IDENTIFICATION OF POTENTIAL BIOMARKERS FOR ESOPHAGEAL
CANCER FROM GENE EXPRESSION AND INTERACTIONS
USING BICLUSTERING ALGORITHM

GUI YU XUAN

UNIVERSITI TEKNOLOGI MALAYSIA






PSZ 19:16 (Pind. 1/13)
UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT REPORT AND

COPYRIGHT
Author’s full name : GUI YU XUAN

Date of Birth : 07 - 04 - 2000

Title : IDENTIFICATION OF POTENTIAL BIOMARKERS FOR
ESOPHAGEAL CANCER FROM GENE EXPRESSION AND INTERACTIONS
USING BICLUSTERING ALGORITHM

Academic Session  : 20232024 - 02

| declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the
Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by
the organization where research was done)*

v | OPEN ACCESS | agree that my thesis to be published as online
open access (full text)

| acknowledged that Universiti Teknologi Malaysia reserves the right as
follows:
The thesis is the property of Universiti Teknologi Malaysia

The Library of Universiti Teknologi Malaysia has the right to make copies for

the purpose of research only.
The Library has the right to make copies of the thesis for academic
exchange.

Certified by:

L b

SIGNATURE OF STUDENT SIGNATURE OF SUPERVISOR

A20EC0039 DR. CHAN WENG HOWE
MATRIC NUMBER NAME OF SUPERVISOR

Date: 1 JULY 2024 Datfe: 1 JULY 2024

NOTES : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction






“I hereby declare that | have read this thesis and in my
opinion this thesis is sufficient in term of scope and quality for the

award of the degree of Bachelor of Computing Science (Bioinformatics).”

Signature

Name of Supervisorl : DR CHAN WENG HOWE
Date : 1JULY 2024







IDENTIFICATION OF POTENTIAL BIOMARKERS FOR ESOPHAGEAL
CANCER FROM GENE EXPRESSION AND INTERACTIONS
USING BICLUSTERING ALGORITHM

GUI YU XUAN

A thesis submitted in partial fulfilment of the
requirements for the award of the degree of

Bachelor of Computing Science (Bioinformatics)

Faculty of Computing

Universiti Teknologi Malaysia

JULY 2024






DECLARATION

I declare that this thesis entitled “ldentification of Potential Biomarkers for
Esophageal Cancer from Gene Expression and Interactions Using Biclustering
Algorithm” is the result of my own research except as cited in the references. The
thesis has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature D e /&A ..................................

Name : GUI YU XUAN
Date : 1JULY 2024



DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of
knowledge to have is that which is learned for its own sake. It is also dedicated to my
mother, who taught me that even the largest task can be accomplished if it is done

one step at a time.



ACKNOWLEDGEMENT

In preparingthisthesis, | was in contactwith many people, lecturersandfriend.
They have contributed towards my understanding and thoughts. In particular, I wish
to express my sincere appreciation to my main thesis supervisor, Professor Dr. Chan
Weng Howe, for encouragement, guidance, critics and friendship. Without his
continued support and interest, this thesis would not have been the same as presented
here.

| am also indebted to Universiti Teknologi Malaysia (UTM) for funding my
Bachelor study. Librarians at UTM also deserve special thanks for their assistance in
supplying the relevant literatures.

My fellow undergraduate student should also be recognised for their support.
My sincere appreciation also extends to all my course mate and others who have
provided assistance at various occasions. Their views and tips are useful indeed.
Unfortunately, it is not possible to list all of them in this limited space. | am grateful
to all my family member.



ABSTRACT

Biclustering is a strong data mining approach to group the clusters based on
specific characteristic. VVarious biclustering methods had been proposed to identify the
potential biomarkers for certain diseases. However, most research were done based on
the synthetic data which may produce false positive result and overfit the data.
Therefore, the lack of biological relevance data in biclustering analysis leads to low
precision in identifying relevant gene clusters and decreases the accuracy of
biomarkers detection. The purpose of this study was to implement a biclustering
method to identify the potential biomarkers of esophageal cancer fromgene expression
data and protein-protein interaction data. In this research, the gene expression dataset
and protein-protein interaction datasets were used in the gene selection process and
applied in the biclustering method. Elbow method had been used to determine the
optimum number of biclusters. Four bicusters were obtained in this study, each
bicluster will then be observed and the genes of the biclusters were used to filter the
gene expression dataset. The biclustering method used in this research was Plaid
model, which selected the rows and columns exhibiting the similar pattern from the
dataset to form biclusters. The results obtained from the biclustering algorithm
indicated that the biclusters formed consisted only of cancerous cases, making them
unsuitable for implementation with the Support Vector Machine classifier. Thus, the
genes were examined and formed different type of Gene Expression Dataset for
comparison. Subsequently, different Gene Expression Dataset were classified by the
Support Vector Machine. Two datasets were formed, one involving genes in all
biclusters and another involving genes that occurred in more than one biclusters. The
Support Vector Machine was implemented on these datasets along with the original
gene expression dataset with accuracy of 96.43%, 95% and 96.43% respectively. The
dataset involving genes that occurred in more than one bicluster was validated with
biological knowledgebases. The potential biomarkers for the esophageal cancer found
in the experiment are EPHB4, LAMB3 and HOXD11. To conclude, the potential
biomarkers for esophageal cancer found in this research have the potential to improve
the early detection and diagnosis for esophageal cancer and improve in the available
treatments.
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ABSTRAK

Biclustering ialah cara analisis data untuk mengumpulkan kluster berdasarkan
ciri-ciri tertentu. Walaupun terdapat pelbagai kaedah biclustering, namun kebanyakan
penyelidikan dijalankan menggunakan data sintetik yang mungkin menghasilkan
keputusan yang positif palsu dan terlalu sesuai dengan data. Oleh itu, kekurangan data
yang relevan secara biologi dalam analisis biclustering menyebabkan ketepatan yang
rendah dalam mengenal pasti kluster gen yang relavan dan mengurangkan ketepatan
pengesanan biomarker. Tujuan kajian ini adalah untuk melaksanakan kaedah
biclustering untuk mengenal pasti biomarker yang berpotensi untuk kanser esofagus
daripada data ekspresi gen dan interaksi protein-protein. Dalam kajian ini, data
ekspresi gen dan data interaksi protein-protein digunakan dalam proses pemilihan gen
dan diaplikasikan dalam kaedah biclustering. Kaedah elbow telah digunakan untuk
menentukan bilangan kluster yang optimum. Empat bicluster diperoleh dalam kajian
ini, dan gen-gen dalam bicluster digunakan untuk menapis dataset ekspresi gen.
Kaedah biclustering yang digunakan ialah model Plaid, yang memilih baris dan lajur
yang menunjukkan corak yang serupa dari dataset untuk membentuk bicluster. Hasil
yang diperoleh menunjukkan bahawa bicluster yang terbentuk terdiri daripada kes-kes
kanser sahaja, menjadikannya tidak sesuai dengan pengelasan Mesin Sokong Vektor.
Olehitu, gen-gen diperiksa dan pelbagai data ekspresi gen diklasifikasikanoleh Mesin
Sokongan Vektor. Dua dataset dibentuk, satu melibatkan gen dalam semua bicluster
dan satu melibatkan gen yang terdapat dalam lebih daripada satu bicluster. Mesin
Sokongan Vektor diterapkan pada data tersebutbersamadengan data ekspresi gen asal
dengan ketepatkan masing-masing sebanyak 96.43%, 95% dan 96.43%. Dataset yang
melibatkan gen yang terdapat dalam lebih daripada satu bicluster disahkan dengan
pangkalan pengetahuan biologi. Biomarker berpotensi untuk kanser esofagus yang
ditemui dalam eksperimen adalah EPHB4, LAMB3 dan HOXD11. Secara
kesimpulannya, biomarker berpotensi untuk kanser esofagus yang ditemui dalam
penyelidikan ini mempunyai potensi untuk meningkatkan pengesanan awal dan

diagnosis untuk kanser esofagus serta meningkatkan rawatan yang tersedia.

Vii
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Esophageal cancer (EC) is the world's eighth most frequent cancer (World
Cancer Research Fund International, no date). EC is a type of cancer that develops in
esophagus. Due to a lack of early symptoms, the diagnosis occurs in the middle and
late stages and the risk of recurrence after therapy is significant causing the 5-year
survival rate for EC is still poor (Wan, Smith and Wei, 2018). According to
Karimizadeh et al (2019), the identification of molecular pathways and complicated
disease mechanisms can be facilitated by combining different biological data useful to
certain biological queries, which can also boost the accuracy of results. By performing
gene expression analysis, thousands of genes' levels of expression in a tissue or cell
type are simultaneously measured (Karimizadeh et al, 2019). Gene expression data
give information about the levels of gene activity but do not fully capture the
complexity of biological systems (Karimizadeh etal, 2019). By focusing just on gene
expression, we run the risk of ignoring significant regulatory processes and missing
important information required for a complete understanding. Hence, in order to have
a full understanding on the connection between genes’ activity, several data had been
applying together with gene expression such as genomic data, proteomic data,
metabolomics data and protein-protein interaction (PPI). Applying conserved
pathways and protein complexes, alignment and mapping of PPI networks offers a
chance to learn more about the evolutionary links across species (Athanasios, 2017).
Additionally, it has been demonstrated that within sequence homology clusters,
information from protein-protein interaction networks can predict functional
orthologous proteins (Athanasios, 2017). As a result, the integration of information on
PPl and gene expression enables the discovery of possible biomarkers and advances

our understanding of disease.



According to National Cancer Institute, a biomarker is a biological molecule
that can be detected in tissues, body fluids, or blood that can indicate if a certain
process, condition, or disease is normal or pathological (National Cancer Institute, no
date). The body's reaction to a sickness or condition's therapy can be monitored using
biomarkers. Hence, by identifying biomarkers for EC have the potential to lower
morbidity and death. Machine learning methods are a viable alternative to traditional
data analysis approaches and be widely used in the biomarker discovery since they
automatically discover patterns and relationships from data without explicit
programming (Xieetal, 2021). Supervised learningsuch as decision trees, naive bayes
and neural network, unsupervised learningsuch as K-means clusteringare the methods
that available in the machine learning. For your information, biclustering is a strong
data mining approach that enables grouping of rows and columns concurrently in a
matrix format dataset (Xie etal, 2019). Biclustering methods are useful for analysing
gene expression and PPI data because they identify sections of genes with comparable
expression patterns across sample subsets or situations (Xie et al, 2019). Identifying
the subsets of genes by combining genes and samples based on their expression
patternsable to reduce the complexity of large datasets and identify networks of related
genes that are co-expressed in specific sample subsets. Therefore, the biclustering
method isa usefultoolthatcan be used to analyse esophageal cancersthrough the gene

expression data and PPI data to detect gene clusters specific to EC cancer.

1.2 Problem Background

The pattern of gene expression in a cell or tissue dictates its form and function.
While there'soverathousandgenesonamicroarray chip, thereare only afew samples.
As a result, the curse of dimensionality, noise, and randomness of this data are
significant issues that arise in the interpretation of microarray data and present
numerous data mining and machine learning obstacles (Moteghae, Maghooli and
Garshasbi, 2018). However, biclustering can decrease the high-dimensional character
of gene expression datasets by focusing on these co-expressed genes, which can

increase classification accuracy by decreasing noise and highlighting pertinent



features. For example, biclustering grouped genesand samples based on their pattems
by finding the co-expressed subset of data.

Even the performance of classification can be improved by the biclustering
algorithm, but the biclustering algorithm still had limitations to run the experiment.
Accordingto Eren etal. (2013), synthetic datasets frequently don't perform as well as
gene expression datasets. At the same time, the performance of each algorithm varies
depending on the circumstances bicluster model. Hence, it is necessary to consider the

data and parameters used before choosing a biclustering algorithm.

