are several biclustering methods, a few 

of researching will be done to make sure the method is suit to the gene expression 

patterns and PPI data.  

1.8 Report Organization 

This section explains the outline of this report.  

Literature review will be included in Chapter 2. The previous study of the 

related research about the integration between gene expression and PPI data, the 

biclustering method and the biomarkers identification will be discussed in this chapter.  

Chapter 3 will show the research methodology and framework used in this 

research in order to achieve the study. 
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The flowcharts and overall steps in conducting the study will be explained 

further in Chapter 4.  

Last but not least, Chapter 5 will show and discuss the outcomes and the results. 

The conclusion of this study and the future work will be illustrated.  
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter further discussed the details of the related research. The details of 

EC were discussed further in this chapter and outlined the risk factors in causing EC. 

Then, the use of gene expression and PPI in discovering the biomarkers were explained 

in further. The popular biclustering algorithms were discussed and the advantageous 

and drawbacks of each algorithm were outlined.  

2.2 Esophageal Cancer (EC) 

EC has been reported as the eighth most frequent cancer in the world, with over 

570,000 new cases diagnosed each year (Bray et al, 2018). Since the pathophysiology 

of EC is less well understood than that of many other malignancies and it frequently 

displayed an incredibly aggressive clinical picture at the time of diagnosis (Bray et al, 

2018). Thus, EC is the sixth-leading cause of malignancy-related death with a 5-year 

survival rate ratio which is between 15-20% (Bray et al, 2018). According to 

Lagergren (2017), esophageal squamous cell carcinoma (ESCC) and esophageal 

adenocarcinoma (EAC) are the two major subtypes of EC which are proximal ESCC 

and distal esophageal EAC. Although ESCC is the most common pathogenic variant 

of EC, the incidence of ESCC and EAC varies greatly across countries and locations 

(Arnold, 2015). Patients with ESCC, for example, account in Asia; however, EAC is 

more common in Europe (Arnold, 2015).  
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Figure 2.1: The Risk Factors for ESCC and EAC (Yang et al, 2020, p.1727).  

 

Smoking increases the risk of developing ESCC and EAC. Unexpectedly, 

smoking had a greater relationship with ESCC incidence than EAC. The risk of ESCC 

is three to seven times higher for current smokers than it is for non-smokers. Smoking 

also raises the risk of EAC; however the correlation is weaker than it is for ESCC. The 

risk of EAC in smokers was almost two times higher. 

Besides that, alcohol consumption and hot food and beverage intake only give 

the impact on ESCC. The risk of alcohol assumption is one to eight times higher for 

the drinker than non-drinker. Meanwhile, hot food and beverage intake has the risk of 

one to four times higher than normal people. For the people who suffer from EAC, 

gastroesophageal reflux disease can be one of the risk factors too.  

In contrast of that, gastroesophageal reflux disease shown the effect in causing 

EAC but do not have correlation with ESCC. For people who suffer from 

gastroesophageal reflux disease have the higher chances at which five to twelve times 

higher to suffer from EAC. 

Moreover, red meat consumption showed less effect in causing EAC than 

ESCC. There are one to three times higher for more red meat consumption people to 

get the ESCC while there is a little effect between more and less red meat consumption 

for EAC disease. As opposed to red meat consumption, obesity showed higher effect 

in causing EAC than ESCC. For obese people, the chances to diagnose EAC is one to 

eight times higher than normal people. Meanwhile, obesity showed a little effect 

between obese and normal people for ESCC disease. 
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2.3 Gene Expression and Protein-Protein Interaction (PPI) in Biomarker 

Detection 

Gene expression data shows incomplete biological picture which may causing 

the unreliable and inaccurate result. (Karimizadeh et al, 2019). The information 

obtained from PPI network enable the visualization of the evolutionary links and the 

functional orthologous protein (Athanasios, 2017). Hence, PPI and gene expression 

enables the discovery of the underlying pattern on the data and obtained the reliable 

result.  

2.3.1 Gene Expression 

According to Yousef, Kumar and Bakir-Gungor (2020), extracting information 

from huge databases of genes that vary in expression gets difficult as high-throughput 

methods become advanced and massive transcriptome datasets become available. The 

key problem is to identify disease related information from a vast amount of redundant 

data and noise as gene expression data are typically limited in sample size, high in 

dimensionality, and noisy (Yousef, Kumar and Bakir-Gungor, 2020). Therefore, 

choosing the right genes and eliminating unnecessary or irrelevant genes are crucial 

steps in solving this issue (Yousef, Kumar and Bakir-Gungor et al, 2020). Most feature 

selection techniques now in use for gene expression data analysis choose genes simply 

based on expression values; biological knowledge is then integrated to acquire 

biological insights or to confirm initial findings (Yousef, Kumar and Bakir-Gungor et 

al, 2020).  

From the understanding of Abd-Elnaby, Alfonse and Roushdy (2020), data on 

gene expression is a measurement of the degree of gene activity in a particular cell, 

tissue, or organism. Thus, it is able to provide the information for medical diagnosis 

as the genes in the datasets are the functional molecules that are involved in specific 

cellular processes (Abd-Elnaby, Alfonse and Roushdy, 2020). In summary, analysing 

the differential gene expression able to obtain insight into the important underlying 

biological mechanisms and pathways of a particular disease or condition. 
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2.3.2 Protein-Protein Interaction (PPI) 

The fundamental components of life are proteins, which are comprised of 

amino acids. Genes use amino acids to create peptides, which in turn create diverse 

proteins (Lu et al, 2020). Proteins are the building blocks of living tissue. Based on the 

explanation of Lu et al (2020), essential biological procedures in cells that directly 

affect our health, such as DNA replication, transcription, translation, and 

transmembrane signal transmission, depend on proteins that have specialised 

functions. Protein complexes, which are frequently governed by protein-protein 

interactions (PPIs), regulate the biological processes outlined above (Lu et al, 2020).  

Cabri et al (2021) stated that PPIs are essential signalling pathways in the 

development of various disease states, making them ideal targets for therapeutic 

discovery. The role of PPIs in tumour growth is strongly correlated with protein -

mediated signalling pathways that can activate numerous biological networks involved 

in carcinogenesis, progression, invasion, and metastasis (Cabri et al, 2021). As a result, 

PPI networks can be studied to find relevant proteins or nodes that function as possible 

biomarkers and have a significant impact on cancer pathways. 

2.4 Unsupervised Clustering Machine Learning in Biomarker Detection   

 

Figure 2.2: The Types of Machine Learning 
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Figure 2.2 illustrates the methods that are under machine learning. Our study 

only involves the biclustering methods which undergo the unsupervised clustering 

technique.  

Ray (2019) proposed that a computer program is assigned to perform tasks in 

machine learning, and its measured performance at these tasks increases as the 

machine obtains more and more experience executing these jobs. Our research 

involves machine learning algorithms to recognize patterns and correlations in input 

data without providing labelled outputs. The program groups gene expression and PPI 

data together based on the similarity or difference by using clustering approaches. 

Then, the algorithm can find clusters that may influence EC by examining connections 

and patterns in the data. Biclustering is a technique that can be used by machine 

learning algorithms to iteratively assign data points to clusters while optimising a cost 

function that measures the similarity or distance between data points and clusters (Ray, 

2019). Without explicitly providing any labelled findings, the algorithm learns to 

recognise patterns and correlations in the data through this iterative process (Ray, 

2019). As a result, the programme can find EC biomarkers. 

According to Komorowski (2022), high-dimensional datasets have been mined 

for hidden patterns or underlying structures using unsupervised learning due to the 

supervised learning requires labelling the data, which can be time-consuming and 

difficult. Furthermore, there could be dozens or even millions of features in high-

dimensional data, and manually labelling each data point requires a lot of resources 

(Komorowski, 2022). Additionally, labels for high-dimensional data cannot be readily 

available or be challenging to get circumstances, such as when analyzing gene 

expression or image data (Komorowski, 2022). Hence, using supervised learning in 

high-dimensional datasets could be a time-consuming project. However, without 

labelling the outcomes, unsupervised learning enables study of the underlying 

relationships and patterns in data. 

Based on the research done by Wang et al (2020), unsupervised machine 

learning had been applied to identify the latent disease clusters and patient subgroups 

(Wang et al, 2020). The finding suggested that it is possible to quantify additional risk 
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above what is expected for a particular age and gender by utilizing disease clusters to 

discover various potential comorbidities (Wang et al, 2020). In other words, the 

existence of certain co-occurring diseases raises the probability of developing a 

specific disease, even if the individual is of a certain age and sex (Wang et al, 2020). 

Thus, this data can be used to recognize high-risk groups and create more specialized 

preventative and treatment plans. 

 From the result obtained, it can be concluded that patient subgrouping based 

on shared traits and risks can be achieved with unsupervised machine learning 

techniques (Wang et al, 2020). This strategy can find relationships and patterns in 

patient data. Hence, by recognizing patterns and linkages in patient data, and finding 

distinct patient subgroups is beneficial for epidemiological analysis and research as 

well as enabling personalized care, which increases the effectiveness and efficiency of 

illness prevention, diagnosis, and treatment (Wang et al, 2020). 

Based on cancer classification research done by Ayyad, Saleh and Labib 

(2019), the researchers proposed that using classification for gene expression data was 

challenging as due to the high dimensionality found in the small sample size of gene 

expression data (Ayyad, Saleh and Labib, 2019). Even biclustering may face to the 

same challenge, but biclustering can aids in addressing the multiple testing issue in the 

study of gene expression data, a frequent issue in classification techniques that can 

result in overfitting or subpar generalisation to new data (Ayyad, Saleh and Labib, 

2019). Hence, classification algorithms are frequently used to group individual 

samples into predetermined groups based on a set of input features, but they may not 

be helpful for discovering new biomarkers or trends in gene expression data.  

2.4.1 Biclustering Algorithm 

Biclustering is frequently used in various fields of data matrix data analysis to 

find related entities under specific criteria (Liu et al, 2020). According to Gu and Liu 

(2008), biclustering of gene expression data looks for regional patterns of gene 

expression and biclustering of PPI network is aimed to identify the subsets of 
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interacting protein. Based on the finding of Eren et al (2013), performance of the 

algorithms is different based on the bicluster model chosen. It is crucial to take into 

consideration the pattern of the data and choose the correct parameters for each method 

(Eren et al, 2013). Hence, the most common algorithms will be studied to identify the 

suitable method used for the study. 

2.4.1.1 Correlated Pattern Biclustering (CPB) 

CPB is a biclustering technique which is used for finding clusters of genes 

linked to some target genes of interest (Eren, 2012). According to the finding of Eren 

(2012) and Yun and Yi (2013), CPB is predicted to do well on both constants and the 

upregulated bicluster model in model experiment to test whether the algorithm can 

give complete and perfect result. However, CPB recovery decreases as the upregulated 

bicluster model rises as increased levels of differential expression make it harder to 

identify underlying patterns of association between genes (Yun and Yi, 2013). This 

behavior makes logical because CPB finds biclusters with high row correlations, which 

means CPB is useful for identifying co-expression genes (Yun and Yi, 2013). 

Besides that, Eren (2012) stated that CPB is highly sensitive to noise which 

lowers the accuracy of algorithm findings and causes false positive identifications. For 

the number experiment, CPB showed little effect on the result (Eren, 2012). The 

finding of Yun and Yi in the overlapping experiment for CPB model showed that, the 

capacity of CPB to recover biclusters declines as the amount of  overlap between 

biclusters declines (Yun and Yi, 2013). For your information, number experiment 

referred to the number of biclusters used for the experiment while overlap experiment 

referred to the overlapping with two biclusters by different amounts of overlapping 

elements in rows and columns. 

In conclusion, CPB is performed better even the large numbers of biclusters is 

used and the data show higher correlation between rows and columns. In contrast. CPB 

had the limitations which are sensitivity to noise and low ability to detect the bicluster 

that there is highly differential expression. Due to these characteristics, CPB is not 

suitable for identifying the biomarkers of esophageal cancer as the datasets used 
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needed to detect gene clusters that exhibit differential expression when compared to 

normal tissues. 