1.3 Problem Statement

EC is extremely aggressive (Napier, Scheerer and Misra, 2014). Early
detection of esophageal cancer able to produce effective patient outcome despite
improvementsin available treatments (Rai, Abdo and Agrawal, 2023). However, using
only synthetic data to find biomarkers can produce false-positive results and overfit
the data (Rashidi et al, 2022). Synthetic data is made by combining real world
information to create a dataset that resembles actual data but does not reveal any
personal information (Rashidi et al, 2022). As synthetic data do not capture full
patterns presentin real world data, thus the result obtained may not be accurately and
caused overfitting. As a result, we must determine the biological significance of the
data to increase the possibility of discoveringa true and informative biomarker. PPI
and gene expression data are biological relevance data because they provide the
interactions between genes and show the pattern of gene expression (Rao et al, 2014,
National Human Genome Research Institute, 2023). Hence, PPl and gene expression
data can be used to identify potential EC biomarkers, which could help with early
detection and the creation of targeted treatments. To increase the precision of
biomarker detection, biclustering algorithms have offer a solution to identify the co-
expressed genes (Branders, Schaus and Dupont, 2019). Therefore, the problem
statement of this study is that the lack of the biological relevance data in biclustering
analysis leading to low precision in identifying relevant gene clusters and decrease the

accuracy of biomarkers detection.



1.4

Research Goal

The goal of this research is to implement a biclustering method to identify the

potential biomarkers of esophageal cancer from gene expression data and PPI.

15

(@)

(b)

(©)

(d)

1.6

(@)

(b)
(©)

Research Objectives

The objectives of the research are:

To derive input data from esophageal cancer gene expression and protein-

protein interaction data.

To implement biclustering algorithm in identification of potential biomarkers

from the derived input data.

To evaluate the selected potential biomarkers using Support Vector Machine

through ten-fold cross validation and confusion matrix.

To verify the identified potential biomarkers with biological knowledgebases
such as NCBI.

Research Scope

The scopes of the research are:

Concentrate on a plaid biclustering method to identify esophageal cancer

biomarkers.

Programming languages for the study are Python and R.

Esophageal cancer data retrieved from Gene Expression Omnibus which the
dataset named GSE20347 and derived from Search Tool for the Retrieval of



Interacting Genes/Proteins which the PPI network consists of the interaction
between human genes.

(d) Limitations of this study:
¢ Availability of high-quality data
o Difficulties in discovering relevant biomarkers.
e Computational complexity of the datasets being processed.

e Interpretation of gene clusters

1.7 Research Contribution

This research is aimed to contribute a biclustering method which able to
identify potential biomarkers of esophageal cancer effectively. By developing an
effective biclustring method, the accuracy and reliability of biomarker identification
would be improved. This could lead to the development of effective diagnostic
strategies for esophageal cancer. Since there are several biclustering methods, a few
of researching will be done to make sure the method is suit to the gene expression

patterns and PPI data.

1.8  Report Organization

This section explains the outline of this report.

Literature review will be included in Chapter 2. The previous study of the
related research about the integration between gene expression and PPl data, the

biclusteringmethod and the biomarkers identification will be discussed in this chapter.

Chapter 3 will show the research methodology and framework used in this

research in order to achieve the study.



The flowcharts and overall steps in conducting the study will be explained
further in Chapter 4.

Last butnotleast, Chapter 5 will showand discuss the outcomesand the results.

The conclusion of this study and the future work will be illustrated.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter further discussed the details of the related research. The details of
EC were discussed further in this chapter and outlined the risk factors in causing EC.
Then, the use of gene expressionand PPl in discoveringthe biomarkers were explained
in further. The popular biclustering algorithms were discussed and the advantageous

and drawbacks of each algorithm were outlined.

2.2  Esophageal Cancer (EC)

EC hasbeenreported as the eighth most frequentcancer in the world, with over
570,000 new cases diagnosed each year (Bray et al, 2018). Since the pathophysiology
of EC is less well understood than that of many other malignancies and it frequently
displayed an incredibly aggressive clinical picture at the time of diagnosis (Bray et al,
2018). Thus, EC is the sixth-leading cause of malignancy-related death with a 5-year
survival rate ratio which is between 15-20% (Bray et al, 2018). According to
Lagergren (2017), esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC) are the two major subtypes of EC which are proximal ESCC
and distal esophageal EAC. Although ESCC is the most common pathogenic variant
of EC, the incidence of ESCC and EAC varies greatly across countries and locations
(Arnold, 2015). Patients with ESCC, for example, accountin Asia; however, EAC is

more common in Europe (Arnold, 2015).



Obesity [

(Yes vs. No mm ESCC
o EAC
Hot food a(r::ls ‘2%\2()erage intake- )
Red meat consymetion gy

Alaohol conaumption |
(Yes vs. No)

Smokdng E—
(Yes vs. No)
O N 9 5 H 9 6 A DS 9 O N ,{»relativerisk

Figure 2.1:  The Risk Factors for ESCC and EAC (Yang et al, 2020, p.1727).

Smoking increases the risk of developing ESCC and EAC. Unexpectedly,
smoking had a greater relationship with ESCC incidence than EAC. The risk of ESCC
is three to seven times higher for current smokers than it is for non-smokers. Smoking
also raises the risk of EAC; however the correlation is weaker than it is for ESCC. The

risk of EAC in smokers was almost two times higher.

Besides that, alcohol consumption and hot food and beverage intake only give
the impact on ESCC. The risk of alcohol assumptionis one to eight times higher for
the drinker than non-drinker. Meanwhile, hot food and beverage intake hasthe risk of
one to four times higher than normal people. For the people who suffer from EAC,

gastroesophageal reflux disease can be one of the risk factors too.

In contrast of that, gastroesophageal reflux disease shown the effect in causing
EAC but do not have correlation with ESCC. For people who suffer from
gastroesophageal reflux disease have the higher chances at which five to twelve times
higher to suffer from EAC.

Moreover, red meat consumption showed less effect in causing EAC than
ESCC. There are one to three times higher for more red meat consumption people to
getthe ESCC while there is a little effectbetweenmore and less red meatconsumption
for EAC disease. As opposed to red meat consumption, obesity showed higher effect
in causing EAC than ESCC. For obese people, the chances to diagnose EAC is one to
eight times higher than normal people. Meanwhile, obesity showed a little effect

between obese and normal people for ESCC disease.



2.3 Gene Expression and Protein-Protein Interaction (PPI) in Biomarker
Detection

Gene expression datashows incomplete biological picture which may causing
the unreliable and inaccurate result. (Karimizadeh et al, 2019). The information
obtained from PPI network enable the visualization of the evolutionary links and the
functional orthologous protein (Athanasios, 2017). Hence, PPI and gene expression
enables the discovery of the underlying pattern on the data and obtained the reliable

result.

2.3.1 Gene Expression

Accordingto Yousef, Kumarand Bakir-Gungor (2020), extracting information
from huge databases of genes that vary in expression gets difficult as high -throughput
methods become advanced and massive transcriptome datasets become available. The
key problem isto identify disease related informationfrom a vastamountof redundant
data and noise as gene expression data are typically limited in sample size, high in
dimensionality, and noisy (Yousef, Kumar and Bakir-Gungor, 2020). Therefore,
choosingthe right genes and eliminating unnecessary or irrelevant genes are crucial
stepsin solvingthis issue (Yousef, Kumarand Bakir-Gungor etal, 2020). Most feature
selection techniquesnow in use for gene expression data analysis choose genes simply
based on expression values; biological knowledge is then integrated to acquire
biological insights or to confirm initial findings (Yousef, Kumar and Bakir-Gungor et
al, 2020).

From the understanding of Abd-Elnaby, Alfonse and Roushdy (2020), data on
gene expression is a measurement of the degree of gene activity in a particular cell,
tissue, or organism. Thus, it is able to provide the information for medical diagnosis
as the genes in the datasets are the functional molecules that are involved in specific
cellular processes (Abd-Elnaby, Alfonse and Roushdy, 2020). In summary, analysing
the differential gene expression able to obtain insight into the important underlying

biological mechanisms and pathways of a particular disease or condition.



2.3.2 Protein-Protein Interaction (PPI)

The fundamental components of life are proteins, which are comprised of
amino acids. Genes use amino acids to create peptides, which in turn create diverse
proteins (Lu etal, 2020). Proteins are the building blocks of living tissue. Based on the
explanation of Lu et al (2020), essential biological procedures in cells that directly
affect our health, such as DNA replication, transcription, translation, and
transmembrane signal transmission, depend on proteins that have specialised
functions. Protein complexes, which are frequently governed by protein-protein

interactions (PPIs), regulate the biological processes outlined above (Lu et al, 2020).

Cabri et al (2021) stated that PPIs are essential signalling pathways in the
development of various disease states, making them ideal targets for therapeutic
discovery. The role of PPIs in tumour growth is strongly correlated with protein-
mediated signalling pathways that can activate numerous biological networksinvolved
in carcinogenesis, progression, invasion, and metastasis (Cabrietal, 2021). Asaresult,
PPI networks can be studied to find relevant proteins or nodes that function as possible

biomarkers and have a significant impact on cancer pathways.

2.4 Unsupervised Clustering Machine Learning in Biomarker Detection

Figure 2.2:  The Types of Machine Learning
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Figure 2.2 illustrates the methods that are under machine learning. Our study
only involves the biclustering methods which undergo the unsupervised clustering

technique.

Ray (2019) proposed that a computer program is assigned to perform tasks in
machine learning, and its measured performance at these tasks increases as the
machine obtains more and more experience executing these jobs. Our research
involves machine learning algorithms to recognize patterns and correlations in input
data without providing labelled outputs. The program groups gene expression and PPI
data together based on the similarity or difference by using clustering approaches.
Then, the algorithm can find clustersthat may influence EC by examining connections
and patterns in the data. Biclustering is a technique that can be used by machine
learning algorithms to iteratively assign data points to clusters while optimising a cost
function that measures the similarity or distance between data pointsand clusters (Ray,
2019). Without explicitly providing any labelled findings, the algorithm learns to
recognise patterns and correlations in the data through this iterative process (Ray,

2019). As a result, the programme can find EC biomarkers.

Accordingto Komorowski (2022), high-dimensional datasets have beenmined
for hidden patterns or underlying structures using unsupervised learning due to the
supervised learning requires labelling the data, which can be time-consuming and
difficult. Furthermore, there could be dozens or even millions of features in high-
dimensional data, and manually labelling each data point requires a lot of resources
(Komorowski, 2022). Additionally, labels for high-dimensional data cannot be readily
available or be challenging to get circumstances, such as when analyzing gene
expression or image data (Komorowski, 2022). Hence, using supervised learning in
high-dimensional datasets could be a time-consuming project. However, without
labelling the outcomes, unsupervised learning enables study of the underlying

relationships and patterns in data.

Based on the research done by Wang et al (2020), unsupervised machine
learning had been applied to identify the latent disease clusters and patient subgroups

(Wanget al, 2020). The finding suggested that it is possible to quantify additional risk
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above what is expected for a particular age and gender by utilizing disease clusters to
discover various potential comorbidities (Wang et al, 2020). In other words, the
existence of certain co-occurring diseases raises the probability of developing a
specific disease, even if the individual is of a certain age and sex (Wang et al, 2020).
Thus, this data can be used to recognize high-risk groups and create more specialized

preventative and treatment plans.