2.4.1.2 QUBIC 

QUBIC is a biclustering technique used in data analysis to discover sets of 

genes or traits that display coordinated behaviour which are the genes that work 

together to carry out specific functions such as metabolic pathway across a set of 

conditions or samples (Renc et al, 2021). Biclustering techniques cluster rows and 

columns of a dataset concurrently, and QUBIC uses a Bayesian framework to locate 

subsets of rows and columns with comparable behaviour (Renc et al, 2021). Renc et 

al (2021) had carried out the running experiment to test the time taken for QUBIC 

algorithm to complete the bicluster task based on the given datasets. The results 

showed QUBIC able to run faster to perform the bicluster of datasets (Renc et al, 

2021). However, Xie et al (2020) stated that QUBIC would be time consuming if large 

datasets had been applied to the algorithm (Xie et al, 2020). 

According to the study done by Cui et al (2020), the performance of QUBIC 

had been evaluated by using different sets of datasets. The results showed QUBIC had 

low performance on the experiment. The experiment showed that QUBIC algorithm 

had lower average volume of the biclusters found and average correlation coefficient 

within a bicluster. However, QUBIC had the highest average mean squared residue 

and the average connectivity value, which measures the average number of other 

biclusters with a bicluster is connected to when compared to Cheng & Church (CC) 

algorithm and the proposed algorithm. 

As a final point, QUBIC had the better execution time for biclustering the 

datasets. However, when QUBIC applied to the large datasets, the execution time 

would be slower. Besides that, the higher average mean square residue and higher 

average connectivity value indicates that QUBIC had low accurate and reliable result. 
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2.4.1.3 Bayesian Biclustering (BBC) 

The Bayesian Biclustering (BBC) algorithm automatically groups the rows and 

columns of a dataset into "Checkerboard" clusters that are exhaustive and exclusive 

(Pinto, Gates and Wang, 2020). Pinto, Gates and Wang (2020) conducted studies that 

evaluated the performance of BBC under various conditions.  

Different degrees of noise were applied to the dataset by Pinto, Gates and Wang 

(2020). According to experimental findings, the biclustering algorithm's accuracy 

declines as noise level rises. Due to the noise, which makes it challenging for the 

algorithm to recognize bicluster patterns and indirectly causing the performance 

accuracy of the BBC algorithm to decrease. Additionally, Pinto, Gates and Wang 

(2020) demonstrate that the BBC algorithm takes longer time to run when large 

datasets are used. Meeds and Roweis, S (2007) proposed that BBC is a biclustering 

algorithm which robust to missing values. Hence, we can conclude that BBC able to 

produce an accurate and meaningful results even there are missing values in the 

datasets.  

However, Do, Muller and Tang (2005) indicated that with the help of Markov 

chain Monte Carlo (MCMC) algorithms, bayesian algorithm can deal with missing 

data and estimate the posterior probability distribution of unknown parameters given 

observed data and missing data. However, the degree and pattern of missingness can 

all have an impact on how successfully Bayesian approaches handle missing data. The 

accuracy and reliability of Bayesian approaches may be compromised if there is an 

extensive amount of missing data (Do, Muller and Tang, 2005). 

Taking everything into account, BBC algorithm perform well in lower level of 

noise, and has shorter execution time in evaluating small datasets. Besides that, BBC 

algorithm able to produce accurate and meaningful result even there are missing values 

in the datasets. Nevertheless, the existence of many missing values in a dataset might 

result in overfitting and false positives in analysis findings. 
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2.4.1.4 Binary inclusion-Maximal (BiMax) 

BiMax is a simple reference technique that locates biclusters of 1s in a binary 

matrix (Eren, 2012). It uses a divide and conquer strategy to iteratively bicluster the 

data matrix (Eren, 2012). The BiMax algorithm searches a matrix for submatrices with 

only 1s in it (Eren, 2012). These sub-matrices are viewed as possible biclusters, and 

the algorithm builds these potential biclusters iteratively by including rows and 

columns that have a lot of 1s in common (Eren, 2012). When no additional rows or 

columns can be added 1s in the bicluster, the growing process comes to an end (Eren, 

2012). This results in a collection of biclusters with a high co-occurrence rate of 1. 

  

Figure 2.3: Biclusters of 1's in a Binary Matrix 

According to the study done by Bustamam et al (2020), the BiMax algorithm 

works well in clustering protein-protein interactions, particularly for binary data 

compare to local search framework based on pairs operation and LCM-MBC. BiMax 

is the best approach for classifying binary protein-protein interaction data, as 

demonstrated by the experiment conducted by Bustamam et al (2020) in identifying 

the bicluster on interacting proteins between HIV-1 and humans. Despite that, 

Voggenreiter, Bleuler and Gruissem (2012) believed that the BiMax method would 

work best with input data that was limited in size. BiMax took longer time to process 

large sample size. 

Furthermore, Castanho, Aidos and Madeira (2020) indicated that BiMax is 

useful and highly quick algorithm capable of detecting simple structures.  The BiMax 

technique has the drawback of only looking for binary biclusters, which restricts its 

capacity to locate useful biclusters in the dataset (Castanh, Aidos and Madeira, 2020). 
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This is because discretizing data into binary form is a very particular procedure that is 

unable to account for all possible ranges of values in the data (Castanho, Aidos and 

Madeira, 2020). Therefore, when the approach is applied to datasets that do not f it 

binary bicluster models well, bad results may be obtained (Castanho, Aidos and 

Madeira, 2020). 

Last but not least, BiMax is very effective at detecting simple structures in 

binary data. Additionally, BiMax has been demonstrated to function better with fewer 

samples. When the dataset contains continuous data that cannot be transformed into 

discrete values, BiMax performs worse as well as finds fewer relevant biclusters on 

larger datasets. 

2.4.1.5 Plaid 

The value of a certain element is determined by the plaid model's calculation 

of a particular submatrix for each cell; this value can be interpreted as the number of 

contributions generated by a specific bicluster (Siswantining et al, 2021). According 

to the statement made by Siswantining et al (2021), each component of the matrix in a 

plaid model indicates the contribution of a certain bicluster to the overall level of gene 

expression under a specific circumstance. To be illustrated, the plaid model breaks  

down the original matrix of gene expression data into a new matrix that demonstrated 

the contribution of a certain bicluster to the overall level of gene expression.  

 

 

Figure 2.4:  The Working Theory of Plaid Biclustering Model (Henriques and 

Madeira, 2015, pp 1-15) 
 

The plaid model's ability to simulate biclusters that may overlap in order to 

obtain the correct model is one of its strengths (Siswantining et al, 2021). The plaid 
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model enables it to capture more complex patterns in the data than typical bicluster 

approaches that assume non-overlapping biclusters. This enables a more precise and 

thorough depiction of the data's underlying structure. The experimental findings and 

analysis lead Siswantining et al (2021) to the conclusion that low coherence variance 

colon cancer data can be analysed using bicluster analysis on the plaid model. Low 

coherent variance in plaid models could be a sign that the model accurately captures 

data patterns. 

According to Karim, Kanaya and Altaf (2019), spectral and plaid biclustering 

model achieved second highest in the performance of average cluster relevance 

compared to the proposed algorithm by Karim, Kanaya and Altaf et al (2019) which 

has the highest performance of average cluster relevance. For your information, the 

average cluster correlation metric assesses how successfully the biclustering method 

detects related biclusters in data.  

Kocatürk, Altunkaynak and Homaida (2019) conducted an experiment to 

compare the quality of biclustering algorithms using data envelopment analysis 

methods. Data envelopment analysis can assist to select the most effective parameters 

for several algorithms and ranking them according to specified criteria (Kocatürk, 

Altunkaynak and Homaida, 2019). Based on the results obtained, plaid model obtained 

an overall good performance compared to others biclustering algorithm. In a nutshell, 

plaid biclustering model advanced in capturing overlapping biclusters and able to 

performance better than other biclustering algorithms.  

2.4.1.6 Iterative Signature Algorithm (ISA) 

Iterative Signature Algorithm (ISA) is a biclustering algorithm that can 

generate overlapping biclusters (Freitas et al, 2011). ISA produces good outcomes on 

a number of synthetic and real-world datasets (Freitas et al, 2011). 

According to Freitas et al. (2011), codon-pair context maps of sequenced 

genomes could use the ISA algorithm approach. ISA can find hidden homogenous 
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groups, however errors and outliers in the dataset can have a big impact on the mean's 

ability to quantify centrality (Freitas et al, 2011). The usage pattern of the set of codon 

pair can be summed up using the average of the biclusters as a measure of centrality 

(Freitas et al, 2011). The means of the biclusters, however, can be greatly altered and 

may not accurately indicate group centrality if there are errors or outliers in the data 

set that affect the correlation between rows and columns (Freitas et al, 2011). Before 

executing ISA under such circumstances, it might be required to employ additional 

measures or eliminate mistakes and outliers (Freitas et al, 2011). 

However, Supper et al (2007) proposed that a well-known issue with ISA is 

that they favour strong signals. The ISA algorithm frequently prioritises strong signals 

in the data and may overlook weaker signals or patterns that may be significant but are 

less evident (Supper et al, 2007). As a result, the method may detect incomplete or 

biased biclustering findings. Furthermore, the experiment done by Sutheeworapong et 

al (2012) indicates that ISA algorithm had lower gene coverage and gene overlap. 

Greater gene coverage is often regarded as preferable because it indicates that more 

genes are being examined, leading to a greater understanding of the biological system 

being investigated (Sutheeworapong et al, 2012). Higher gene overlap may be a sign 

that biclusters are capturing more widespread gene expression patterns that are shared 

by a variety of biological processes. Hence, ISA may not be useful for investigating 

datasets with a lot of weak signals or for identifying double clusters with limited gene 

overlap. 

2.4.1.7 Spectral 

A data matrix with a checkerboard structure, which can be thought of as a 

composition of constant biclusters in a single matrix, can be used to illustrate the goal 

of spectral biclustering algorithms: to discover subsets of characteristics and 

conditions (Shaharudin et al, 2019). The technique effectively recognizes these 

checkerboard arrangements even when the underlying biclusters are not precisely 

aligned using a spectral clustering approach (Shaharudin et al, 2019). As a result, it 

may be used to analyze high-dimensional datasets such gene expression data.  
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Bicluster visualization was tested in a research study by Liu et al (2022). The 

outcomes reveal that when the biclusters are small and the noise level is low, the 

spectral biclustering method recovers the real patterns with excellent accuracy. 

Spectral biclustering is an effective technique for identifying unique molecular 

subtypes in patient populations based on gene expression profiles (Liu et al, 2022). By 

clustering patients based on gene expression patterns, spectral biclustering can identify 

important gene expression patterns that may be related with varied illness outcomes or 

treatment responses. The results for patients can be improved by using this data to 

create more precise prognostic models and better risk stratification techniques (Liu et 

al, 2022). 

To compare three or more related groups to see if there are any significant 

differences between them, the nonparametric Friedman test is a statistical test 

(Branders, Schaus and Dupont, 2019). It functions by ranking the observations inside 

each group and comparing the average ranking between groups. If the mean ranks 

differ significantly between the groups, there are significant variations between them 

(Branders, Schaus and Dupont, 2019). The authors compared biclustering algorithms 

using a nonparametric Friedman test.  The methods under examination are graded 

based on the number of enriched biclusters they produce for each dataset. The result 

showed spectral biclustering able to obtain higher enrichment analysis. In conclusion, 

spectral biclustering method effective when allocate to the lower noise level with small 

data and able to present greater enrichment analysis. 

2.4.1.8 Order Preserving Submatrix (OPSM) 

The OPSM is a continuous bicluster that is monotonically increasing or 

decreasing with the degree of gene expression (Maind and Raut, 2019). In other words, 

biclusters that exhibit repeated patterns of increased or decreased expression levels 

across genes and samples are identified using OPSM. A selection of genes that are co-

regulated under a subset of circumstances are referred to as having a consistent pattern 

(Maind and Raut, 2019). 
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Research by Maind and Raut (2019) on column subspace extraction and pattern 

recognition demonstrates that OPSM can accurately extract biclusters, extract 

biclusters that overlap, and provide stable output. In order to extract the column 

subspace, a subset of the original data matrix's columns must be chosen, and in order 

to extract patterns from the column subspace, biclusters must be located inside these 

chosen columns (Maind and Raut, 2019). This method provides additional flexibility 

in discovering biclusters because it identifies biclusters that do not always span all 

rows and columns of the original matrix (Maind and Raut, 2019). However, the 

performance results of OPSM on synthetic data of column coherent evolution are 

unsatisfactory (Maind and Raut, 2019). Column coherent evolution describes a 

situation in which samples may be divided into groups and columns (genes) are highly 

connected within each group.  