From the result obtained, it can be concluded that patient subgrouping based
on shared traits and risks can be achieved with unsupervised machine learning
techniques (Wang et al, 2020). This strategy can find relationships and patterns in
patient data. Hence, by recognizing patterns and linkages in patient data, and finding
distinct patient subgroups is beneficial for epidemiological analysis and research as
well as enabling personalized care, which increases the effectiveness and efficiency of

iliness prevention, diagnosis, and treatment (Wang et al, 2020).

Based on cancer classification research done by Ayyad, Saleh and Labib
(2019), the researchers proposed that using classification for gene expression data was
challenging as due to the high dimensionality found in the small sample size of gene
expression data (Ayyad, Saleh and Labib, 2019). Even biclustering may face to the
same challenge, but biclustering can aids in addressing the multiple testing issue in the
study of gene expression data, a frequentissue in classification techniques that can
result in overfitting or subpar generalisation to new data (Ayyad, Saleh and Labib,
2019). Hence, classification algorithms are frequently used to group individual
samples into predetermined groups based on a set of input features, but they may not

be helpful for discovering new biomarkers or trends in gene expression data.

2.4.1 Biclustering Algorithm

Biclustering is frequently used in various fields of data matrix data analysis to
find related entities under specific criteria (Liu etal, 2020). Accordingto Gu and Liu
(2008), biclustering of gene expression data looks for regional patterns of gene

expression and biclustering of PPl network is aimed to identify the subsets of
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interacting protein. Based on the finding of Eren et al (2013), performance of the
algorithms is different based on the bicluster model chosen. It is crucial to take into
consideration the pattern of the dataand choosethe correct parameters for each method
(Eren et al, 2013). Hence, the most common algorithms will be studied to identify the

suitable method used for the study.

2.4.1.1 Correlated Pattern Biclustering (CPB)

CPB is a biclustering technique which is used for finding clusters of genes
linked to some target genes of interest (Eren, 2012). According to the finding of Eren
(2012) and Yun and Yi (2013), CPB is predicted to do well on both constants and the
upregulated bicluster model in model experiment to test whether the algorithm can
give complete and perfectresult. However, CPB recovery decreases as the upregulated
bicluster model rises as increased levels of differential expression make it harder to
identify underlying patterns of association between genes (Yun and Yi, 2013). This
behavior makes logical because CPB finds biclusters with high row correlations, which

means CPB is useful for identifying co-expression genes (Yun and Yi, 2013).

Besides that, Eren (2012) stated that CPB is highly sensitive to noise which
lowersthe accuracy of algorithm findings and causes false positive identifications. For
the number experiment, CPB showed little effect on the result (Eren, 2012). The
finding of Yun and Yi in the overlapping experiment for CPB model showed that, the
capacity of CPB to recover biclusters declines as the amount of overlap between
biclusters declines (Yun and Yi, 2013). For your information, number experiment
referred to the number of biclusters used for the experiment while overlap experiment
referred to the overlapping with two biclusters by differentamounts of overlapping

elements in rows and columns.

In conclusion, CPB is performed better even the large numbers of biclusters is
used and the data show higher correlation betweenrows and columns. In contrast. CPB
had the limitations which are sensitivity to noise and low ability to detect the bicluster
that there is highly differential expression. Due to these characteristics, CPB is not

suitable for identifying the biomarkers of esophageal cancer as the datasets used
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needed to detect gene clusters that exhibit differential expression when compared to

normal tissues.

2.41.2 QUBIC

QUBIC is a biclustering technique used in data analysis to discover sets of
genes or traits that display coordinated behaviour which are the genes that work
together to carry out specific functions such as metabolic pathway across a set of
conditions or samples (Renc et al, 2021). Biclustering techniques cluster rows and
columns of a dataset concurrently, and QUBIC uses a Bayesian framework to locate
subsets of rows and columns with comparable behaviour (Renc etal, 2021). Renc et
al (2021) had carried out the running experiment to test the time taken for QUBIC
algorithm to complete the bicluster task based on the given datasets. The results
showed QUBIC able to run faster to perform the bicluster of datasets (Renc et al,
2021). However, Xie et al (2020) stated that QUBIC would be time consuming if large
datasets had been applied to the algorithm (Xie et al, 2020).

Accordingto the study done by Cui et al (2020), the performance of QUBIC
had been evaluated by using different sets of datasets. The results showed QUBIC had
low performance on the experiment. The experiment showed that QUBIC algorithm
had lower average volume of the biclusters found and average correlation coefficient
within a bicluster. However, QUBIC had the highest average mean squared residue
and the average connectivity value, which measures the average number of other
biclusters with a bicluster is connected to when compared to Cheng & Church (CC)

algorithm and the proposed algorithm.

As a final point, QUBIC had the better execution time for biclustering the
datasets. However, when QUBIC applied to the large datasets, the execution time
would be slower. Besides that, the higher average mean square residue and higher
average connectivity value indicates that QUBIC had low accurate and reliable result.
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2.4.1.3 Bayesian Biclustering (BBC)

The Bayesian Biclustering (BBC) algorithm automatically groups the rows and
columns of a dataset into "Checkerboard" clusters that are exhaustive and exclusive
(Pinto, Gates and Wang, 2020). Pinto, Gates and Wang (2020) conducted studies that
evaluated the performance of BBC under various conditions.

Differentdegreesofnoisewere appliedto the dataset by Pinto, Gates and Wang
(2020). According to experimental findings, the biclustering algorithm's accuracy
declines as noise level rises. Due to the noise, which makes it challenging for the
algorithm to recognize bicluster patterns and indirectly causing the performance
accuracy of the BBC algorithm to decrease. Additionally, Pinto, Gates and Wang
(2020) demonstrate that the BBC algorithm takes longer time to run when large
datasets are used. Meeds and Roweis, S (2007) proposed that BBC is a biclustering
algorithm which robust to missing values. Hence, we can conclude that BBC able to
produce an accurate and meaningful results even there are missing values in the

datasets.

However, Do, Muller and Tang (2005) indicated that with the help of Markov
chain Monte Carlo (MCMC) algorithms, bayesian algorithm can deal with missing
data and estimate the posterior probability distribution of unknown parameters given
observed data and missing data. However, the degree and pattern of missingness can
all have an impact on how successfully Bayesian approaches handle missing data. The
accuracy and reliability of Bayesian approaches may be compromised if there is an

extensive amount of missing data (Do, Muller and Tang, 2005).

Taking everything into account, BBC algorithm perform well in lower level of
noise, and has shorter execution time in evaluating small datasets. Besides that, BBC
algorithmable to produce accurate and meaningful resulteven there are missing values
in the datasets. Nevertheless, the existence of many missing values in a dataset might

result in overfitting and false positives in analysis findings.
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2.4.1.4 Binary inclusion-Maximal (BiMax)

BiMax is a simple reference technique that locates biclusters of 1sin a binary
matrix (Eren, 2012). It uses a divide and conquer strategy to iteratively bicluster the
data matrix (Eren, 2012). The BiMax algorithm searches a matrix for submatrices with
only 1s in it (Eren, 2012). These sub-matrices are viewed as possible biclusters, and
the algorithm builds these potential biclusters iteratively by including rows and
columns that have a lot of 1s in common (Eren, 2012). When no additional rows or
columns can be added 1s in the bicluster, the growing process comes to an end (Eren,

2012). This results in a collection of biclusters with a high co-occurrence rate of 1.
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Figure 2.3:  Biclusters of 1's in a Binary Matrix

Accordingto the study done by Bustamam et al (2020), the BiMax algorithm
works well in clustering protein-protein interactions, particularly for binary data
compare to local search framework based on pairs operation and LCM-MBC. BiMax
is the best approach for classifying binary protein-protein interaction data, as
demonstrated by the experiment conducted by Bustamam et al (2020) in identifying
the bicluster on interacting proteins between HIV-1 and humans. Despite that,
Voggenreiter, Bleuler and Gruissem (2012) believed that the BiMax method would
work best with input data that was limited in size. BiMax took longer time to process

large sample size.

Furthermore, Castanho, Aidos and Madeira (2020) indicated that BiMax is
useful and highly quick algorithm capable of detecting simple structures. The BilMax
technique has the drawback of only looking for binary biclusters, which restricts its
capacity to locate useful biclusters in the dataset (Castanh, Aidos and Madeira, 2020).
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This is because discretizing data into binary formis a very particular procedure that is
unable to account for all possible ranges of values in the data (Castanho, Aidos and
Madeira, 2020). Therefore, when the approach is applied to datasets that do not fit
binary bicluster models well, bad results may be obtained (Castanho, Aidos and
Madeira, 2020).

Last but not least, BiMax is very effective at detecting simple structures in
binary data. Additionally, BiMax has been demonstrated to function better with fewer
samples. When the dataset contains continuous data that cannot be transformed into
discrete values, BiMax performs worse as well as finds fewer relevant biclusters on

larger datasets.

2.4.15 Plaid

The value of a certain element is determined by the plaid model's calculation
of a particular submatrix for each cell; this value can be interpreted as the number of
contributions generated by a specific bicluster (Siswantining et al, 2021). According
to the statement made by Siswantining etal (2021), each component of the matrix in a
plaid model indicates the contribution of a certain bicluster to the overall level of gene
expression under a specific circumstance. To be illustrated, the plaid model breaks
down the original matrix of gene expression data into a new matrix that demonstrated

the contribution of a certain bicluster to the overall level of gene expression.

Symmetric Model Plaid Model

Vi V2 V3
N1 +1 +1 +1 IV4
N2| +1 |+2 +2 | +1
N3| -1 |-2 -2 -1
N4l+1 +1 +1

Vi V2 V3 V4
N1 +2 +1 -2 +2 |+
N2l +2 +1 -2 +2 |+
N3l .2 -1 +2 -2 |-

Figure 2.4:  The Working Theory of Plaid Biclustering Model (Henriques and
Madeira, 2015, pp 1-15)

The plaid model's ability to simulate biclusters that may overlap in order to

obtain the correct model is one of its strengths (Siswantining et al, 2021). The plaid
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model enables it to capture more complex patterns in the data than typical bicluster
approachesthat assume non-overlapping biclusters. This enables a more precise and
thorough depiction of the data's underlying structure. The experimental findings and
analysis lead Siswantining et al (2021) to the conclusion that low coherence variance
colon cancer data can be analysed using bicluster analysis on the plaid model. Low
coherent variance in plaid models could be a sign that the model accurately captures

data patterns.

According to Karim, Kanaya and Altaf (2019), spectral and plaid biclustering
model achieved second highest in the performance of average cluster relevance
compared to the proposed algorithm by Karim, Kanaya and Altaf etal (2019) which
has the highest performance of average cluster relevance. For your information, the
average cluster correlation metric assesses how successfully the biclustering method

detects related biclusters in data.

Kocatirk, Altunkaynak and Homaida (2019) conducted an experiment to
compare the quality of biclustering algorithms using data envelopment analysis
methods. Data envelopment analysis can assist to select the most effective parameters
for several algorithms and ranking them according to specified criteria (Kocaturk,
Altunkaynak andHomaida, 2019). Based on the results obtained, plaid model obtained
an overall good performance compared to others biclustering algorithm. In a nutshell,
plaid biclustering model advanced in capturing overlapping biclusters and able to

performance better than other biclustering algorithms.

2.4.1.6 Iterative Signature Algorithm (ISA)

Iterative Signature Algorithm (ISA) is a biclustering algorithm that can
generate overlapping biclusters (Freitas etal, 2011). ISA produces good outcomes on

a number of synthetic and real-world datasets (Freitas et al, 2011).

According to Freitas et al. (2011), codon-pair context maps of sequenced

genomes could use the ISA algorithm approach. ISA can find hidden homogenous
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groups, however errorsand outliers in the dataset can have a big impact on the mean's
ability to quantify centrality (Freitas etal, 2011). The usage pattern of the set of codon
pair can be summed up using the average of the biclusters as a measure of centrality
(Freitas et al, 2011). The means of the biclusters, however, can be greatly altered and
may not accurately indicate group centrality if there are errors or outliers in the data
set that affect the correlation between rows and columns (Freitas etal, 2011). Before
executing ISA under such circumstances, it might be required to employ additional

measures or eliminate mistakes and outliers (Freitas et al, 2011).

However, Supper et al (2007) proposed thata well-known issue with ISA is
that they favour strong signals. The ISA algorithm frequently prioritises strong signals
in the data and may overlook weaker signals or patterns that may be significant but are
less evident (Supper et al, 2007). As a result, the method may detect incomplete or
biased biclustering findings. Furthermore, the experiment done by Sutheeworapong et
al (2012) indicates that ISA algorithm had lower gene coverage and gene overlap.
Greater gene coverage is often regarded as preferable because it indicates that more
genes are being examined, leading to a greater understanding of the biological system
being investigated (Sutheeworapongetal, 2012). Higher gene overlap may be a sign
that biclusters are capturing more widespread gene expression patterns that are shared
by a variety of biological processes. Hence, ISA may not be useful for investigating
datasets with a lot of weak signals or for identifying double clusters with limited gene

overlap.

2.4.1.7 Spectral

A data matrix with a checkerboard structure, which can be thought of as a
composition of constant biclusters in a single matrix, can be used to illustrate the goal
of spectral biclustering algorithms: to discover subsets of characteristics and
conditions (Shaharudin et al, 2019). The technique effectively recognizes these
checkerboard arrangements even when the underlying biclusters are not precisely
aligned using a spectral clustering approach (Shaharudin etal, 2019). As a result, it

may be used to analyze high-dimensional datasets such gene expression data.
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Bicluster visualization was tested in a research study by Liu et al (2022). The
outcomes reveal that when the biclusters are small and the noise level is low, the
spectral biclustering method recovers the real patterns with excellent accuracy.
Spectral biclustering is an effective technique for identifying unique molecular
subtypes in patient populations based on gene expression profiles (Liu et al, 2022). By
clusteringpatients based on gene expression patterns, spectral biclustering can identify
important gene expression patterns that may be related with varied illness outcomes or
treatment responses. The results for patients can be improved by using this data to
create more precise prognostic models and better risk stratification techniques (Liu et
al, 2022).

To compare three or more related groups to see if there are any significant
differences between them, the nonparametric Friedman test is a statistical test
(Branders, Schaus and Dupont, 2019). It functions by ranking the observations inside
each group and comparing the average ranking between groups. If the mean ranks
differ significantly between the groups, there are significant variations between them
(Branders, Schaus and Dupont, 2019). The authors compared biclustering algorithms
using a nonparametric Friedman test. The methods under examination are graded
based on the number of enriched biclusters they produce for each dataset. The result
showed spectral biclustering able to obtain higher enrichment analysis. In conclusion,
spectral biclusteringmethod effective whenallocate to the lower noise level with small

data and able to present greater enrichment analysis.

2.4.1.8 Order Preserving Submatrix (OPSM)

The OPSM is a continuous bicluster that is monotonically increasing or
decreasingwith the degree of gene expression (Maind and Raut, 2019). In other words,
biclusters that exhibit repeated patterns of increased or decreased expression levels
across genes and samples are identified using OPSM. A selection of genesthat are co-
regulated under a subset of circumstances are referred to as having a consistent pattem
(Maind and Raut, 2019).
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Research by Maind and Raut(2019) on column subspace extraction and pattem
recognition demonstrates that OPSM can accurately extract biclusters, extract
biclusters that overlap, and provide stable output. In order to extract the column
subspace, a subset of the original data matrix's columns must be chosen, and in order
to extract patterns from the column subspace, biclusters must be located inside these
chosen columns (Maind and Raut, 2019). This method provides additional flexibility
in discovering biclusters because it identifies biclusters that do not always span all
rows and columns of the original matrix (Maind and Raut, 2019). However, the
performance results of OPSM on synthetic data of column coherent evolution are
unsatisfactory (Maind and Raut, 2019). Column coherent evolution describes a
situation in which samples may be divided into groups and columns (genes) are highly

connected within each group.

To compare methods, which frequently provide inadequate or misleading
information on a single model, each bicluster was evaluated on a synthetic dataset
(Erenetal, 2013). Itturns out that OPSMs do not filter their output, which causes them
to produce a large number of incorrect biclusters and lower their correlation scores.
(Eren et al, 2013) Li (2020) proposed that OPSM cannot adequately analyse gene
expression datasets.

2.4.1.9 Cheng & Church (CC)

Cheng and Church (CC) were the first to propose biclustering for finding
genomes that may overlap and/or exhibit high similarity in gene expression data
matrices (Di lorio, Chiaromonte and Cremona, 2020). Finding the bicluster that
maximises the score function while considering specific constraints is the objective of
the biclustering issue as it is formulated by the CC algorithm framework. (Tanay,
Sharan and Shamir, 2005) In most cases, the similarity of their gene expression
patterns conditional on asubsetis used by the scoringfunction to determine the quality
of candidate biclusters. (Tanay, Sharanand Shamir, 2005) These restrictions guarantee
that the discovered biclusters have a particular dimension, form, or structure (Tanay,

Sharan and Shamir, 2005). The CC algorithm employs a heuristic search approach to
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quickly explore the space of potential biclusters and find biclusters that match the
requirements and optimise the score function (Tanay, Sharan and Shamir, 2005).

According to Yang et al (2003), the CC technique is recognised to have
limitations in discovering big biclusters with high consistency in noisy datasets. The
initialization and ordering of the rows and columns in the data matrix have an impact
on the greedy approach of the algorithm (Yang etal, 2003). This means that the output
of an algorithm can depend on how the data was initially sorted and processed, and
even tiny changes in the row- and column-order can have a significant impact on the
final product. Yangetal (2003) also proposed that the bicluster discovered may not be
the ideal bicluster since the CC technique is vulnerable to local optima. As the CC
algorithmdiscovers more biclusters, itreplaces themwith random data, making itmore

difficult to find larger, more coherent biclusters (Yang et al, 2003).

Accordingto Eren et al (2013), CC have long run times if the settings are not
set properly. CC were successful in identifying a significant number of abundant
biclusters in gene expression data (Eren et al, 2013). Abundant double clusters,
however, might not be as trustworthy or biologically significant (Eren et al, 2013)
.Enriched biclustering enables a more thorough comprehension of gene expression
patterns and their relationship to biological processes, enabling a more in-depth

comprehension of underlying mechanisms (Eren et al, 2013).
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2.5  Summarizing The Biclustering Methods

Accordingto the literature review that had been done, most of the biclustering algorithms have limitations to the higher noise level and

sample size.
Table 2.1: Summarize the Biclustering Algorithms

Biclustering Advantages Disadvantages Citation

Algorithms

CPB e Work well in synthetic datasets e Sensitive to noise e Eren (2012)

e Perform well in large numbers of e Low ability to detect higher e Yunand Yi(2013)
biclusters differential expression

QUBIC e Better execution time e Low accurate and reliable result e Rencetal (2021)
e Xieetal (2020)

BBC e Well-handled missing values e Sensitive to noise level and size e Pinto etal. (2020)
e Meeds and Roweis, S

(2007)
BiMax e Effective for simple structure e Sensitive to size e Voggenreiter et al (2012)
e Limited to discrete values datasets e Castanho et al (2020)
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Biclustering Advantages Disadvantages Citation

Algorithms

Plaid Advanced in capturing overlapped Sensitive to parameters used e Siswantining et al (2021)
bicluster e Karim etal (2019)
Low coherent variance o Kocaturk et al (2019)

ISA Able to find hidden homogenous Sensitive to errors and outliers e Freitasetal. (2011)
group Favor strong signals e Supper et al (2007)

Spectral Able to identify unique molecular Sensitive to noise level and sample e Liuetal (2022)
subtypes size e Branders et al. (2019)
Higher enrichment analysis

OPSM Extract overlapped bicluster Do not filter output e Maind and Raut (2019)
accurately unable to analyse gene expression e Erenetal (2013)
Provide stable output datasets

CC Able to identify large number of Performance limited to higher noise e Yangetal (2003)

bicluster

level
Vulnerable to local optima

Long execution time

e Erenetal (2013)
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2.6 Classification Methods for Gene Expression Data

For the past few years, scientists have been exploring through vast volumes of
gene expression to extract useful knowledge that can help categorize cancers (Ayyad,
Saleh and Labib, 2019). The popular classification methods are Support Vector
Machine (SVM), K-Nearest Neighbours (kNN), neural networks and decision trees.
Hence, the review on the classification methods for identifying potential biomarkers

from gene expression data will be focused on these four methods.

SVM is a well-liked technique for both linear and nonlinear classification
(Uddin et al, 2019). According to Uddin et al (2019), KNN is a nonparametric
technique that determines the class of a new observation based on the k-nearest
neighbours' predominant class. Meanwhile, neural networks are algorithms that are
modelled after the structure and functioning of neural networks in the human brain.
These algorithms can learn from information, identify patterns, and make predictions
or categorizations (Uddinetal, 2019). A decision tree is a tree-based machine learning
technique composed of nodes and edges used to explain the data separation or
classification process in which begins from the starting point till an outcome is
produced (Charbuty and Abdulazeez, 2021).

2.6.1 Support Vector Machine (SVM)

Accordingto Steardo et al (2020), SVM has demonstrated outstanding results
in precisely and accurately diagnosing people with schizophrenia. As the most well-
known and well-established machine learning technology, it is frequently used as a
standard to measure other methods against. SVM is flexible as it can handle
classification and regression tasks (Steardo et al, 2020). However, it should be
emphasised that SVM implementation can be expensive and complexity (Steardo et
al, 2020).

While doing the research on the discovery of biomarker for cancer gene

expression data, researchers found that SVM's ability to handle high-dimensional
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datasets, particularly when the sample size is small compared to the number of
features, is one of the benefits of employing it to classify microarray gene expression
profiles (Almugren and Alshamlan, 2019).However, SVMsrequire a lot of processing
power, especially when working with large datasets or complex models (Almugren
and Alshamlan, 2019).

2.6.2 K-Nearest Neighbours (kNN)

Based on the research of the information from heart disease prediction done by
Uddin etal (2019), KNN can quickly classifies instances and is simple to understand.
Second, it is adaptable to noisy data and capable of handling situations with missing
attribute values (Uddin et al, 2019). Finally, KNN is flexible and can be utilised for
both classification and regression tasks (Uddin etal, 2019). However, the number of
neighbours (k) and the distance metric utilised, which are crucial factors in its

implementation, mighthave an impacton the performance of kNN (Uddinetal, 2019).

Besides that, KNN algorithm has drawbacks (Uddin et al, 2019). The kNN
algorithm is computationally expensive when the number of attributes rises. This is
because kNN need to calculate the distance between the attributes (Uddin et al, 2019).
Furthermore, KNN treats all attributes equally which may consider the less important
features and lacking information about the importance of attributes for effective
classification (Uddin et al, 2019).

2.6.3 Neural Networks

Acrtificial neural networks can capture and simulate complex relationships that
might exist between variables (Uddin et al, 2019). This makes them outstand for
situations where the underlying patterns are inherently nonlinear, allowing them to
identify complex patterns and make accurate predictions (Uddin etal, 2019). Artificial
neural networks (ANN) are flexible and can perform both classificationand regression
tasks (Uddin et al, 2019).
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Artificial neural networks frequently function as "black box" models, which
means that it is difficult to understand or describe exactly how they make decisions
(Uddin et al, 2019). It is challenging to comprehend why the network produced a
specific prediction because of this lack of openness. Moreover, training artificial
neural networks for complex classification tasks or massive volumes of data may be

computationally expensive and time-consuming (Uddin et al, 2019).