To compare methods, which frequently provide inadequate or misleading 

information on a single model, each bicluster was evaluated on a synthetic dataset 

(Eren et al, 2013). It turns out that OPSMs do not filter their output, which causes them 

to produce a large number of incorrect biclusters and lower their correlation scores. 

(Eren et al, 2013) Li (2020) proposed that OPSM cannot adequately analyse gene 

expression datasets. 

2.4.1.9 Cheng & Church (CC) 

Cheng and Church (CC) were the first to propose biclustering for finding 

genomes that may overlap and/or exhibit high similarity in gene expression data 

matrices (Di Iorio, Chiaromonte and Cremona, 2020). Finding the bicluster that 

maximises the score function while considering specific constraints is the objective of 

the biclustering issue as it is formulated by the CC algorithm framework. (Tanay, 

Sharan and Shamir, 2005) In most cases, the similarity of their gene expression 

patterns conditional on a subset is used by the scoring function to determine the quality 

of candidate biclusters. (Tanay, Sharan and Shamir, 2005) These restrictions guarantee 

that the discovered biclusters have a particular dimension, form, or structure (Tanay, 

Sharan and Shamir, 2005). The CC algorithm employs a heuristic search approach to 
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quickly explore the space of potential biclusters and find biclusters that match the 

requirements and optimise the score function (Tanay, Sharan and Shamir, 2005).  

According to Yang et al (2003), the CC technique is recognised to have 

limitations in discovering big biclusters with high consistency in noisy datasets. The 

initialization and ordering of the rows and columns in the data matrix have an impact 

on the greedy approach of the algorithm (Yang et al, 2003). This means that the output 

of an algorithm can depend on how the data was initially sorted and processed, and 

even tiny changes in the row- and column-order can have a significant impact on the 

final product. Yang et al (2003) also proposed that the bicluster discovered may not be 

the ideal bicluster since the CC technique is vulnerable to local optima. As the CC 

algorithm discovers more biclusters, it replaces them with random data, making it more 

difficult to find larger, more coherent biclusters (Yang et al, 2003). 

According to Eren et al (2013), CC have long run times if the settings are not 

set properly. CC were successful in identifying a significant number of abundant 

biclusters in gene expression data (Eren et al, 2013). Abundant double clusters, 

however, might not be as trustworthy or biologically significant (Eren et al, 2013) 

.Enriched biclustering enables a more thorough comprehension of gene expression 

patterns and their relationship to biological processes, enabling a more in -depth 

comprehension of underlying mechanisms (Eren et al, 2013).
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2.5 Summarizing The Biclustering Methods 

According to the literature review that had been done, most of the biclustering algorithms have limitations to the higher noi se level and 

sample size.  

 

Table 2.1: Summarize the Biclustering Algorithms 

Biclustering 

Algorithms 

Advantages Disadvantages Citation 

CPB • Work well in synthetic datasets  

• Perform well in large numbers of 

biclusters 

• Sensitive to noise 

• Low ability to detect higher 

differential expression 

• Eren (2012) 

• Yun and Yi (2013) 

QUBIC • Better execution time • Low accurate and reliable result • Renc et al (2021) 

• Xie et al (2020) 

BBC • Well-handled missing values • Sensitive to noise level and size • Pinto et al. (2020) 

• Meeds and Roweis, S 

(2007) 

BiMax • Effective for simple structure • Sensitive to size 

• Limited to discrete values datasets 

• Voggenreiter et al (2012) 

• Castanho et al (2020) 
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Biclustering 

Algorithms 

Advantages Disadvantages Citation 

Plaid • Advanced in capturing overlapped 

bicluster 

• Low coherent variance 

• Sensitive to parameters used • Siswantining et al (2021) 

• Karim et al (2019)  

• Kocatürk et al (2019) 

ISA • Able to find hidden homogenous 

group 

• Sensitive to errors and outliers 

• Favor strong signals 

• Freitas et al. (2011) 

• Supper et al (2007) 

Spectral • Able to identify unique molecular 

subtypes 

• Higher enrichment analysis 

• Sensitive to noise level and sample 

size 

• Liu et al (2022) 

• Branders et al. (2019) 

OPSM • Extract overlapped bicluster 

accurately 

• Provide stable output 

• Do not filter output 

• unable to analyse gene expression 

datasets 

• Maind and Raut (2019) 

• Eren et al (2013) 

CC • Able to identify large number of 

bicluster 

• Performance limited to higher noise 

level 

• Vulnerable to local optima 

• Long execution time 

• Yang et al (2003) 

• Eren et al (2013) 
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2.6 Classification Methods for Gene Expression Data 

For the past few years, scientists have been exploring through vast volumes of 

gene expression to extract useful knowledge that can help categorize cancers (Ayyad, 

Saleh and Labib, 2019). The popular classification methods are Support Vector 

Machine (SVM), K-Nearest Neighbours (kNN), neural networks and decision trees. 

Hence, the review on the classification methods for identifying potential biomarkers 

from gene expression data will be focused on these four methods.  

SVM is a well-liked technique for both linear and nonlinear classification 

(Uddin et al, 2019). According to Uddin et al (2019), kNN is a  nonparametric 

technique that determines the class of a new observation based on the k -nearest 

neighbours' predominant class. Meanwhile, neural networks are algorithms that are 

modelled after the structure and functioning of neural networks in the human brain. 

These algorithms can learn from information, identify patterns, and make predictions 

or categorizations (Uddin et al, 2019). A decision tree is a tree-based machine learning 

technique composed of nodes and edges used to explain the data separation or 

classification process in which begins from the starting point till an outcome is 

produced (Charbuty and Abdulazeez, 2021). 

2.6.1 Support Vector Machine (SVM) 

According to Steardo et al (2020), SVM has demonstrated outstanding results 

in precisely and accurately diagnosing people with schizophrenia. As the most well-

known and well-established machine learning technology, it is frequently used as a 

standard to measure other methods against. SVM is flexible as it can handle 

classification and regression tasks (Steardo et al, 2020). However, it should be 

emphasised that SVM implementation can be expensive and complexity (Steardo et 

al, 2020). 

While doing the research on the discovery of biomarker for cancer gene 

expression data, researchers found that SVM's ability to handle high-dimensional 
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datasets, particularly when the sample size is small compared to the number of 

features, is one of the benefits of employing it to classify microarray gene expression 

profiles (Almugren and Alshamlan, 2019). However, SVMs require a lot of processing 

power, especially when working with large datasets or complex models (Almugren 

and Alshamlan, 2019). 

2.6.2 K-Nearest Neighbours (kNN) 

Based on the research of the information from heart disease prediction done by 

Uddin et al (2019), kNN can quickly classifies instances and is simple to understand. 

Second, it is adaptable to noisy data and capable of handling situations with missing 

attribute values (Uddin et al, 2019). Finally, kNN is flexible and can be utilised for 

both classification and regression tasks (Uddin et al, 2019). However, the number of 

neighbours (k) and the distance metric utilised, which are crucial factors in its 

implementation, might have an impact on the performance of kNN (Uddin et al, 2019). 

Besides that, kNN algorithm has drawbacks (Uddin et al, 2019). The kNN 

algorithm is computationally expensive when the number of attributes rises. This is 

because kNN need to calculate the distance between the attributes (Uddin et al, 2019). 

Furthermore, kNN treats all attributes equally which may consider the less important 

features and lacking information about the importance of attributes for effective 

classification (Uddin et al, 2019). 

2.6.3 Neural Networks 

Artificial neural networks can capture and simulate complex relationships that 

might exist between variables (Uddin et al, 2019). This makes them outstand for 

situations where the underlying patterns are inherently nonlinear, allowing them to 

identify complex patterns and make accurate predictions (Uddin et al, 2019). Artificial 

neural networks (ANN) are flexible and can perform both classification and regression 

tasks (Uddin et al, 2019). 
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Artificial neural networks frequently function as "black box" models, which 

means that it is difficult to understand or describe exactly how they make decisions 

(Uddin et al, 2019). It is challenging to comprehend why the network produced a 

specific prediction because of this lack of openness. Moreover, training artificial 

neural networks for complex classification tasks or massive volumes of data may be 

computationally expensive and time-consuming (Uddin et al, 2019). 

2.6.4 Decision Trees 

Decision trees have difficulty in gene expression data since there are many 

more features than observations (Czajkowski and Kretowski, 2019). Even though 

learning algorithms may discover splits that precisely divide the training data, these 

splits frequently correspond to noise rather than important patterns (Czajkowski and 

Kretowski, 2019). As a result, decision tree techniques frequently result in 

uncomplicated trees that successfully identify previously unseen examples but perform 

poorly when applied to the data that the model has not been encountered before 

(Czajkowski and Kretowski, 2019). 

The decision trees produced a hierarchical structure which is simple to 

visualize and analyze, which is helpful for outlining the decision-making process 

(Uddin et al, 2019). Second, because decision tree algorithms can handle various types 

of data, including numerical, nominal, and categorical data, it typically requires less 

data preparation than other algorithms (Uddin et al, 2019). Decision trees have the 

potential to achieve high predictive accuracy by efficiently partitioning the feature 

space based on available data (Uddin et al, 2019). 
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2.7 Summarizing The Classification Methods 

Table 2.2: Summarized the Selected Classification Methods 

Classification 

Methods 

Advantageous Disadvantageous Citation 

SVM • flexible 

• handle high-dimensional datasets 

• can be expensive and complexity. 

• require a lot of processing power 

• Steardo et al, 2020 

• Almugren and 

Alshamlan, 2019 

kNN • simple and adaptable to noisy data  

• capable of handling situations with missing 

attribute values.  

• Performance based on parameter. 

• computationally expensive 

• treats all attributes equally 

• Uddin et al, 2019 

Neural 

Network 

• can capture complex relationships. 

• flexible 

• difficulty visualizing the decision-

making process. 

• time consuming 

• Uddin et al, 2019 

Decision 

Tree 

• simple to visualize and analyze.  

• requires less data preparation.  

• have the potential to achieve high predictive 

accuracy  

• difficulty in gene expression data 

• splits frequently correspond to 

noise rather than important 

patterns.  

• Czajkowski and 

Kretowski, 2019 

• Uddin et al, 2019 
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2.8 Identifying Optimum Number of Cluster 

The purpose of clustering is to arrange data points into groups in which the 

cluster members are as similar as feasible, and the cluster between clusters are as 

distinct as possible (Hayasaka, 2022). This indicates that under optimal clustering, 

variation within clusters is low while variation across clusters is high.  

The quality metric for the calculation of number of clusters are inertia and 

silhouette coefficient (Hayasaka, 2022). Inertia quality metric entails calculating the 

sum of squared distances between data points and the centres of each cluster 

meanwhile silhouette coefficient seeks to aggregate variation within and between 

clusters (Hayasaka, 2022). Among of the approaches to obtain the optimum number 

of clusters are elbow method, silhouette method and gap statistic (Hayasaka, 2022).  

According to the experiment done by Hayasaka (2022), the interpretation of 

elbow plots is sometimes subjective, the silhouette coefficient and gap statistical 

approaches can correctly quantify the number of clusters. Gap statistics, however, 

include computations that could not always provide the same result (Hayasaka, 2022).  

According to Kumar (2021), the elements that each technique considers while 

assessing the quality of clustering are the fundamental distinction between elbow 

method and silhouette score. While silhouette scores consider other factors including 

variance, skewness, and value differences, elbow approaches primarily concentrate on 

determining Euclidean distances (Kumar, 2021).  