2.6.4 Decision Trees

Decision trees have difficulty in gene expression data since there are many
more features than observations (Czajkowski and Kretowski, 2019). Even though
learning algorithms may discover splits that precisely divide the training data, these
splits frequently correspond to noise rather than important patterns (Czajkowski and
Kretowski, 2019). As a result, decision tree techniques frequently result in
uncomplicatedtreesthatsuccessfully identify previously unseenexamples but perform
poorly when applied to the data that the model has not been encountered before
(Czajkowski and Kretowski, 2019).

The decision trees produced a hierarchical structure which is simple to
visualize and analyze, which is helpful for outlining the decision-making process
(Uddinetal, 2019). Second, because decisiontree algorithms can handle various types
of data, including numerical, nominal, and categorical data, it typically requires less
data preparation than other algorithms (Uddin et al, 2019). Decision trees have the
potential to achieve high predictive accuracy by efficiently partitioning the feature

space based on available data (Uddin et al, 2019).
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2.7  Summarizing The Classification Methods

Table 2.2:

Summarized the Selected Classification Methods

Classification
Methods

Advantageous

Disadvantageous

Citation

SVM

flexible

handle high-dimensional datasets

can be expensive and complexity.

require a lot of processing power

Steardo et al, 2020
Almugren and
Alshamlan, 2019

KNN

simple and adaptable to noisy data
capable of handling situations with missing

attribute values.

Performance based on parameter.
computationally expensive

treats all attributes equally

Uddin et al, 2019

Neural
Network

can capture complex relationships.

flexible

difficulty visualizing the decision-
making process.

time consuming

uddin et al, 2019

Decision
Tree

simple to visualize and analyze.
requires less data preparation.
have the potential to achieve high predictive

accuracy

difficulty in gene expression data
splits frequently correspond to
noise rather than important

patterns.

Czajkowski and
Kretowski, 2019
Uddin et al, 2019
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2.8  ldentifying Optimum Number of Cluster

The purpose of clustering is to arrange data points into groups in which the
cluster members are as similar as feasible, and the cluster between clusters are as
distinct as possible (Hayasaka, 2022). This indicates that under optimal clustering,

variation within clusters is low while variation across clusters is high.

The quality metric for the calculation of number of clusters are inertia and
silhouette coefficient (Hayasaka, 2022). Inertia quality metric entails calculating the
sum of squared distances between data points and the centres of each cluster
meanwhile silhouette coefficient seeks to aggregate variation within and between
clusters (Hayasaka, 2022). Among of the approaches to obtain the optimum number

of clusters are elbow method, silnouette method and gap statistic (Hayasaka, 2022).

Accordingto the experimentdone by Hayasaka (2022), the interpretation of
elbow plots is sometimes subjective, the silhouette coefficient and gap statistical
approaches can correctly quantify the number of clusters. Gap statistics, however,

include computations that could not always provide the same result (Hayasaka, 2022).

According to Kumar (2021), the elements that each technique considers while
assessing the quality of clustering are the fundamental distinction between elbow
method and silhouette score. While silhouette scores consider other factors including
variance, skewness, and value differences, elbow approaches primarily concentrate on

determining Euclidean distances (Kumar, 2021).

Elbow Method uses an approach that is clear and straightforward (Kumar,
2021). Furthermore, the EIbow method is an effective computing method that doesn't
need a lot of calculations or iterations (Kumar, 2021). Kumar (2021) also stated that,
If the sum of square error line graph forms an arm, then the Elbow Method is the
suitable method for the finding of optimum number of clusters. Hence, the Elbow
Method will be used for this research. This is because a clear “elbow” diagram was

able to be obtained from the datasets.
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2.9  Chapter Summary

Biclustering approaches had been studied to find the best approach for
assessing gene expression data and PPI networks. After consideration, the plaid model
was chosen as the biclustering technique to identify potential esophageal cancer
biomarkers. The ability of the plaid algorithm to analyze overlapping biclusters using
a matrix factorization method that allows row and column clusters to overlap in order
to reveal deeper and more complete biclusters. Plaid is a suitable method for studying
gene expression data and finding biomarkers because it can provide a more
comprehensive understanding of the underlying biological processes. Furthermore,
plaid shows low coherence variance, which suggests that the gene expression levels
inside the biclusters are strongly correlated and have minimal volatility. This is
advantageous for biclusters because it demonstrates that there is a high correlation
between genes and circumstances in biclusters, increasing the probability that they
represent biologically significant groups. In other words, low coherence variance
suggests functional relationships between geneswithin biclusters and probably shared

biological functions. Research methodologies were discussed in the next chapter.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

The research framework is covered in this chapter. A research framework is
crucial because it provides authors a clear road map and makes sure that any relevant
problems are considered and handled. There will be four phases to the entire study.
The entire process, from the planning of the study to the verification of the findings,
will be clearly explained. The datasets chosen for the study, the performance
measurements employed to calculate the approaches' performance, and the hardware

and software requirements will all be clarified in this chapter.

3.2 Research Framework

A few phases were carried out to ensure full adherence to the study protocol to

accurately identify and gather possible biomarkers for esophageal cancer.

Research planning and initial study were covered in phase one. To determine
the issue as well as the objectives and goals of the research, a review of the relevant
literature was conducted during this stage. The data gathered had been preprocessed.
The second stage wentthrough how the plaid model can bicluster the inputdatato find
possible biomarkers. The third phase classified potential biomarkersand determined
performance accuracy. The chosenbiomarkers were thenbe validated by the biological
knowledge base in a fourth phase to make sure they are susceptible to esophageal

cancer.
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C l )

Phase 1: Research Planning and Initial Study

Literature Review and Set the Goal and Objectives

Identify Problems of The Study Collection of Data > Data Preprocessing

Phase 2: Development of Proposed Biclustering Method

Develop the Plaid Model For Biclustering the Input Data from Gene Expression and Protein-protein Interaction Network

Phase 3: Evaluation of Potential Biomarkers by Classification Model

Applying Support Vector Machine Classification Model to Evaluate the Selected Potential Biomarkers and Analyse the Accuracy of The
Classification Model

Phase 4: Verification of Potential Biomarkers

Verify the Potential Biomarkers with Biological Knowlegdebases and Analyse the Result Obtained

Figure 3.1: Research Framework

3.2.1 Phase 1: Research Planning and Initial Study

To make sure a study is viable, relevant, and solves a key research issue, it is
essential to conduct preliminary research and develop a research plan before starting.
Authors can determine the appropriate plan of study, methodology, data collecting,
and analysis procedures needed to accomplish their research aims by conducting
adequate preparation and exploratory research. Researchers can improve their chances
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of success and decrease the risk that they will waste time on ineffective or unrelated
research issues by carefully preparing and conducting preliminary research.

Figure 3.1 showed thatfour activities are necessaryto carry outfor futurework.
Literature review, problem identification, defining the study's goals and objectives,
collecting data for the study's input, and preparing and normalizing the data are all
tasks that fall within the first phase. A literature review was conducted initially since
it is a crucial step in the study's process, and it allows the author to become
familiar with the topic that desires to explore further. By identifying the appropriate
methods and techniques used by other researchers in similar studies, a thorough
literature review aided in preparing for and carrying out of the author's own research
and helped authors prevent duplicating previous studies. The author had a complete
view of problem areas by analyzing previous issues-related work done by other
researchers. This allowed the author to strategically plan their study. Thus, goals and

objectives can be defined.

In research, data collecting is critical because it acts as the foundation for
analysis and interpretation. Without effective data collection, research findings could
be inaccurate or misleading, and the stated aims of the study would not be met. Data
collection involves finding relevant data sources, choosing appropriate data collection
techniques, and ensuring the accuracy and precision of gathered data. In the context of
gene expression and PPl network analysis, data collecting involves gathering gene
expression data or PPl network data from relevant databases or experimental studies
and ensuring that the data are of high quality as well as relevant to the research subject

under consideration.

Hence, there are two datasets chosen for this study. One of the datasets was
obtained from GEO database which is named GSE20347 while another dataset was
obtained from STRING websites which consists of the human genes. The details of

the datasets had been further discussed under 3.3.
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3.2.2 Phase 2: Development of Proposed Biclustering Method

Data clustering analysis works to group variablesin a data matrix according to
a certain global pattern, signifying a pattern generated in rows or columns to be
considered. Bicluster analysis, in contrast to cluster analysis, seeks to identify regional
patterns in huge data matrices (Siswantining et al, 2021). According to Siswantining
et al (2021), plaid modelling is a biclustering technique that sums the values given by
many overlapped biclusters to indicate the value of each element in a data matrix. For
futher clarification, plaid model allows data points to be the members of numerous
biclusters with various intensities compared to other biclustering algorithm. This
enables plaid models to capture complex patterns in the data, such as biclusters that

overlap or have varied sizes.

The Plaid model can be thought of as a method of breaking down the original
data matrix into a collection of biclusters, each of which represents a distinct pattem
in the data, and then using these patterns to reconstruct the matrix. The rebuilt matrix
can be used to visualise the relationships between various patternsand to identify the

genes or traits that each pattern most closely resembles.

The general flow of the plaid model had been further discussed in 3.4.

3.2.3 Phase 3: Evaluation of Potential Biomarkers by Classification Models

With the use of data mining, classification is a machine learning technique that
identifies higher-leveland more advanced information by predictingand/or classifying
data into specified classes or groupings (Otchere etal, 2021). Based on the finding of
literature review, SVM will be applied to the selected potential biomarkers and the
accuracy of performance will be calculated by confusion matrix. Support vector
machine can be said as a modern machine learning method for efficiently classifying
high-dimensional into a smaller group of datasets (Ozer et al, 2020). This process is
an effective tool for classification tasks since it rapidly divides subgroups (Ozer et al,
2020).
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SVM performs well, particularly when dealing with situations where there are
two distinct groups (Keerthana et al, 2023), like tumour samples and normal samples.
The goal is to find the best boundaries to separate different data classes, increasing the
distance between them while lowering classification mistakes (Keerthana et al, 2023).
By using this procedure, support vector machines can efficiently categorise

unobserved data points according to their underlying features (Keerthanaet al, 2023).

3.24 Phase 4: Verification of Potential Biomarkers

During the classification process, the chosen biomarkers underwent training
and testing. The biological knowledge base was subsequently used to validate the
biomarkers with the highest accuracy. Biological knowledge bases are enormous
collections of biological data, including gene sequences, protein activities, pathways,
and disease connections which can be found in the NCBI and UniProt. Researchers
able to validate the biomarkers for a certain disease by searching the information of
genes and related experiments that had been done previously. In general, combining
biomarker data with biological knowledge bases can offer insightful information about
the underlying biology of a disease or biological process and aid in the identification

of prospective targets for drug development and personalized therapy.