Elbow Method uses an approach that is clear and straightforward (Kumar, 

2021). Furthermore, the Elbow method is an effective computing method that doesn't 

need a lot of calculations or iterations (Kumar, 2021). Kumar (2021) also stated that, 

If the sum of square error line graph forms an arm, then the Elbow Method is the 

suitable method for the finding of optimum number of clusters. Hence, the Elbow 

Method will be used for this research. This is because a clear “elbow” diagram was 

able to be obtained from the datasets.  
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2.9 Chapter Summary 

Biclustering approaches had been studied to find the best approach for 

assessing gene expression data and PPI networks. After consideration, the plaid model 

was chosen as the biclustering technique to identify potential esophageal cancer 

biomarkers. The ability of the plaid algorithm to analyze overlapping biclusters using 

a matrix factorization method that allows row and column clusters to overlap in order 

to reveal deeper and more complete biclusters. Plaid is a suitable method for studying 

gene expression data and finding biomarkers because it can provide a more 

comprehensive understanding of the underlying biological processes. Furthermore, 

plaid shows low coherence variance, which suggests that the gene expression levels 

inside the biclusters are strongly correlated and have minimal volatility. This is 

advantageous for biclusters because it demonstrates that there is a high correlation 

between genes and circumstances in biclusters, increasing the probability that they 

represent biologically significant groups. In other words, low coherence variance 

suggests functional relationships between genes within biclusters and probably shared 

biological functions. Research methodologies were discussed in the next chapter. 
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CHAPTER 3  

 

 

RESEARCH METHODOLOGY 

3.1 Introduction 

The research framework is covered in this chapter. A research framework is 

crucial because it provides authors a clear road map and makes sure that any relevant 

problems are considered and handled. There will be four phases to the entire study. 

The entire process, from the planning of the study to the verification of the findings, 

will be clearly explained. The datasets chosen for the study, the performance 

measurements employed to calculate the approaches' performance, and the hardware 

and software requirements will all be clarified in this chapter. 

3.2 Research Framework 

A few phases were carried out to ensure full adherence to the study protocol to 

accurately identify and gather possible biomarkers for esophageal cancer.  

Research planning and initial study were covered in phase one. To determine 

the issue as well as the objectives and goals of the research, a review of the relevant 

literature was conducted during this stage. The data gathered had been preprocessed. 

The second stage went through how the plaid model can bicluster the input data to find 

possible biomarkers. The third phase classified potential biomarkers and determined 

performance accuracy. The chosen biomarkers were then be validated by the biological 

knowledge base in a fourth phase to make sure they are susceptible to esophageal 

cancer. 
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Figure 3.1: Research Framework 

3.2.1 Phase 1: Research Planning and Initial Study 

To make sure a study is viable, relevant, and solves a key research issue, it is 

essential to conduct preliminary research and develop a research plan before starting. 

Authors can determine the appropriate plan of study, methodology, data collecting, 

and analysis procedures needed to accomplish their research aims by conducting 

adequate preparation and exploratory research. Researchers can improve their chances 
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of success and decrease the risk that they will waste time on ineffective or unrelated 

research issues by carefully preparing and conducting preliminary research.  

Figure 3.1 showed that four activities are necessary to carry out for future work. 

Literature review, problem identification, defining the study's goals and objectives, 

collecting data for the study's input, and preparing and normalizing the data are all 

tasks that fall within the first phase. A literature review was conducted initially since 

it is a crucial step in the study's process, and it allows the author to become 

familiar with the topic that desires to explore further. By identifying the appropriate  

methods and techniques used by other researchers in similar studies, a thorough 

literature review aided in preparing for and carrying out of the author's own research 

and helped authors prevent duplicating previous studies. The author had a complete 

view of problem areas by analyzing previous issues-related work done by other 

researchers. This allowed the author to strategically plan their study. Thus, goals and 

objectives can be defined. 

In research, data collecting is critical because it acts as the foundation for 

analysis and interpretation. Without effective data collection, research findings could 

be inaccurate or misleading, and the stated aims of the study would not be met. Data 

collection involves finding relevant data sources, choosing appropriate data collection 

techniques, and ensuring the accuracy and precision of gathered data. In the context of 

gene expression and PPI network analysis, data collecting involves gathering gene 

expression data or PPI network data from relevant databases or experimental studies 

and ensuring that the data are of high quality as well as relevant to the research subject 

under consideration. 

Hence, there are two datasets chosen for this study. One of the datasets was 

obtained from GEO database which is named GSE20347 while another dataset was 

obtained from STRING websites which consists of the human genes. The details of 

the datasets had been further discussed under 3.3.  
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3.2.2 Phase 2: Development of Proposed Biclustering Method 

Data clustering analysis works to group variables in a data matrix according to 

a certain global pattern, signifying a pattern generated in rows or columns to be 

considered. Bicluster analysis, in contrast to cluster analysis, seeks to identify regional 

patterns in huge data matrices (Siswantining et al, 2021). According to Siswantining 

et al (2021), plaid modelling is a biclustering technique that sums the values given by 

many overlapped biclusters to indicate the value of each element in a data matrix.  For 

futher clarification, plaid model allows data points to be the members of numerous 

biclusters with various intensities compared to other biclustering algorithm. This 

enables plaid models to capture complex patterns in the data, such as biclusters that 

overlap or have varied sizes. 

The Plaid model can be thought of as a method of breaking down the original 

data matrix into a collection of biclusters, each of which represents a distinct pattern 

in the data, and then using these patterns to reconstruct the matrix. The rebuilt matrix 

can be used to visualise the relationships between various patterns and to identify the 

genes or traits that each pattern most closely resembles. 

The general flow of the plaid model had been further discussed in 3.4.  

3.2.3 Phase 3: Evaluation of Potential Biomarkers by Classification Models 

With the use of data mining, classification is a machine learning technique that 

identifies higher-level and more advanced information by predicting and/or classifying 

data into specified classes or groupings (Otchere et al, 2021). Based on the finding of 

literature review, SVM will be applied to the selected potential biomarkers and the 

accuracy of performance will be calculated by confusion matrix. Support vector 

machine can be said as a modern machine learning method for efficiently classifying 

high-dimensional into a smaller group of datasets (Ozer et al, 2020). This process is 

an effective tool for classification tasks since it rapidly divides subgroups (Ozer et al, 

2020).  



 

35 

SVM performs well, particularly when dealing with situations where there are 

two distinct groups (Keerthana et al, 2023), like tumour samples and normal samples. 

The goal is to find the best boundaries to separate different data classes, increasing the 

distance between them while lowering classification mistakes (Keerthana et al, 2023). 

By using this procedure, support vector machines can efficiently categorise 

unobserved data points according to their underlying features (Keerthana et al, 2023).  

3.2.4 Phase 4: Verification of Potential Biomarkers  

During the classification process, the chosen biomarkers underwent training 

and testing. The biological knowledge base was subsequently used to validate the 

biomarkers with the highest accuracy. Biological knowledge bases are enormous 

collections of biological data, including gene sequences, protein activities, pathways, 

and disease connections which can be found in the NCBI and UniProt. Researchers 

able to validate the biomarkers for a certain disease by searching the information of 

genes and related experiments that had been done previously. In general, combining 

biomarker data with biological knowledge bases can offer insightful information about 

the underlying biology of a disease or biological process and aid in the identification 

of prospective targets for drug development and personalized therapy.  

3.3 Datasets 

Two datasets were applied in this research. One of the datasets obtained from 

Gene Expression Omnibus (GEO), which is named GSE20347. It is data of gene 

expression in esophageal cancer. GSE20347 consists of 34 samples, where 17 of them 

are tumors and 17 of  them are normal. The dataset illustrated the gene expression 

values of the samples. The gene symbol (red color box) showed the genes are involved 

in the development of esophageal cancer. The GSM (blue color box) is the sample.   
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Figure 3.2: Gene Expression Data of the GSE20347 
 

Meanwhile, another dataset obtained from Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING), illustrated the PPI network of human genes. 

There are four different databases, Reactome, KEGG, DISEASES and Monarch 

presented in the STRING for the PPI human disease network. Hence, the data of all 

databases had been used for further interpretation. There was a total of 3506 genes that 

were visible in the PPI network. Both data can be obtained from the link given 

respectively under Chapter 1. There are nine types of evidence used in STRING to 

calculate the score for the PPI network, which are neighborhood on chromosome, gene 

fusion, phylogenetic cooccurrence, homology, coexpression, experimentally 

determined interaction, database annotated and automated textmining. Nine types of 

evidence will then be calculated for the combined score. Node 1 and node 2 (red color 

box) showed the genes that are interacting while the combined score (blue color box) 

indicated the evidence score of how likely two genes are interacted with. 

  

 

Figure 3.3: The PPI Network of the Human Genes that Showed in Tabular Form 
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Table 3.1: Features Description of PPI Network 

Features Description 

Node 1, Node 2 Proteins In the Network 

Node 1 String ID, Node 2 

String ID 

Unique Identifier for The Proteins 

Neighborhood on 

Chromosome 

The probability that two proteins have similar 

functions if their genes are located adjacent to one 

another in the genome. 

Gene Fusion The probability that two proteins are functionally 

linked if they are encoded by the same gene that has 

been fused in a different organism. 

Phylogenetic Cooccurrence The possibility that two proteins are functionally 

connected if their genes co-occur in different 

genomes. 

Homology If two proteins show significant sequence similarity 

across several species, they have the potential to 

have similar activities or engage in similar 

biological processes. 

Coexpression The probability that two proteins are connected 

functionally if their genes are expressed in many 

samples. 

Experimentally Determined 

Interaction 

The probability that two proteins are connected 

functionally if high-throughput studies demonstrate 

their physical interaction. 

Database Annotated A confidence score provided to an interaction based 

on its presence in other biological databases. 

Automated Textmining If two proteins are discussed together in the 

scientific literature, the probability that they are 

functionally connected increases. 

Combined Score A confidence score for the interaction of two 

proteins based on the combination of nine types of 

evidence. 
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Both datasets can be retrieved from below link: 

• GSE20347 

o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20347 

• Search Tool for the Retrieval of Interacting Genes/Proteins  

o https://string-

db.org/cgi/network?taskId=bZaja8QNWEYT&sessionId=b544iU

0cTsPN 

o https://string-

db.org/cgi/network?taskId=bizm4Ua9npug&sessionId=bQFazIXL

PtDv 

o https://string-

db.org/cgi/network?taskId=bDQIY5BHXwO7&sessionId=bsqRO

gYKpLfM 

o https://string-

db.org/cgi/network?taskId=bAN6YLiXiSc0&sessionId=bsqROgY

KpLfM 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20347
https://string-db.org/cgi/network?taskId=bZaja8QNWEYT&sessionId=b544iU0cTsPN
https://string-db.org/cgi/network?taskId=bZaja8QNWEYT&sessionId=b544iU0cTsPN
https://string-db.org/cgi/network?taskId=bZaja8QNWEYT&sessionId=b544iU0cTsPN
https://string-db.org/cgi/network?taskId=bizm4Ua9npug&sessionId=bQFazIXLPtDv
https://string-db.org/cgi/network?taskId=bizm4Ua9npug&sessionId=bQFazIXLPtDv
https://string-db.org/cgi/network?taskId=bizm4Ua9npug&sessionId=bQFazIXLPtDv
https://string-db.org/cgi/network?taskId=bDQIY5BHXwO7&sessionId=bsqROgYKpLfM
https://string-db.org/cgi/network?taskId=bDQIY5BHXwO7&sessionId=bsqROgYKpLfM
https://string-db.org/cgi/network?taskId=bDQIY5BHXwO7&sessionId=bsqROgYKpLfM
https://string-db.org/cgi/network?taskId=bAN6YLiXiSc0&sessionId=bsqROgYKpLfM
https://string-db.org/cgi/network?taskId=bAN6YLiXiSc0&sessionId=bsqROgYKpLfM
https://string-db.org/cgi/network?taskId=bAN6YLiXiSc0&sessionId=bsqROgYKpLfM
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3.4 The General Flow of Plaid Model 

 

Figure 3.4: General Flow of Plaid Model 

 The basic concept of the plaid model is it formed a residual dataset based on 

the input data (Dataset with Selected Gene from Gene Expression and PPI Network) 

that had done the data preparation step. This residual dataset will exclude the 

background layer that underlying in the input data. Then, the algorithm will retrieve 

the rows and columns randomly from the residual to create a new layer that consists 

of the common behaviour. The significance of the layer will be tested by calculating 

the sum of square of data points between residual and layer. The data point considered 

as significant was retrieved out to form a bicluster. When there are four groups of 

biclusters is formed, then the process will be terminated. 
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3.5 Performance Measurement 

In this research, the performance of the plaid biclustering algorithm was 

evaluated by the ten-fold cross validation and confusion matrix through the SVM 

classification. Ten runs of the experiments were carried out to obtain a more reliable 

measurement of the performance for the datasets. The dataset was divided into 60 to 

40 percent of training set and testing set respectively with the stratified split of target 

variable. Then, biological context verification will be used to verify the selected 

biomarker. Sum of Square Method will be used in the Elbow Method to find the 

optimum number of biclusters. 