3.3 Datasets

Two datasets were applied in this research. One of the datasets obtained from
Gene Expression Omnibus (GEO), which is named GSE20347. It is data of gene
expression in esophageal cancer. GSE20347 consists of 34 samples, where 17 of them
are tumors and 17 of them are normal. The dataset illustrated the gene expression
values of the samples. The gene symbol (red color box) showed the genes are involved

in the development of esophageal cancer. The GSM (blue color box) is the sample.
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Gene

Symbol GSM509787 _E1507N.CEL GSM509788 E1520N.CEL GSM509789 E1521N.CEL GSM509790_E1532N.CEL | GSN

DDR1
o I 10414177 10250918 10.046812 10324734
MIR4640
RFC2 6.839942 6511217 6.683490 6.588914
2 HSPAB 4752045 5115767 5040198 5210714
&3] PAX8 7.561694 7953933 7900248 7.956209
4 | GUCA1A 3596421 3.603976 3.435885 3.561303
22272 NaN 5787397 5913325 4450484 5.808386
22273 NaN 7330281 7.202484 4.830335 7121127
22274 NaN 3363339 3.409699 3.204732 3463503
22275 NaN 3.768794 3.853740 3.716894 3.802079
22276 NaN 3479989 3.491986 3473315 3471217

22277 rows x 35 columns

Figure 3.2: Gene Expression Data of the GSE20347

Meanwhile, another dataset obtained from Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING), illustrated the PPl network of human genes.
There are four different databases, Reactome, KEGG, DISEASES and Monarch
presented in the STRING for the PPl human disease network. Hence, the data of all
databases had been used for further interpretation. There wasatotal of 3506 genes that
were visible in the PPl network. Both data can be obtained from the link given
respectively under Chapter 1. There are nine types of evidence used in STRING to
calculate the score for the PPI network, which are neighborhood on chromosome, gene
fusion, phylogenetic cooccurrence, homology, coexpression, experimentally
determined interaction, database annotated and automated textmining. Nine types of
evidence will then be calculated for the combined score. Node 1 and node 2 (red color
box) showed the genes that are interacting while the combined score (blue color box)

indicated the evidence score of how likely two genes are interacted with.

#nodel node2 combined score
0 AAAS VIP 0.444
1 AAAS MC2R 0463
2 AAAS LIG1 0497
3 AAAS POMC 0.566
4 AAAS  POM121 0.600

Figure 3.3: The PPI Network of the Human Genes that Showed in Tabular Form
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Table 3.1:

Features Description of PPl Network

Features

Description

Node 1, Node 2

Proteins In the Network

Node 1 String ID, Node 2
String ID

Unique Identifier for The Proteins

Neighborhood on

The probability that two proteins have similar

Chromosome functions if their genes are located adjacent to one
another in the genome.
Gene Fusion The probability that two proteins are functionally

linked if they are encoded by the same gene that has

been fused in a different organism.

Phylogenetic Cooccurrence

The possibility that two proteins are functionally
connected if their genes co-occur in different

genomes.

Homology

If two proteins show significant sequence similarity
across several species, they have the potential to
have similar activities or engage in similar

biological processes.

Coexpression

The probability that two proteins are connected
functionally if their genes are expressed in many

samples.

Experimentally Determined

Interaction

The probability that two proteins are connected
functionally if high-throughput studies demonstrate

their physical interaction.

Database Annotated

A confidence score provided to an interaction based

on its presence in other biological databases.

Automated Textmining

If two proteins are discussed together in the
scientific literature, the probability that they are

functionally connected increases.

Combined Score

A confidence score for the interaction of two
proteins based on the combination of nine types of

evidence.
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Both datasets can be retrieved from below link:
e GSE20347

o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20347
e Search Tool for the Retrieval of Interacting Genes/Proteins

o https://string-
db.org/cgi/network?taskld=bZaja8QNWEY T&sessionld=b544iU
OcTsPN

o https://string-
db.org/cgi/network?taskld=bizm4Ua9npug&sessionld=bQFazIXL
PtDv

o https://string-
db.org/cgi/network?taskld=bDQI'Y5BHXwO7&sessionld=bsqRO
gYKpLfM

o https://string-
db.org/cgi/network?taskld=b AN6Y LiXiScO&sessionld=bsqROgY
KpLfM
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3.4

the input data (Dataset with Selected Gene from Gene Expression and PPl Network)
that had done the data preparation step. This residual dataset will exclude the
background layer that underlying in the input data. Then, the algorithm will retrieve
the rows and columns randomly from the residual to create a new layer that consists
of the common behaviour. The significance of the layer will be tested by calculating
the sum of square of data points between residual and layer. The data point considered

as significant was retrieved out to form a bicluster. When there are four groups of

The General Flow of Plaid Model

/

I,‘ﬂ PPI Network /

=)
| Start
N :

A

]
/f Dataset with Selected Gene /
/ From Gene Expression and ff‘

/
J

Y

Create Residual of Dataset
‘Without Background Layer

Y

Create A Layer that Consists
of Common Behaviour

Y

Compare the Sum of Square
Between Residual and Layer

Y

/ Form Bicluster ff

Figure 3.4: General Flow of Plaid Model

The basic concept of the plaid model is it formed a residual dataset based on

biclusters is formed, then the process will be terminated.
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3.5 Performance Measurement

In this research, the performance of the plaid biclustering algorithm was
evaluated by the ten-fold cross validation and confusion matrix through the SVM
classification. Ten runs of the experiments were carried out to obtain a more reliable
measurement of the performance for the datasets. The dataset was divided into 60 to
40 percent of training set and testing set respectively with the stratified split of target
variable. Then, biological context verification will be used to verify the selected
biomarker. Sum of Square Method will be used in the Elbow Method to find the

optimum number of biclusters.

3.5.1 Confusion Matrix

A confusion matrix is a table that compares the predicted classes in a test
dataset to the actual classes to evaluate the effectiveness of a classification algorithm
(Luque et al, 2019). The number of true positive, true negative, false positive and

false negative predictions are indicated (Luque et al, 2019).

Table 3.2: Confusion Matrix

Predictive Positive Predictive Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Table 3.2 showed the confusion matrix. True Positives are the number of
correctly predicted positive instances (Vujovi¢, 2021). False Positives is the number
of incorrectly predicted positive instances, True Negative is the number of correctly
predicted negative cases while False Negative is the number of incorrectly predicted
negative instances (Vujovi¢, 2021). Accuracy and precision of the methods can be

evaluated by using confusion matrix. Accuracy is the percentage of accurate
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predictions the model makes is measured and the formula is
(TP+TN)/(TP+TN+FP+FN) (Vujovi¢, 2021). Meanwhile, precision is the ratio of
accurate positive predictionsto all positive predictions made by the model is measured
and the formulais TP/(TP+FP) (Vujovi¢,2021). Recallisthe ratio of accurate positive
predictions to all positive cases and the formula is TP/(TP+FN) (Vujovi¢, 2021).
Accordingto Scikit Learn (n.d), F1 score is a measurement for evaluating the overall
performance by providing the balance between of precision and recall and the formula

is (2*precision*recall)/ (precision + recall).

3.5.2 Biological Context Verification

The goal of this validation procedure is to make sure whether there is present
study or other proof linking the identified gene to the targeted potential biomarkers of
EC. Author wished to verify the potential significance of the identified genes and
increase the confidence in the findings by undertaking a thorough search. The
biological context validation stage ensured that the genes discovered are not simply
based on their existence in the biclusters but are also supported by scientific data in
the literature. With a more solid foundation for further evaluation and interpretation,

the outcomes are more reliable and legitimate because of this thorough methodology.

3.5.3 Sum of Square Method

The sum of square is a method to calculate the dispersion of data points around

the mean (Nainggolan et al, 2019). The formula of the sum of square is as below.

n 3.1
SSE = Z(Xi _ X2 G
i=0

Where:

SSE: sum of squared error
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> ,O: summation of the data.
X;: means values the ith data.

X: means values for all data.

Accordingto the equation above, the data will be used to calculate the mean
value of each row and obtain the mean value for all the data. By subtracting the rows’
mean value with the mean value for all the data, getting the square of the differences

and summing them together, the SSE value for the data will be able to obtain.

Higher SSE values indicated greater dispersion and variability within clusters,
potentially indicating insufficient clustering. In contrast, a low SSE score suggested
less dispersion and variability within clusters implied thatthe data points in the dataset

are more closely clustered.
3.6 Hardware and Software Requirements

This project requires Microsoft Visual Studio and R Studio. Python code can
be developed using Microsoft Visual Studio. On the other hand, R Studio is an
integrated development environment for R programming. Microsoft Excel needed to
be used for analyzing data.

Specific hardware needs must be considered for this study to ensure efficient
analysis and minimized time complexity. The minimum hardware requirements for

this study are RAM 4GB, Intel Core i5 Processor and Windows 10 operating system.

3.7  Chapter Summary

In a nutshell, this chapter explained the research framework as well as the
activities needed to be done in each phase. The author will consider all the phases to
achieve the goals of this research. The datasets used for this study have been illustrated
and explained. The measurement of the effectiveness of the algorithms to identify the
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potential biomarkers had been shown in this chapter as well as the hardware and
software requirements needed for efficiency analyzation. Next chapter will discuss the

development of the proposed biclustering method.
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CHAPTER 4

RESEARCH DESIGN AND IMPLEMENTATION

4.1 Introduction

In this chapter, a step-by-step procedure had been laid out for identifying
possible biomarkers for EC, starting with dataset preparation, and ending with
validation. Finding genes with a strong association to EC and the potential to act as

biomarkers for the condition is the aim.

Figure 4.1: Development Process
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4.2  Data Preparation

Data preparation is important to transform the dataset into an appropriate form
for analysis and interpretation. There are two datasets used in this study. Both datasets
were obtained from GEO and STRING respectively. The GEO dataset contains 22278
rows of genes, and 34 columns of samples. For STRING, there are 3506 human genes

showing the relationship between each other.

4.2.1 Data Pre-processing

Data preprocessing is an important step in ensuring the input data is clean and
formatted before analyzing. The missing genes in the datasets had been removed and
eliminated to improve computational efficiency. Besides that, the genes which
occurred more than one will then be calculated to obtain the mean values. The
dimension of the dataset which had been removed the missing genes and obtained the

mean values of the duplicated genes became 13514 genes x 34 samples.

4.2.2 Gene Selection Process

The human genes in the PPl network are then to be retrieved and act as
secondary genesdata. The genesin the gene expression dataactas primary genes data.
Then, human genes were used to select the genes in the gene expression data. Hence,
the new dataset contained only the genes which occurred in the gene expression data
and PPl network. After gene selection, the dimensions of the datasets will be 2735
genes x 34 samples. PPl data provided the full understanding of the connection
between genes’ activity. Filtering the gene expression dataset by the PPI data enabled
to only focus on the important underlying patterns of gene expression dataset and
indirectly enhanced the performance of the model to identify the possible biomarkers
of EC.
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Further explanation of gene selection process can be referenced on the Figure
4.3. A gene list had been generated from PPI data. Gene 1, Gene 2 and Gene 4 from
gene expression datasethad been selectedand form an inputdata. This is because Gene
1, Gene 2 and Gene 4 were found in the gene list while Gene 3 was not found in the

gene list and been eliminated to form the input data.

Gene Expression Dataset PPI Data
Gene |Sample 1| Sample 2 Node 1 Node 2 |Combined Score
Gene | Gene 1 Gene 2
Gene 2 Gene 1 Gene 4
Gene 3 Gene 2 Gene 1
Gene 4 Gene 2 Gene 4

Get the Gene List From PPI Data
[ Genel | Gene2 | Gene4

Select The Data From Gene Expression Dataset Based On Gene List

Gene Sample 1 | Sample 2

Gene 1

Gene 2

Gene 4

Figure 4.2: Gene Selection Working Process

Syg:ar::l GSM509787_E1507N.CEL GSM509788 E1520N.CEL GSM509789 _E1521N.CEL GSM509790_E1532N.CEL
0 HSPAG 5.305487 5.608065 5433042 5.556593
1 GUCA1A 4.165863 4.085270 3.955792 4.104240
2 CCL5 7.191147 7.422020 7.854530 6.542158
3 MMP14 6.839935 6.682461 6.629862 6.754795
4 TRADD 6.915792 6.779200 6.876954 7.094586

Figure 4.3: Example of Input Data
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4.3  ldentify the Optimum Number of Clusters

The elbow method is a technique which is used to find the optimal number of
clusters. The conceptis finding the elbow point of the sum of squared error and the
number of clusters. Sum of squared error is the sum of squared distance for each data
point. KMeans algorithm had been used in order to perform the elbow method.
KMeansalgorithm in elbow method isto group the data pointsaccordingto the nearest
distance. Then, the distances of a group of data were calculated for the sum of square

error. Figure 4.4 demonstrated that the optimum number of clusters is four.