3.5.1 Confusion Matrix 

A confusion matrix is a table that compares the predicted classes in a test 

dataset to the actual classes to evaluate the effectiveness of a classification algorithm 

(Luque et al, 2019). The number of true positive, true negative, false positive and 

false negative predictions are indicated (Luque et al, 2019). 

Table 3.2: Confusion Matrix 

 Predictive Positive Predictive Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Table 3.2 showed the confusion matrix. True Positives are the number of 

correctly predicted positive instances (Vujović, 2021). False Positives is the number 

of incorrectly predicted positive instances, True Negative is the number of correctly 

predicted negative cases while False Negative is the number of incorrectly predicted 

negative instances (Vujović, 2021). Accuracy and precision of the methods can be 

evaluated by using confusion matrix. Accuracy is the percentage of accurate 
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predictions the model makes is measured and the formula is 

(TP+TN)/(TP+TN+FP+FN) (Vujović, 2021). Meanwhile, precision is the ratio of 

accurate positive predictions to all positive predictions made by the model is measured 

and the formula is TP/(TP+FP) (Vujović, 2021). Recall is the ratio of accurate positive 

predictions to all positive cases and the formula is TP/(TP+FN) (Vujović, 2021). 

According to Scikit Learn (n.d), F1 score is a measurement for evaluating the overall 

performance by providing the balance between of precision and recall and the formula 

is (2*precision*recall)/ (precision + recall). 

3.5.2 Biological Context Verification 

The goal of this validation procedure is to make sure whether there is present 

study or other proof linking the identified gene to the targeted potential biomarkers of 

EC. Author wished to verify the potential significance of the identified genes and 

increase the confidence in the findings by undertaking a thorough search. The 

biological context validation stage ensured that the genes discovered are not simply 

based on their existence in the biclusters but are also supported by scientific data in 

the literature. With a more solid foundation for further evaluation and interpretation, 

the outcomes are more reliable and legitimate because of this thorough methodology. 

3.5.3 Sum of Square Method 

The sum of square is a method to calculate the dispersion of data points around 

the mean (Nainggolan et al, 2019). The formula of the sum of square is as below.  

𝑆𝑆𝐸 = ∑(𝑋𝑖 −  𝑋̅)2

𝑛

𝑖=0

 
(3.1) 

Where: 

 SSE: sum of squared error 
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 ∑ ()
𝑛

𝑖=0
: summation of the data. 

 𝑋𝑖: means values the ith data. 

 𝑋̅: means values for all data. 

According to the equation above, the data will be used to calculate the mean 

value of each row and obtain the mean value for all the data. By subtracting the rows’ 

mean value with the mean value for all the data, getting the square of the differences 

and summing them together, the SSE value for the data will be able to obtain.  

Higher SSE values indicated greater dispersion and variability within clusters, 

potentially indicating insufficient clustering. In contrast, a low SSE score suggested 

less dispersion and variability within clusters implied that the data points in the dataset 

are more closely clustered. 

3.6 Hardware and Software Requirements 

This project requires Microsoft Visual Studio and R Studio. Python code can 

be developed using Microsoft Visual Studio. On the other hand, R Studio is an 

integrated development environment for R programming. Microsoft Excel needed to 

be used for analyzing data. 

Specific hardware needs must be considered for this study to ensure efficient 

analysis and minimized time complexity. The minimum hardware requirements for 

this study are RAM 4GB, Intel Core i5 Processor and Windows 10 operating system.  

3.7 Chapter Summary 

In a nutshell, this chapter explained the research framework as well as the 

activities needed to be done in each phase. The author will consider all the phases to 

achieve the goals of this research. The datasets used for this study have been illustrated 

and explained. The measurement of the effectiveness of the algorithms to identify the 
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potential biomarkers had been shown in this chapter as well as the hardware and 

software requirements needed for efficiency analyzation. Next chapter will discuss the 

development of the proposed biclustering method.
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CHAPTER 4  

 

 

RESEARCH DESIGN AND IMPLEMENTATION 

4.1 Introduction 

In this chapter, a step-by-step procedure had been laid out for identifying 

possible biomarkers for EC, starting with dataset preparation, and ending with 

validation. Finding genes with a strong association to EC and the potential to act as 

biomarkers for the condition is the aim. 

 

Figure 4.1: Development Process 
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4.2 Data Preparation 

Data preparation is important to transform the dataset into an appropriate form 

for analysis and interpretation. There are two datasets used in this study. Both datasets 

were obtained from GEO and STRING respectively. The GEO dataset contains 22278 

rows of genes, and 34 columns of samples. For STRING, there are 3506 human genes 

showing the relationship between each other. 

4.2.1 Data Pre-processing 

Data preprocessing is an important step in ensuring the input data is clean and 

formatted before analyzing. The missing genes in the datasets had been removed and 

eliminated to improve computational efficiency. Besides that, the genes which 

occurred more than one will then be calculated to obtain the mean values. The 

dimension of the dataset which had been removed the missing genes and obtained the 

mean values of the duplicated genes became 13514 genes x 34 samples.  

4.2.2 Gene Selection Process 

The human genes in the PPI network are then to be retrieved and act as 

secondary genes data. The genes in the gene expression data act as primary genes data. 

Then, human genes were used to select the genes in the gene expression data. Hence, 

the new dataset contained only the genes which occurred in the gene expression data 

and PPI network. After gene selection, the dimensions of the datasets will be 2735 

genes x 34 samples. PPI data provided the full understanding of the connection 

between genes’ activity. Filtering the gene expression dataset by the PPI data enabled 

to only focus on the important underlying patterns of gene expression dataset and 

indirectly enhanced the performance of the model to identify the possible biomarkers 

of EC.  
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Further explanation of gene selection process can be referenced on the Figure 

4.3. A gene list had been generated from PPI data. Gene 1, Gene 2 and Gene 4 from 

gene expression dataset had been selected and form an input data. This is because Gene 

1, Gene 2 and Gene 4 were found in the gene list while Gene 3 was not found in the 

gene list and been eliminated to form the input data. 

 

Figure 4.2: Gene Selection Working Process 

 

Figure 4.3: Example of Input Data 
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4.3 Identify the Optimum Number of Clusters 

The elbow method is a technique which is used to find the optimal number of 

clusters. The concept is finding the elbow point of the sum of squared error and the 

number of clusters. Sum of squared error is the sum of squared distance for each data 

point. KMeans algorithm had been used in order to perform the elbow method. 

KMeans algorithm in elbow method is to group the data points according to the nearest 

distance. Then, the distances of a group of data were calculated for the sum of square 

error. Figure 4.4 demonstrated that the optimum number of clusters is four. 

When a smaller number of clusters was used in the biclustering algorithm, the 

biclusters were losing the important features and patterns of the dataset. This is because 

there are less representations of the gene expression dataset to perform in the bicluster 

cause the interactions between the genes across the sample data to be ignored. 

However, the biclusters were capturing more noisier data when excessive number of 

clusters was used in the biclustering algorithm. The increasing of noisy data in the 

biclusters resulted in the difficulty to analyze and differentiate the important features 

from the irrelevant data. In conclusion, identify the optimum number of clusters is 

important to help the biclustering algorithm in capturing the gene expression patterns 

of the data.  

 

Figure 4.4: Optimum Number of Cluster by Using Elbow Method 
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4.4 Applying Biclustering Algorithm  

Figure 4.5 shows the general flows of the Plaid Biclustering Method. The 

explanation of each step will then be further discussed. 

 

Figure 4.5: Basic Architecture of Plaid Biclustering 

4.4.1 Create Background Layer from Dataset with Selected Gene for Pattern 

Capture 

There is a background layer in the Plaid bicluster model. Background layers in 

Plaid models indicated common effects shared by all genes and samples. In this step, 

the mean, row effects and column effects of the dataset with selected gene will be 

calculated. This method captures both the overall average behavior of the row and 

column divergent by computing row and column effects. By forming the new layers, 

particular effects can be separated from background layers to show biclusters that are 

specific to a condition or treatment.  

4.4.2 Substract Background Layer/Common Effects 

By subtracting the background layer from the dataset with selected gene, the 

algorithm effectively removed the common impact represented by the background 



 

50 

layer from the dataset of selected gene. This procedure updates the dataset of selected 

genes to concentrate on any remaining precise changes of the genes’ activity across 

sample data. 

4.4.3 Formed A Collection of Bicluster 

The process required in finding coherent groups of genes and samples, 

capturing their shared behavior in a common layer, verifying that this behavior is 

meaningful, and finally classifying these groups as biclusters if specific criteria are 

met. Using this method, important features were obtained. 

4.4.3.1 Run K-Means to Initialize Rows and Columns 

 K-Means algorithm is a popular partition method to define the dissimilarity 

between the points (Sinaga and Yang, 2020). As a result, expression patterns in genes 

and samples by using K-Means algorithm were comparable. These expression patterns 

showed genes that are co-regulated in specific situations or samples that react to 

stimuli in a comparable way. In this study, the K-Means algorithm was used to divide 

rows and columns, effectively breaking up the dataset into smaller parts with similar 

features. At this stage, the rows and columns for the new layer can be initialized.  

4.4.3.2 Create A Layer with Common Effects Shared by All Genes and Samples 

After the rows and columns are initialized, a new layer was formed. This layer 

represented the common effects of all genes and samples in the dataset. It was 

constructed by averaging the residuals and combining row and column effects. To 

elaborate, averaging the residuals was to determine the mean value of the entire dataset. 

The row effect reflected the mean value of each row, whereas the column effect 

indicated the mean value of each column. Essentially, this layer provides the overall 
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behavior observed in the subset of data determined by the clusters created in the 

previous stage. 

4.4.3.3 Sum of Square 

In order to ensure that the common behaviors observe were meaningful rather 

than just random occurrences, the variants in the residual (after subtracting common 

effect layer by dataset with selected gene) to those captured by the common layer had 

been compared. The difference of residual and layer was calculated. Then, the 

differences and the residual were calculated to obtain their sum of square value. If the 

pruning threshold value is higher than the sum of square of the differences, it means 

that the layer does capture enough diversity in the data and is thus significant.  

4.4.3.4 Form Biclusters 

After the significant data points been selected, a bicluster layer is formed. A 

collection of genes and samples that showed similar behavior or patterns in the dataset 

were represented by this layer. The bicluster layer was then added to the layer list, and 

the procedure continue to search for further bicluster. Figures below show the example 

of the bicluster that had been formed. A total of four biclusters were formed in this 

study. 

  

 

Figure 4.6: Bicluster 1 
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Figure 4.7: Bicluster 2 

 

Figure 4.8: Bicluster 3 

 

Figure 4.9: Bicluster 4 

4.5 Performance Measurements 

A SVM classifier was used to discover potential EC cancer biomarkers from 

the collection of biclusters. However, the biclustering result indicated that the retrieved 

sample is cancerous. The gene expression dataset used for biclustering algorithm after 

the data preprocessing and the gene selection process consisted with 17 normal 

samples and 17 cancerous samples. This balanced dataset suggested that the bias of 

the biclustering algorithm toward cancer cases can be denied. The plaid model was to 

discover the key features of the patterns of genes. Hence, the resulting biclusters that 

only consisted of the cancerous samples data is due to the gene expression values that 

presented in the data were showing stronger expression patterns than normal samples. 

The figures below showed the bicluster data with the ‘Target’ class.  
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Figure 4.10: Example of Bicluster 1 with Target Class 

 

Figure 4.11: Example of Bicluster 2 with Target Class 

 

Figure 4.12: Bicluster 3 with Target Class 

 

Figure 4.13: Bicluster 4 with Target Class 

4.5.1 Prepare the Gene Expression Dataset for Classification 

Since the biclusters only consisted of cancerous samples, hence the data cannot 

undergo the classification directly. This is due to the classification required to learn 

the data between different targets. To enable the biclusters for the classification 

purpose, a few of steps had been carried out for the determination of model’s 
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performance. Figure 4.14 showed the flow on classifying the genes that had been 

extracted from bicluster. 

 

Figure 4.14: The Flow of Classification 

The goal of biclustering algorithms was to discover key features by showing 

patterns in gene and sample data. Thus, the genes found inside the bicluster were 

important indicators that predictive of EC cancer. It indicated that these genes exhibit 

patterns that implied their involvement in disease. Hence, the genes that found inside 

the bicluster were used to filter the Gene Expression Dataset. Furthermore, some genes 

appearred in multiple bicluster which means these genes were playing an important 

role in the development of EC. To improve classification results, these genes that 

occurred in more than one bicluster were used to filter the Gene Expression Dataset 

for another classification process. 

In summary, three Gene Expression Datasets were used to develop SVM 

classifiers. The datasets retrieved for classification were illustrated in the images 

below. Figure 4.16 displayed the Gene Expression Dataset which only included genes 

from biclusters and consisted of 34 samples and 285 genes. Figure 4.17 represented 

the Gene Expression Dataset which contained genes that occurred in more than one 

bicluster and consisted of 34 samples and 3 genes. Meanwhile, the Original Gene 

Expression Dataset which included 2735 genes, and 34 samples was displayed in 

Figure 4.18. 
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Figure 4.15: Example of Gene Expression Dataset that Involved Genes Extracted 

from Biclusters 

 

Figure 4.16: Example of Gene Expression Dataset that the Genes that Occurred in 
Multiple Biclusters 

 

Figure 4.17: Example of Original Gene Expression Dataset 

4.5.2 Apply SVM Classifier to the Gene Expression Dataset 

The dataset was split into features and the target variable in order to apply the 

SVM classifier. The final column named “Target” identified as the target variable 

while other columns were chosen as features. Subsequently, the dataset was divided 

into training and test sets, with a 60 percent training to 40 percent test ratio. The 

performance of a linear SVM classifier was evaluated using a ten-fold cross validation 

technique. Cross-validation scores were computed, and predicted labels were obtained 

for each fold. A confusion matrix was also created to evaluate the classifier's 

performance. Furthermore, different performance indicators, such as accuracy, 

precision, recall, specificity, and F1 score, were used to evaluate the classifier's 

effectiveness. Tables below show the performance of the SVM classifier for each Gene 

Expression Dataset based on ten-fold cross validation and confusion matrix. 
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Table 4.1: Performance Evaluation of Gene Expression Dataset Based on 10-Fold 

Cross Validation 

 Gene Expression Dataset That Involved Genes 

 In All Bicluster 
Occur In More Than 

One Bicluster 
Original Dataset 

10-Fold Cross Validation 

Fold 1 1 1 1 

Fold 2 1 1 1 

Fold 3 1 0.75 1 

Fold 4 1 1 1 

Fold 5 1 1 1 

Fold 6 0.6667 1 0.6667 

Fold 7 1 1 1 

Fold 8 1 1 1 

Fold 9 1 1 1 

Fold 10 1 1 1 

Average 0.9667 0.975 0.9667 

Table 4.2: Performance Measurement of Gene Expression Dataset Based on Confusion 

Matrix 

Metrics 

Gene Expression Dataset That Involved Genes 

In All Bicluster 
Occur In More Than 

One Bicluster 
Original Dataset 

Accuracy 0.9706 0.9706 0.9706 

Precision 1 0.9444 1 

Recall 0.9412 1 0.9412 

Specificity 1 0.9412 1 

F1 Score 0.9697 0.9714 0.9697 
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4.5.3 Verify the Selected Potential Biomarkers 

As the classification accuracy for three datasets was almost the same, a t test 

with significance level of 0.05 was conducted on the accuracy values obtained from 

multiple runs to analyze the relationship of three datasets. The results of the t-test were 

shown below. 

 

Figure 4.18: T-Test Result 

The result of SVM classifier and t-test indicated that the gene expression 

dataset that involved genes that occurred in more than one biclusters achieved the 

better result. Hence, the genes in this dataset were further validated with the biological 

knowledgebases.  

4.6 Chapter Summary 

In conclusion, there are numerous critical phases involved in the process of 

finding possible EC biomarkers. The Plaid biclustering algorithm was used to extract 

four biclusters, each of which contained a number of members. The final objective of 

the research is to achieve better classification accuracy when SVM classification 

model is applied to different Gene Expression Dataset. Additionally, the chosen 

potential biomarkers must show a strong correlation with EC, demonstrating their 

applicability in the context of the disease. This study seeks to understand and identify 

useful biomarkers for EC detection and diagnosis using the criteria and procedures 

outlined above.
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CHAPTER 5  

 

 

RESULT DISCUSSION 

5.1 Input Data from Gene Expression Dataset and PPI Network 

The PPI network provided an insight of the interaction between genes which 

improved the understanding of the underlying biological process within gene 

expression dataset. Hence, by focusing on the genes that found in the PPI network 

enabled to focus on the important features or meaningful patterns of genes in gene 

expression dataset. Therefore, the genes in the PPI network were extracted to filter out 

the noisy and irrelevant data such as the genes lacking biological interaction within the 

gene expression dataset. The filtered dataset formed a new input data which was 

represented in the form of Gene Expression. The gene selection process ensured that 

the biclustering algorithm and the analysis process highlighted the biological relevant 

genes which indirectly enhancing the accuracy of the model’s performance. Figure 5.1 

illustrated the input data that was used in the biclustering algorithm.  

 

Figure 5.1: Gene Expression Dataset after Filtering with the PPI Network 

 The dimension of the dataset was 2735 genes across 34 samples. Each row 

represented a gene symbol (red box) while each column represented a sample (blue 

box). The value within the Gene Expression Dataset indicates the gene expression 

value of the respective genes across the sample (green box). In a nutshell, the dataset 

provided a comprehensive insight of the patterns of genes across different samples.  
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5.2 The Involvement of PPI data in Gene Expression Dataset 

Table 5.1: The Accuracy of Gene Expression Dataset with and without PPI data  

Test Size 
Accuracy 

Gene Expression Dataset Gene Expression Dataset with 

PPI Data 

0.1 1 1 

0.2 0.8571 1 

0.3 1 0.9091 

0.4 0.9286 0.9286 

Average 0.9464 0.9594 

Table 5.1 compared the accuracy of SVM classifier using two datasets of 

varying test sizes to evaluate the effectiveness of the involvement of PPI data with 

gene expression dataset. According to the average value of performance, Gene 

Expression Dataset with PPI achieved 95.94 percent accuracy while Gene Expression 

Dataset indicated 94.64 percent accuracy. The results suggested that using PPI data 

enhanced the classification performance of the SVM model, demonstrating its 

potential value in detecting EC cancer biomarkers. Besides that, the higher accuracy 

achieved by the involvement of PPI data suggested that the importance of combining 

multiple biological relevance data was allowing to obtain a more comprehensive 

biological insights that underlying the data and indirectly leading to more accurate 

biomarker identification. 

5.3 Plaid Biclustering Algorithm in Identifying the Biclusters 

The plaid biclustering algorithm was applied to the newly generated input data. 

The biclustering algorithm's capability to recognize similar expression patterns leads 

the grouping of genes and samples into biclusters. The plaid model identified subset 

of genes with comparable expression across samples. In detail, the plaid model 

clustered genes that showed similar patterns of expression under certain conditions. 

Each bicluster represented a distinct set of genes and samples that shared common 
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function under those conditions. Besides that, the groups of genes also highlighted the 

behavior or responses across the sample to a related environment.  

A total of four biclusters were. In the dataset produced by the plaid biclustering 

model, rows represented samples while columns represented genes. The dimension of 

the Bicluster 1 is 124 genes across 10 samples. The dimension of the Bicluster 2 is 145 

genes across 14 samples. The dimension of the Bicluster 3 is 6 genes across 1 sample 

while the dimension of the Bicluster 4 is 13 genes across 1 sample. 

 

Figure 5.2: Example of Bicluster 1 after Implement Plaid Biclustering Model 

 

Figure 5.3: Example of Bicluster 2 after Implement Plaid Biclustering Model 

 

Figure 5.4: Bicluster 3 after Implement Plaid Biclustering Model 

 

Figure 5.5: Bicluster 4 after Implement Plaid Biclustering Model 

5.4 Applying SVM Classifier for the Performance Evaluation 

The samples retrieved by the plaid biclustering model showed that all the 

samples retrieved were identified as tumor. Since there is only one class in the target 

column, it indicated that the biclustering technique successfully identified the groups 

of genes that exhibit similar expression features to the EC. As mentioned, biclustering 
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algorithm grouped genes based on their expression patterns. Thus, the genes within the 

resulted biclusters can be considered as the possible indicators in the development of 

EC due to the identified samples are tumors. As a result, the genes identified within 

the biclusters were used to filter the data from the original gene expression dataset. 

This gene selection process reduced the dataset by focusing on the genes that were 

relevant to EC. For further classification purpose, three different datasets were 

compared which are gene expression dataset that involved genes in all bicluster, gene 

expression dataset that involved genes occurred in more than one bicluster and original 

gene expression dataset respectively. Figure below illustrated the gene selection 

process on the biclusters to filter the data from gene expression dataset.  

 

Figure 5.6: The Gene Selection Process Done on Biclusters 

5.4.1 Determining the Optimum Train Test Split Ratio 

Before evaluating the performance of the SVM on three datasets, the optimum 

train test split ratio was determined by using the original gene expression dataset. In 

this step, the accuracy value of each test size was evaluated to find the most effective 

ratio to split the dataset into training and testing set. This step is to ensure that the SVM 
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able to capture enough figure of the data and generalize effectively to the unseen data. 

Table 5.2 demonstrated the accuracy of the Gene Expression Dataset after the gene 

selection process across multiple runs with varying test sizes and different random 

states starting from 5 to 50.  

Table 5.2: Accuracy of Gene Expression Dataset with Random State and Test Size  

Run 
Accuracy with Different Test Size 

0.1 0.2 0.3 0.4 

1 1 1 1 1 

2 0.75 0.8571 0.9091 0.9286 

3 0.75 0.8571 0.9091 0.9286 

4 1 1 1 1 

5 0.75 1 1 1 

6 1 0.9571 0.9091 0.9286 

7 1 1 1 1 

8 1 0.8571 0.9091 0.9286 

9 1 1 1 1 

10 0.75 1 1 0.9286 

Average 0.9 0.9428 0.9636 0.9643 

Among the various test sizes, the 0.4 test size achieved better results than other 

test sizes. The 0.1 test size, 0.2 test size and 0.4 test size achieved 90 percent accuracy, 

94.28 percent accuracy and 96.36 percent accuracy respectively. The 0.4 test size was 

chosen since it performed better than other test sizes. By assigning 40 percent of the 

data for testing, the model able to analyse more thoroughly across a larger percentage 

of the gene expression dataset and producing a more reliable and robust results. This 

test size also provided a balance by providing sufficient data for training the model 

while ensuring sufficient testing data for performance evaluation and validation. In 

conclusion, using 60 percent of training set and 40 percent of testing set enabled the 

model to capture enough pattern of the data and generalize the unseen data accurately. 
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5.4.2 Performance Evaluation of Gene Expression Dataset 

Ten-fold cross validation was implemented to measure the performance of 

three distinct gene expression datasets. This validation provided the score value which 

indicated the overall performance of the model to each dataset. Ten-fold cross 

validation divided the dataset into ten equal sized folds. Then, the model was trained 

on the nine folds and tested on the remaining fold. The procedure resulted in a more 

accurate and reliable measurement as the bias of the performance had been avoided.  

Table 5.3 indicated all three datasets achieved an accuracy of 100 percent in 

nine out of ten-fold. For the gene expression dataset that involved genes in all bicluster 

and original gene expression dataset achieved approximately 67 percent in fold six 

while the gene expression dataset that involved genes that occurred in more than one 

bicluster achieved 75 percent in fold three. 