When a smaller number of clusters was used in the biclustering algorithm, the
biclusters were losingthe importantfeaturesandpatternsof the dataset. This is because
there are less representations of the gene expression dataset to perform in the bicluster
cause the interactions between the genes across the sample data to be ignored.
However, the biclusters were capturing more noisier data when excessive number of
clusters was used in the biclustering algorithm. The increasing of noisy data in the
biclusters resulted in the difficulty to analyze and differentiate the important features
from the irrelevant data. In conclusion, identify the optimum number of clusters is
important to help the biclustering algorithm in capturing the gene expression pattems
of the data.

80000 -

60000 1

SSE

40000 1 Elbow Point
20000 1 /
\‘__\
1 2 3 4 5 6 7 8 9 10

Number of Clusters

Figure 4.4: Optimum Number of Cluster by Using Elbow Method
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4.4 Applying Biclustering Algorithm

Figure 4.5 shows the general flows of the Plaid Biclustering Method. The

explanation of each step will then be further discussed.

Define Common Effects Shared By
All Genes And Samples

[— Substract Common Effects > Obtain a Residual Dataset ‘

ins to Init

Create A Layer with Common Effects
Shared By All Genes and Samples

J

Calculate Sum of Square of Residual Obtained the Difference of the
and Difference ~ Residual a

Form A Bicluster

Figure 4.5: Basic Architecture of Plaid Biclustering

4.4.1 Create Background Layer from Dataset with Selected Gene for Pattern

Capture

There is a background layer in the Plaid bicluster model. Background layers in
Plaid models indicated common effects shared by all genes and samples. In this step,
the mean, row effects and column effects of the dataset with selected gene will be
calculated. This method captures both the overall average behavior of the row and
column divergent by computing row and column effects. By forming the new layers,
particular effects can be separated from background layersto show biclusters that are

specific to a condition or treatment.

4.42 Substract Background Layer/Common Effects

By subtracting the background layer from the dataset with selected gene, the

algorithm effectively removed the common impact represented by the background
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layer from the dataset of selected gene. This procedure updates the dataset of selected
genes to concentrate on any remaining precise changes of the genes’ activity across

sample data.

4.43 Formed A Collection of Bicluster

The process required in finding coherent groups of genes and samples,
capturing their shared behavior in a common layer, verifying that this behavior is
meaningful, and finally classifying these groups as biclusters if specific criteria are

met. Using this method, important features were obtained.

4.4 3.1 Run K-Means to Initialize Rows and Columns

K-Means algorithm is a popular partition method to define the dissimilarity
between the points (Sinaga and Yang, 2020). As a result, expression patterns in genes
and samples by using K-Means algorithm were comparable. These expression pattems
showed genes that are co-regulated in specific situations or samples that react to
stimuli in a comparable way. In this study, the K-Means algorithm was used to divide
rows and columns, effectively breaking up the dataset into smaller parts with similar

features. At this stage, the rows and columns for the new layer can be initialized.

4.4.3.2 Create A Layer with Common Effects Shared by All Genes and Samples

After the rows and columns are initialized, a new layer was formed. This layer
represented the common effects of all genes and samples in the dataset. It was
constructed by averaging the residuals and combining row and column effects. To
elaborate, averagingthe residuals was to determine the mean value of the entire dataset.
The row effect reflected the mean value of each row, whereas the column effect

indicated the mean value of each column. Essentially, this layer provides the overall
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behavior observed in the subset of data determined by the clusters created in the
previous stage.

4.4.3.3 Sum of Square

In order to ensure that the common behaviors observe were meaningful rather
than just random occurrences, the variants in the residual (after subtracting common
effect layer by dataset with selected gene) to those captured by the common layer had
been compared. The difference of residual and layer was calculated. Then, the
differences and the residual were calculated to obtain their sum of square value. If the
pruning threshold value is higher than the sum of square of the differences, it means
that the layer does capture enough diversity in the data and is thus significant.

4.4.34 Form Biclusters

After the significant data points been selected, a bicluster layer is formed. A
collection of genes and samples that showed similar behavior or patterns in the dataset
were represented by this layer. The bicluster layer wasthen added to the layer list, and
the procedure continueto search for further bicluster. Figures below show the example
of the bicluster that had been formed. A total of four biclusters were formed in this

study.

Gene Symbol TMEM3%9A NUP107 TMEM38B PBK ASPM  NELFCD DNMT3B TBL1XR1 GINS2 COL5A2
GSM509804_E1507T.CEL 6.611383 9.726017 5445221 7313210 7.352215 8965812 6.870785 6.893274 7324547  9.898811
GSM509809_E1542T.CEL 6.389347 8.623677 4765128 7.265171 8.088150 8.763703 5.790180 5530707 7.380882  8.929217
GSM509810_E1546T.CEL 6.724950 8185211 5477874 8210063 7.910408 9619201 6.787680 7.152694 7.778961 10.010738
GSM509812_E1584T.CEL 6.587234 8930046 4597372 8368051 8356823 8400663 6.114453 6503139 8567287  8.953696
GSM509813_E1589T.CEL 6.583535 9.160049 6.840389 8215945 8576583 9.793823 8.950951 7.235061 9.331082  9.496884

Figure 4.6: Bicluster 1
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Gene Symbol DENND1B RNF39 SLC27A6 GIPC2 EPB41L4A ADAMTSL4 RIPK4 UBAP1 VPS37B CSNK1E
GSM509803_E2644N.CEL 9.025555 8580828 4.229821 5.761416 5.770840 5621589 10616623 8.803706 9.253934 7.787345
GSM509804_E1507T.CEL 8.202442 6716919 4.103199 3.446680 4413280 5258764 9521838 7.682166 6.960880 7.428256
GSM509805_E1520T.CEL 7325726 5681840 3.881914 3.485505 4.465795 5.194590  7.898191 7.109491 7.278069 7.222471
GSM509806_E1521T.CEL 8.159822 5902807 3.941313 3.378748 4.152978 5104112 8974263 7.553683 8.003548 6.968401
GSM509809_E1542T.CEL 8361134 6493334 4079763 3.801562 4456992 5741768 8988443 7.181832 8.338481 7.648359

Figure 4.7: Bicluster 2
Gene Symbol DVL3 EPHB4 APOC1  LAMB3 HOXD11  ANO1
GSM509819_E1796T.CEL  7.691792 7516879 8.240716 10.040889 4.567577 4450293

Figure 4.8: Bicluster 3

Gene Symbol

NREP
GSM509816_E1614T.CEL  7.82422 8.918272

HEXB

EPHB4

KIF3B

BRCA1 SAP30
7471044 6.550222 6.12884 5130646 9.079471 9.57014 838678 6.323455 6.883904

PTK2 LAMB3

MBD4 CHN1

ALMS1 HOXD11

BANP

571802 7.740366

Figure 4.9: Bicluster 4

4.5 Performance Measurements

A SVM classifier was used to discover potential EC cancer biomarkers from

the collection of biclusters. However, the biclusteringresultindicated thatthe retrieved

sample is cancerous. The gene expression dataset used for biclustering algorithm after

the data preprocessing and the gene selection process consisted with 17 normal

samples and 17 cancerous samples. This balanced dataset suggested that the bias of

the biclustering algorithm toward cancer cases can be denied. The plaid model was to

discover the key features of the patterns of genes. Hence, the resulting biclusters that

only consisted of the cancerous samples data is due to the gene expression values that

presented in the data were showing stronger expression patternsthan normal samples.

The figures below showed the bicluster data with the ‘Target’ class.

52




Gene Symbol
GSM509804_E1507T.CEL
GSM509809_E1542T.CEL
GSM509810_E1546T.CEL
GSM509812_E1584T.CEL
GSM509813_E1589T.CEL
GSM509815_E1610T.CEL
GSM509816_E1614T.CEL
GSM509817_E1635T.CEL
GSM509818_E1709T.CEL
GSM509819_E1796T.CEL

NUP107
9.726017
8.623677
8.185211
8.930046
9.160049
10.200163
9.186521
9.105222
9.104914
9.671777

TMEM38B
5445221
4.765128
5477874
4597372
6.840389
6.290956
5.895004
5.922400
5.666086
6.246486

PBK
7.313210
7.265171
8.210063
8.368051
8.215945
7.325244
8.165070
8.535196
7.930660
7.543486

ASPM
7.352215
8.088150
7.910408
8.356823
8.576583
9.338510
9.464792
8.996614
8.449101
9.275292

NELFCD
8.965812
8.763703
9.619201
8.400663
9.793823
9.725768
8.760688
9.897316
9.843952
9.300892

DNMT3B
6.870785
5.790180
6.787680
6.114453
8.950951
6.838957
6.958920
6.844505
7.864205
7.719712

TBL1XR1
6.893274
5.530707
7.152694
6.503139
7.235061
8.715199
7.352432
7.660548
6.703331
6.968967

GINS2
7.324547
7.380882
7.778961
8.567287
9.331082
9.070411
8.375379
8.854069
8.901941
8.497313

COL5A2
9.898811
8.929217

10.010738
8.953696
9.496884
8.867885

10.165669

11.291970
9.793506
9.826365

Target

Figure 4.10: Example of Bicluster 1 with Target Class

Gene Symbol
GSM509803_E2644N.CEL
GSM509804_E1507T.CEL
GSM509805_E1520T.CEL
GSM509806_E1521T.CEL
GSM509809_E1542T.CEL
GSM509810_E1546T.CEL
GSM509811_E1566T.CEL
GSM509812_E1584T.CEL
GSM509814_E1603T.CEL
GSM509815_E1610T.CEL
GSM509816_E1614T.CEL
GSM509817_E1635T.CEL
GSM509818_E1709T.CEL
GSM509819_E1796T.CEL

RNF39
8.580828
6.716919
5.681840
5.902807
6.493334
6.252399
5428539
5.950275
5662010
5.830913
6.049930
6.446707
6.393301
5434447

SLC27A6
4.229821
4103199
3.881914
3.941313
4.079763
3.730487
3.798422
3.698107
3.787020
4.241176
3.574875
3.693587
3741121
3.656964

GIPC2
5761416
3.446680
3.485505
3.378748
3.801562
3.906003
3.706377
3.992634
4.987507
3.991872
3.648740
3.531805
4.004577
5455840

EPB41L4A ADAMTSL4
5.770840 5.621589
4.413280 5.258764
4.465795 5.194590
4.152978 5.104112
4.456992 5741768
4.328748 5.218253
4.186752 4925162
4.286096 5.046298
4451226 4.990375
3.721478 4925162
4.196909 5.024340
4.062639 5.198883
4.267456 4916629
4.181800 5.377791

RIPK4
10.616623
9.521838
7.898191
8.974263
8.988443
9.324331
8.660770
9.978480
10.032413
8.234292
8.930225
8.526820
8.669479
7.570866

UBAP1
8.803706
7.682166
7.109491
7.553683
7.181832
7.611860
7.062897
7.064077
8.168227
6.871717
7.779759
8.272057
7.874860
7.222414

VPS37B
9.253934
6.960880
7.278069
8.003548
8.338481
6.452536
6.387506
7.659996
8.026121
6.611458
7.651306
7.553935
7.918919
7.007866

CSNK1E
7.787345
7.428256
7.222471
6.968401
7.648359
7.171389
7.272552
7.070365
7.377919
6.552709
7.266086
6.904186
6.861825
6.941757

Target

Figure 4.11: Example of Bicluster 2 with Target Class

Gene Symbol
GSM509819_E1796T.CEL 7691792 7.516879 8.240716

DVL3

EPHB4

APOC1

LAMB3 HOXD11
10.040889 4567577 4.450293

ANO1

Target

Figure 4.12: Bicluster 3 with Target Class

Gene Symbol

NREP

HEXB

EPHB4

KIF3B  BRCA1
GSM509816_E1614T.CEL  7.82422 8918272 7471044 6.550222 6.12884 5130646 9.079471

SAP30 PTK2

LAMB3
957014 838678 6.323455 6.883904

MBD4

CHN1

ALMS1

HOXD11 BANP
571802 7740366

Target
1

Figure 4.13: Bicluster 4 with Target Class

451 Prepare the Gene Expression Dataset for Classification

Since the biclusters only consisted of cancerous samples, hence the data cannot

undergo the classification directly. This is due to the classification required to leam

the data between different targets. To enable the biclusters for the classification

purpose, a few of steps had been carried out for the determination of model’s
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performance. Figure 4.14 showed the flow on classifying the genes that had been
extracted from bicluster.