Table 5.3: Performance Evaluation Based on 10-Fold Cross Validation 

 Gene Expression Dataset that Involved Genes 

 In All Bicluster 
Occur In More Than 

One Bicluster 
Original Dataset 

Fold 1 1 1 1 

Fold 2 1 1 1 

Fold 3 1 0.75 1 

Fold 4 1 1 1 

Fold 5 1 1 1 

Fold 6 0.6667 1 0.6667 

Fold 7 1 1 1 

Fold 8 1 1 1 

Fold 9 1 1 1 

Fold 10 1 1 1 

Average 0.9667 0.975 0.9667 
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Table 5.4: Confusion Matrix Result based on Ten-Fold Cross Validation 

Metrics 

Gene Expression Dataset That Involved Genes 

In All Bicluster Occur In More Than 

One Bicluster 

Original Dataset 

No. of Features 283 genes 3 genes 2735 genes 

Accuracy 0.9706 0.9705 0.9706 

Precision 1 0.9444 1 

Recall 0.9412 1 0.9412 

Specificity 1 0.9412 1 

F1 Score 0.9697 0.9714 0.9697 

According to Cherradi et al (2021), the 100 percent accuracy in k-fold cross 

validation is due to the effectiveness of machine learning model to learn the patterns 

and relationships in the data. Besides that, feature selection also improved the ability 

of model to generalize the data (Cheraddi et al, 2021). Furthermore, the efficient 

feature extraction allowed the 100 percent accuracy performance to classify the fundus 

image into different glaucoma conditions through the 5-fold cross validation (Fuadah 

et al, 2022). Hence, the effectiveness of the model to learn the underlying patterns of 

data had the potential to increase the performance as 100 percent. In conclusion, the 

biclustering algorithm improved the performance of the model by comprehending the 

data completely.  

Based on the results of the ten-fold cross validation, the accuracy varied across 

different folds. As there were 34 samples presented in the dataset, the training set for 

each fold was 30 or 31 samples while the testing set for each fold was 4 or 3 samples 

respectively. Hence, the variation in the ten-fold cross validation implied that the 

model’s performance was influenced by the specific random splits of data used in each 

fold. This is because different subsets of the data were used for training and testing 

which indicated that the model was trained with diverse samples. Additionally, the 

gene expression dataset consists of genes from different biclusters which raised the 

issues regarding the strength and relevance of each gene to EC. Hence, the sudden 
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drop of accuracy at fold 6 and fold 3 was due to the exhibit higher variability of the 

expression patterns making the model unable to generalize well the data.  

To overcome the issue of variation in accuracy value, the SVM classifier was 

ran ten times with different random state values to ensure that the model’s performance 

is not excessively dependent on a certain random split of the data. 

Table 5.5: Performance Evaluation Based on Multiple Run 

Run 

Gene Expression Dataset that Involved Genes 

In All Bicluster 
Occur In More Than 

One Bicluster 
Original Dataset 

1 1 1 1 

2 0.9286 1 0.9286 

3 0.9286 0.9286 0.9286 

4 1 0.9286 1 

5 1 0.9286 1 

6 0.9286 0.9286 0.9286 

7 1 1 1 

8 0.9286 0.9286 0.9286 

9 1 0.9286 1 

10 0.9286 0.9286 0.9286 

Average 0.9643 0.95 0.9643 

 

Table 5.5 demonstrated the accuracy of SVM classifier for each gene 

expression dataset with multiple runs. The gene expression dataset that involved genes 

in all biclusters and the original gene expression achieved 96.43 percent accuracy 

respectively. Meanwhile, the gene expression dataset that involved the genes that 

occurred in more than one bicluster achieved 95 percent accuracy. The results obtained 

highlighted that the model’s performance was affected by the different split of data for 

training and testing. Furthermore, the variation of the accuracy score across multiple 
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runs demonstrated that the performance was not excessively dependent on the random 

split of data. Instead, the variation can be due to the diversity in bicluster pattern. As 

the genes from different biclusters were combined into a dataset for classification, the 

diversity of biological patterns can influence the model’s ability to generalize the 

unseen data across different genes’ patterns as different biclusters showed distinct 

pattern of genes to EC.   

Table 5.6: Performance Measurement Based on Confusion Matrix 

Metrics 

Gene Expression Dataset That Involved Genes 

In All Bicluster Occur In More Than 
One Bicluster 

Original Dataset 

No. of Features 283 genes 3 genes 2735 genes 

Accuracy 0.9643 0.95 0.9643 

Precision 1 0.975 1 

Recall 0.9286 0.9286 0.9286 

Specificity 1 0.9712 1 

F1 Score 0.9616 0.9482 0.9616 

  

Table 5.6 represented the evaluation of the SVM classifier for three different 

gene expression datasets. Firstly, the gene expression dataset that involved genes in all 

bicluster achieved 96.43 percent accuracy and the F1 score value at 96.16 percent with 

283 genes. Secondly, the gene expression dataset that involved genes that occurred in 

more than one bicluster achieved 95 percent of the accuracy and reached the F1 score 

value at 0.9482 with 3 genes. Thirdly, the original gene expression dataset showed 

96.43 percent accuracy and 0.9616 F1 score with 2735 genes. In conclusion, the 

performance of SVM classifier indicated that biclustering algorithm further improved 

the gene selection process by selecting the important features, thereby increasing the 

performance of classification as the features for gene expression dataset that involved 

genes in all biclusters and gene expression dataset that involved genes that occurred in 

more than one bicluster are less than the original gene expression dataset.  
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5.5 Gene Validation 

For your information, the goal of plaid biclustering algorithm is to discover the 

key features by showing the patterns in gene and samples data. Hence, the genes found 

inside the bicluster were important indicators that predictive of EC. Furthermore, the 

gene expression dataset involved genes that occurred in more than one bicluster was 

chosen as the better dataset based on the findings of performance measurement by 

confusion matrix. The dataset not only exhibit the good performance compared to 

others, but also the frequently involvement in multiple biclusters indicated that these 

genes consistently aligned with the biological patterns found in the data. This situation 

made the genes a significant choice for gene validation. The genes found in the gene 

expression dataset involved genes that occurred in more than one bicluster were 

EPHB4, LAMB3 and HOXD11. 

5.5.1 EPHB4 

According to Hasina et al (2013) on the study of immunohistochemistry, 

EPHB4 is considerably overexpressed in esophageal cancer cell lines and primary 

tumor tissues which demonstrates that its levels are raised in disease states. 

Furthermore, an increase of EPHB4 gene copy numbers in some esophageal cancer 

samples and cell lines suggests a genetic foundation for its higher level of expression 

in tumors (Hasina et al, 2013). Although there are no significant changes in EPHB4 

within cancer cells, its functional overexpression and activity are influenced by other 

focused oncogenic drivers, emphasizing its significance as an inhibitor of treatment 

for esophageal cancer (Hasina et al, 2013). The disruption of EPHB4's standard control 

of expression underscores the protein's significance as a biomarker for disease 

diagnosis and targeted therapy, as well as its possible role in the biology of esophageal 

cancer (Hasina et al, 2013). 

Furthermore, a study on exploring the roles of cation-dependent mannose 6-

phosphate receptor (M6PR) and ephrin B type receptor 4 (EphB4) in serine (SRGN) 

exosomes in promoting tumor angiogenesis and invasion of ESCC cells  had been 
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carried out by Yan et al (2023). Based on the findings, exosomes generated from ESCC 

cells that overexpressed SRGN showed higher amounts of EPHB4, indicating a 

potential role for this protein in the development of cancer (Yan et al, 2023). 

Significantly, exosome EPHB4 increased ESCC cells' capacity for invasion, indicating 

a potential function in tumor malignancy and metastasis (Yan et al, 2023). Furthermore, 

the significant association between EphB4 expression and SRGN levels in ESCC 

patients' serum highlights its potential as a prognostic indicator, with high serum 

EphB4 being associated with lower overall survival (Yan et al, 2023).  

5.5.2 LAMB3 

A study on the assessing the expression of LAMB3 in esophageal cancer stem 

cell and adherent cells had been done by Ehtesham et al (2022). The study suggested 

that the involvement of LAMB3 in the development of esophageal cancer stem cells 

(CSCs) and the advancement of tumours highlights its significance as a potential cause 

of the cancer (Ehtesham et al, 2022). The different expression pattern of CSCs and 

adherent cells shows that it is involved in critical processes such as spheroid formation, 

CSC development, and tumour growth (Ehtesham et al, 2022). Hence, LAMB3 might 

be a good target for treatments which use to prevent CSC-driven tumour growth and 

spreading in esophageal cancer (Ehtesham et al, 2022). 

The research also explained that LAMB3 helps to produce Laminin-332, an 

important extracellular matrix (ECM) protein for the CSC microenvironment 

(Ehtesham et al, 2022). Downregulation of LAMB3 in esophageal CSCs has been 

linked to increased sphere formation, implying a role in enhancing CSC traits such as 

self-renewal and tumorigenicity (Ehtesham et al, 2022). Laminin-332, which includes 

LAMB3, has been linked to cancer invasion, migration, and metastasis which possibly 

are one of the factors that gave rise to EC cancer. (Ehtesham et al, 2022).  
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5.5.3 HOXD11 

According to the National Library of Medicine (2024), HOXD11 is belongs to 

the homeobox (HOX) gene family, which consists of transcription factors that are 

important for morphogenesis in a variety of organisms with multiple cells and are 

highly conserved. The HOX gene family is important for embryonic development, and 

its dysregulation is associated with several malignancies, including esophageal cancer 

(Akbar, Zhang and Liu, 2023). When HOX genes are dysregulated, their normal 

developmental functions are disrupted, causing cancer cells to behave abnormally 

(Akbar et al, 2023). Dysregulated HOX genes, such as HOXD11, may affect cell 

proliferation, metastasis, and treatment resistance of cancer cells, thereby affecting 

tumor progression and patient prognosis (Akbar et al, 2023). 

Dysregulation of HOX genes, such as HOXD11, can have a significant impact 

on cancer biology (Akbar et al, 2023). The overexpression of HOX genes can lead to 

uncontrolled growth of cells, which can enable tumors to spread quickly and escape 

regulatory systems that typically prevent excessive cell division (Akbar et al, 2023). 

Dysregulated HOX genes can also help cancer cells spread to distant regions of the 

body and improve their capacity for metastasis (Akbar et al, 2023). As a result, 

misregulation of HOX genes enhances the complexity of cancer development and 

creates major difficulties for the treatment (Akbar et al, 2023). 

5.6 Additional Testing 

5.6.1 Investigating SVM Classification Effectiveness on Each Bicluster 

In this study, the experiments focused on filtering the gene expression dataset 

by combining the genes found in the bicluster together. However, a further analysis 

had been conducted to investigate the effectiveness of SVM on each bicluster. The 

procedure started by filtering the data from the gene expression dataset by the genes 

in each bicluster. Four gene expression datasets were analyzed using SVM classifier 

to evaluate the performance of each bicluster by ten-fold cross validation and 
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confusion matrix. This step is to understand the effectiveness of SVM to learn the 

specific gene expression patterns to classify the data.  

The results presented in Table 5.7 indicated an improvement in performance 

compared to the study. Bicluster 1 achieved an accuracy of 95 percent and 94.49 

percent of F1 score. Besides that, bicluster 2 demonstrated the strongest performance 

among four biclusters with 98.57 percent of accuracy and 98.46 percent of F1 score. 

Additionally, bicluster 3 indicated accuracy at 0.90 with 0.8906 F1 score. Lastly, 

bicluster 4 achieved 95.72 percent of accuract and 0.9539 of F1 score. In general, the 

performance was better than the study due to the bicluster focused on the gene 

expression patterns that exhibit common behavior under specific conditions. This 

expression patterns of bicluster provided a clearer insight for SVM classifier to learn 

from the data and resulted in enhancing the ability to classify the samples accurately. 

In contrast, the gene expression dataset contained more diverse expression patterns.   

Table 5.7: Performance Measurement Based on Multiple Run and Confusion Matrix 

 Gene Expression Dataset That Involved Genes In 

 Bicluster 1 Bicluster 2 Bicluster 3 Bicluster 4 

Multiple Run of SVM Classifier 

Accuracy 0.95 0.9857 0.9 0.9572 

Confusion Matrix 

Accuracy 0.95 0.9857 0.9 0.9572 

Precision 1 1 0.9732 1 

Recall 0.9 0.9714 0.8286 0.9143 

Specificity 1 1 0.9714 0.9857 

F1 Score 0.9449 0.9846 0.8906 0.9539 
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5.6.2 Applying the Experiment to New Gene Expression Dataset 

A new gene expression dataset that indicated the expression pattern of ovarian 

cancer had been retrieved. After the data preprocessing and gene selection process, the 

dimension dataset become 67 samples with 2140 genes. The varying scales in the data 

suggested the presence of noise within the ovarian cancer dataset.  The inconsistency 

can be due to the biological differences among the samples. As the genes can be 

detected in various tissues, body fluids and blood, hence their activities can be varied 

depending on the specific conditions within samples. 

 

Figure 5.7: Ovarian Cancer Dataset after Gene Selection Process 

Applying normalization to the ovarian cancer dataset is essential to ease the 

effects of noise and different scaling of data. By standardizing the gene expression 

data able to improve the reliability of the biclustering and classification method. This 

is because normalization ensured the data was transformed into a comparable scale 

and reduced the bias among samples. Figure below showed the ovarian cancer dataset 

after normalization. 

 

Figure 5.8: Ovarian Cancer Dataset after Normalization 

Based on the result in Table 5.8 indicated that the involvement of PPI data 

significantly improved the accuracy of the ovarian cancer dataset analysis. 

Furthermore, table 5.9 demonstrated that using a test size of 0.1 test size generated the 

better result for the SVM classifier. This suggests that a smaller test set which only 

comprising 10 percent of the data allowed for more effective training and validation.  
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This is because the model able to learn from larger number of data which lead to a 

better generalization.  

Table 5.8: Accuracy of Ovarian Cancer Dataset with and Without PPI Data 

Test Size 
Ovarian Cancer Dataset 

Without PPI Data With PPI Data 

0.1 0.8571 0.8571 

0.2 0.7857 0.7857 

0.3 0.8095 0.8095 

0.4 0.7407 0.8148 

Average 0.7983 0.8168 

 

Table 5.9: Accuracy of Ovarian Cancer Dataset with Different Random State and Test 

Size 

Run 
Accuracy with Different Test Size 

0.1 0.2 0.3 0.4 

1 0.8571 0.8571 0.8095 0.8148 

2 1 0.7143 0.7143 0.6667 

3 1 0.8571 0.8571 0.7037 

4 0.7143 0.7143 0.6667 0.7407 

5 0.7143 0.8571 0.7143 0.7407 

6 0.8571 0.7857 0.8095 0.8148 

7 0.8571 0.8571 0.8095 0.7778 

8 0.7143 0.8571 0.8571 0.8519 

9 0.8571 0.7857 0.8095 0.8148 

10 0.7143 0.7857 0.7619 0.8148 

Average 0.8428 0.8071 0.7809 0.7741 

 

After applying the Plaid Biclustering Model to the ovarian cancer dataset, three 

biclusters were generated. The genes identified within the biclusters were then used to 
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create two distinct datasets for further analysis. Figures below showed the biclusters 

formed by Plaid Biclustering Model.  

 

Figure 5.9: Ovarian Cancer Dataset - Bicluster 1 

 

Figure 5.10: Ovarian Cancer Dataset - Bicluster 2 

 

Figure 5.11: Ovarian Cancer Dataset - Bicluster 3 

Table 5.11 indicated the datasets involving genes in all biclusters demonstrated 

the accuracy value at 0.8071. In contrast, the original ovarian cancer dataset showed a 

slightly lower accuracy of 79.29 percent indicating that biclustering algorithm provide 

an improvement in classification performance. From the result, a conclusion that 

ovarian cancer dataset that involved genes in all bicluster achieved the better result in 

the classification performance.  

Table 5.10: The Dimension of Three Different Ovarian Cancer Dataset 

Ovarian Cancer Dataset Samples Genes 

Genes In All Bicluster 67 129 

Original Dataset 67 2140 
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Table 5.11: Cross Validation of Different Ovarian Cancer Dataset 

 Ovarian Cancer Dataset That Involved Genes 

 In All Bicluster Original Dataset 

Fold 1 1 1 

Fold 2 0.8571 0.8571 

Fold 3 0.7143 0.5714 

Fold 4 0.7143 0.8571 

Fold 5 0.5714 0.7143 

Fold 6 0.8571 0.5714 

Fold 7 0.8571 0.8571 

Fold 8 0.8333 0.8333 

Fold 9 0.8333 0.6667 

Fold 10 0.8333 1 

Average 0.8071 0.7929 

 

The datasets were further analysed by multiple runs to evaluate the consistency 

of the SVM performance. This approach to ensure obtained with a more reliable result 

of the model’s effectiveness. Table 5.12 indicated the accuracy of two different ovarian 

dataset across multiple runs. The result demonstrated that the ovarian cancer dataset 

that involved genes in all bicluster achieved an accuracy of 75.71 percent while the 

original ovarian cancer dataset achieved 79.29 percent accuracy. By considering the 

dimensions of two datasets, the dataset with genes in all bicluster consisted of 67 

samples with 129 genes with a slightly lower accuracy than the original dataset showed 

that the genes selected through the biclusters contributed to the effectiveness of SVM. 

The gene selection process enabled the classifier to focus on the important indicators 

across multiple samples. The model able to have a clearer understanding of the genes’ 

pattern in the dataset with genes in all bicluster rather than the original dataset. 
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Table 5.12: Accuracy of Three Different Dataset with Different Random State 

Run 
Ovarian Cancer Dataset That Involved Genes 

In All Bicluster Original Dataset 

1 0.7143 1 

2 0.5714 0.8571 

3 1 0.5714 

4 0.7143 0.8571 

5 0.7143 0.7143 

6 0.8571 0.5714 

7 0.8571 0.8571 

8 1 0.8333 

9 0.5714 0.6667 

10 0.5714 1 

Average 0.7571 0.7929 

 

Table 5.13 provided the information on the classification performance of two 

distinct ovarian cancer dataset. However, the concerning aspect raised from the 

precision, recall and F1 Score as the dataset a lower score. These metrics suggest a 

significant issue with the model’s performance as it failed to correctly identify any 

positive samples. The presence of noisy data, outliers and different scaling across the 

ovarian cancer dataset misrepresent the model’s ability to learn the meaningful 

patterns. Secondly, the imbalanced class distribution within the dataset with only 13 

out of 67 samples representing the normal class. The imbalanced class distribution bias 

the model towards the majority class which is tumour and resulting in poor 

performance on the normal tissues. Hence, to address these challenges, preprocessing 

techniques such as outlier detection and replacement, noise reduction and balancing 

the class distribution must be carried out to derive more accurate insights for effective 

treatment and disease diagnosis. However, despite these challenges, the biclustering 

algorithm had demonstrated its ability to enhance the performance in identifying 

potential biomarkers. 
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Table 5.13: Confusion Matrix of Two Different Dataset 

Metrics 
Ovarian Cancer Dataset that Involved Genes 

In All Bicluster Original Dataset 

Accuracy 0.7571 0.7714 

Precision 0.2 0.2 

Recall 0.2 0.2 

Specificity 0.85 0.8667 

F1 Score 0.2 0.2 

 

5.7 Chapter Summary 

In conclusion, the involvement of PPI data with gene expression datasets 

significantly enhances the accuracy of identifying potential biomarkers for EC as the 

gene selection process filters out the insignificant features. Furthermore, using 60 

percent of gene expression dataset for training provides enough data to train the model 

and capture underlying patterns. Additionally, plaid biclustering algorithm grouped 

related genes making it efficient in highlighting the potential biomarkers. However, it 

is important to preprocess the dataset before training the model to ensure the op timal 

results.
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CHAPTER 6  

 

 

CONCLUSION & RECOMMENDATION 

6.1 Introduction 

The research mainly focused on the identification of potential biomarkers of 

EC using plaid biclustering algorithm. The experiment had been carried out by using 

gene expression dataset with PPI data. Plaid biclustering model form a collection of 

biclusters with the underlying patterns of the data. The performance of each biclusters 

had been further observed and verified by SVM classifier. The results showed that 

biclustering algorithm able to classify the genes with the similar features and able to 

identify the biomarker for EC. 

6.2 Achievements 

The achievements for this research are generate the input data from gene 

expression and PPI data, implement the biclustering algorithm in identification of 

potential biomarkers from the input data, evaluate the selected potential biomarkers 

using SVM classifier and verify the identified potential biomarkers with biological 

knowledge bases. 

6.2.1 Objective 1: To derive input data from gene expression and PPI data 

In this step, data preprocessing had been carried out to remove the missing 

genes and obtained the average value of duplicated genes. Then, gene selection process 

was applied to the gene expression dataset in order to filter out the insignificant 

features. The filtering process of gene expression dataset was based on the genes in 
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PPI data. After the gene selection process, the dimensions of the gene expression 

dataset become 2735 genes with 34 samples. 

6.2.2 Objective 2: To implement biclustering algorithms in identification of 

potential biomarkers from the derived input data 

The optimum number of biclusters was identified by using the elbow method. 

The Elbow method is the technique based on KMeans algorithm to retrieve the sum of 

square error with the different number of clusters. The result of elbow method showed 

that the optimum number of biclusters for gene expression dataset is four. Then, a plaid 

biclustering model was implemented to form four biclusters. The general process of 

plaid biclustering model was found the coherent groups of genes and samples and 

captured the shared behaviour in a common layer. After that, the behaviour had been 

compared and verified before formed a bicluster. There are total of four biclusters were 

formed.  

6.2.3 Objective 3: To evaluate the selected potential biomarkers using SVM 

through ten-fold cross validation and confusion matrix 

The biclustering result indicated that the retrieved samples are cancerous. SVM 

classifier cannot classify the dataset when only consists of one target case. Since the 

goal of biclustering is to discover a group of genes and samples with similar features, 

hence the assumption that the genes found in the biclusters are important indicators of 

EC can be made. Hence, the genes in the biclusters were used to do another gene 

selection process. In this process, two gene expression datasets were formed which are 

gene expression dataset that involved genes in all biclusters and gene expression 

dataset that involved genes that occurred in more than one bicluster. Then, these two 

datasets were compared with the original gene expression dataset. The SVM classifier 

demonstrated with the result of gene expression dataset that involved genes that 

occurred in more than one bicluster is better than others. 
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6.2.4 Objective 4: To verify the identified potential biomarkers with biological 

knowledgebases such as NCBI 

The genes found in the gene expression dataset that involved genes that 

occurred in more than one bicluster were further validated with the NCBI. The genes 

found inside the dataset are EPHB4, LAMB3 and HOXD11. These three genes showed 

their effort in the EC cell development after validated with NCBI. 

6.3 Suggestion for Improvement and Future Works 

There are still available improvements and future works can be done in this 

research. These includes: 

(a) Development a method of determining the optimal pruning threshold value to 

be used in Plaid Model Biclustering Algorithm.  

(b) Integration of machine learning techniques to enhance the performance and 

scalability of biclustering algorithms in handling high dimensional dataset.  

(c) Perform hyperparameter tuning to enhance the model’s performance. 
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Appendix A Figures of the Experiment’s Output 

Github link to the code: https://github.com/wyu04/FYP 

 

Figure 1: Confusion Matrix Result of EC Cancer Dataset with Different Random 

State 

 

 

Figure 2: Confusion Matrix Result of EC Cancer Bicluster Dataset with Different 

Random State 

 



 

92 

 

Figure 3: Confusion Matrix of Ovarian Cancer Dataset with Different Random State  

 

 

Figure 4: Confusion Matrix of Ovarian Cancer Bicluster Dataset with Different 

Random State 

 

 

Figure 5: The Noise and Class Imbalance Distribution of Ovarian Cancer Dataset 
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Figure 6: Accuracy of Ovarian Cancer Dataset with Different Test Size and Random 

State after Outlier Replacement 

 

 

Figure 7: Performance Measurement of Ovarian Cancer Dataset after Outlier 

Replacement 

 

 

Figure 8: Performance Measurement of Each Bicluster after Outlier Replacement 

 