)
/

/ /
Start | Gene List Extract From f Filter the Gene Expression Form Training Set and Testing
ar / Bicluster / Dataset Based On Gene List | Set
/ /

L

) \,
/

/ f
/ /
4—/ Perform Evaluation //47 Generate Confusion Matrix — |«—{ Apply SVM Classifier
/
/ /
&

Figure 4.14: The Flow of Classification

The goal of biclustering algorithms was to discover key features by showing
patterns in gene and sample data. Thus, the genes found inside the bicluster were
important indicators that predictive of EC cancer. It indicated that these genes exhibit
patterns that implied their involvement in disease. Hence, the genes that found inside
the bicluster were used to filter the Gene Expression Dataset. Furthermore, some genes
appearred in multiple bicluster which means these genes were playing an important
role in the development of EC. To improve classification results, these genes that
occurred in more than one bicluster were used to filter the Gene Expression Dataset

for another classification process.

In summary, three Gene Expression Datasets were used to develop SVM
classifiers. The datasets retrieved for classification were illustrated in the images
below. Figure 4.16 displayed the Gene Expression Dataset which only included genes
from biclusters and consisted of 34 samples and 285 genes. Figure 4.17 represented
the Gene Expression Dataset which contained genes that occurred in more than one
bicluster and consisted of 34 samples and 3 genes. Meanwhile, the Original Gene
Expression Dataset which included 2735 genes, and 34 samples was displayed in
Figure 4.18.
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Gene Symbol NELFCD DNMT3B RIPK4 TBL1XR1 UBAP1 GINS2 VPS37B COL5A2 CSNK1E Target
GSM509787_E1507N.CEL  8.847780 5429582 10.528422 6.103538 8576635 6.942437 0.204626 5.803623 7.330217 0
GSM509788 E1520N.CEL  8.486673 5.233733 10.102096 5.805960 8265671 6.760712 7.639002 5.855633 7.400418
GSM509789 E1521N.CEL 8597308 5480147 10313087 5571494 8563540 6950697 8970822 6742893 7.682231
GSM509790 E1532N.CEL 8602311  5.228284 10.123108 4.935344 8577154 6846777 9346425 5990346 7.277551
GSM509791_E1535N.CEL  8.247174  5.252625 10470718 4.991667 8.115302 6.561701 8.833978 5726995 7.696482

o o o o

Figure 4.15: Example of Gene Expression Dataset that Involved Genes Extracted
from Biclusters

Gene Symbol EPHB4 LAMB3 HOXD11 Target
GSM509787_E1507N.CEL  6.892630 8.098309 4.216160 0
GSM509788_F1520N.CEL  6.778301 6.880918 4.863400
GSM509789_F1521N.CEL  7.016927 8.011573 4.607442
GSM509790_FE1532N.CEL  6.984915 7.639520 4.455296
GSM509791_E1535N.CEL  7.114578 7.014760 4367265

o o O O

Figure 4.16: Example of Gene Expression Dataset that the Genes that Occurred in
Multiple Biclusters

Gene Symbol TBC1D2 B4GALT7 CASP8AP2  NACA2 TRDN SCAF4 LAMA1 FBXO031 SLC44A1 Target
GSM509787_E1507N.CEL  7.765013  5.949763 7.054392 3451194 3389328 6.000083 4591470 6167321 6.157059 0
GSM509788 E1520N.CEL  7.297379  5.828337 6.838957 3.677271 3.281392 5.524395 4.637121 6.635602 6.376391
GSM509789_E1521N.CEL  7.498661 5.811177 7229369 3575415 3498269 6.353812 4658779 6359670 5.889888
GSM509790_E1532N.CEL  7.672872  5.988737 7151789 3.647739 3266002 6€.034053 4.482420 6408367 6.167377
GSM509791_E1535N.CEL 7479567  5.652972 6.965022 3.517448 3465066 6.884892 4.618102 6.108703 6.840216

o o o o

Figure 4.17: Example of Original Gene Expression Dataset

4.52 Apply SVM Classifier to the Gene Expression Dataset

The dataset was split into features and the target variable in order to apply the
SVM classifier. The final column named “Target” identified as the target variable
while other columns were chosen as features. Subsequently, the dataset was divided
into training and test sets, with a 60 percent training to 40 percent test ratio. The
performance of a linear SVM classifier was evaluated using a ten-fold cross validation
technique. Cross-validation scores were computed, and predicted labels were obtained
for each fold. A confusion matrix was also created to evaluate the classifiers
performance. Furthermore, different performance indicators, such as accuracy,
precision, recall, specificity, and F1 score, were used to evaluate the classifiers
effectiveness. Tables below show the performance of the SVM classifier foreach Gene

Expression Dataset based on ten-fold cross validation and confusion matrix.
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Table 4.1: Performance Evaluation of Gene Expression Dataset Based on 10-Fold
Cross Validation

Gene Expression Dataset That Involved Genes
In All Bicluster Occur In More Than Original Dataset
One Bicluster
10-Fold Cross Validation
Fold 1 1 1 1
Fold 2 1 1 1
Fold 3 1 0.75 1
Fold 4 1 1 1
Fold 5 1 1 1
Fold 6 0.6667 1 0.6667
Fold 7 1 1 1
Fold 8 1 1 1
Fold 9 1 1 1
Fold 10 1 1 1
Average 0.9667 0.975 0.9667

Table 4.2: Performance Measurement of Gene Expression Dataset Based on Confusion
Matrix

Gene Expression Dataset That Involved Genes
Metrics o In M h
In All Bicluster ceur in viore 1han Original Dataset
One Bicluster
Accuracy 0.9706 0.9706 0.9706
Precision 1 0.9444 1
Recall 0.9412 1 0.9412
Specificity 1 0.9412 1
F1 Score 0.9697 0.9714 0.9697
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4.5.3 Verify the Selected Potential Biomarkers

As the classification accuracy for three datasets was almost the same, a t test
with significance level of 0.05 was conducted on the accuracy values obtained from
multiple runsto analyze the relationship of three datasets. The results of the t-test were

shown below.

T-test between Genes In All Biclusters and Genes Occur in Multiple Biclusters:
T-statistic: ©.8847, P-value: ©.3880@

T-test between Genes In All Biclusters and Original Dataset:
T-statistic: o.ee00, P-value: 1.0000

T-test between Genes Occur in Multiple Biclusters and Original Dataset:
T-statistic: -@.8847, P-value: ©.288@

Figure 4.18: T-Test Result

The result of SVM classifier and t-test indicated that the gene expression
dataset that involved genes that occurred in more than one biclusters achieved the
better result. Hence, the genes in this dataset were further validated with the biological
knowledgebases.

4.6  Chapter Summary

In conclusion, there are numerous critical phases involved in the process of
finding possible EC biomarkers. The Plaid biclustering algorithm was used to extract
four biclusters, each of which contained a number of members. The final objective of
the research is to achieve better classification accuracy when SVM classification
model is applied to different Gene Expression Dataset. Additionally, the chosen
potential biomarkers must show a strong correlation with EC, demonstrating their
applicability in the context of the disease. This study seeks to understand and identify
useful biomarkers for EC detection and diagnosis using the criteria and procedures

outlined above.
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CHAPTER 5

RESULT DISCUSSION

5.1  Input Data from Gene Expression Dataset and PPl Network

The PPI network provided an insight of the interaction between genes which
improved the understanding of the underlying biological process within gene
expression dataset. Hence, by focusing on the genes that found in the PPl network
enabled to focus on the important features or meaningful patterns of genes in gene
expression dataset. Therefore, the genesin the PPI network were extracted to filter out
the noisy and irrelevantdata such as the genes lackingbiological interaction within the
gene expression dataset. The filtered dataset formed a new input data which was
represented in the form of Gene Expression. The gene selection process ensured that
the biclustering algorithm and the analysis process highlighted the biological relevant
genes which indirectly enhancingthe accuracy of the model’s performance. Figure 5.1

illustrated the input data that was used in the biclustering algorithm.

Sygﬁ;::l GSM509787 E1507N.CEL GSM509788 E1520N.CEL GSM509789 E1521N.CEL GSM509790 E1532N.CEL
0 HSPAB 5.305487 5.608065 5433042 5.556593
1) GUCA1A 4165863 4.085270 3.955792 4104240
2 CCL5 7.191147 7422020 7.854530 6.542158
3] MMP14 6.839935 6.682461 6.629862 6.754795
4} TRADD 6.915792 6.779200 6.876954 7.094586

Figure 5.1: Gene Expression Dataset after Filtering with the PPl Network

The dimension of the dataset was 2735 genes across 34 samples. Each row
represented a gene symbol (red box) while each column represented a sample (blue
box). The value within the Gene Expression Dataset indicates the gene expression
value of the respective genes across the sample (green box). In a nutshell, the dataset

provided a comprehensive insight of the patterns of genes across different samples.
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5.2  The Involvement of PPI data in Gene Expression Dataset

Table 5.1: The Accuracy of Gene Expression Dataset with and without PPI data

Accuracy
Test Size
Gene Expression Dataset Gene Expression Dataset with
PPl Data
0.1 1 1
0.2 0.8571 1
0.3 1 0.9091
0.4 0.9286 0.9286
Average 0.9464 0.9594

Table 5.1 compared the accuracy of SVM classifier using two datasets of
varying test sizes to evaluate the effectiveness of the involvement of PPI data with
gene expression dataset. According to the average value of performance, Gene
Expression Dataset with PPl achieved 95.94 percent accuracy while Gene Expression
Dataset indicated 94.64 percentaccuracy. The results suggested that using PPl data
enhanced the classification performance of the SVM model, demonstrating its
potential value in detecting EC cancer biomarkers. Besides that, the higher accuracy
achieved by the involvement of PPI data suggested that the importance of combining
multiple biological relevance data was allowing to obtain a more comprehensive

biological insights that underlying the data and indirectly leading to more accurate
biomarker identification.

5.3  Plaid Biclustering Algorithm in Identifying the Biclusters

The plaid biclusteringalgorithm was applied to the newly generated inputdata.
The biclustering algorithm's capability to recognize similar expression patterns leads
the grouping of genes and samples into biclusters. The plaid model identified subset
of genes with comparable expression across samples. In detail, the plaid model
clustered genes that showed similar patterns of expression under certain conditions.

Each bicluster represented a distinct set of genes and samples that shared common
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function under those conditions. Besides that, the groups of genesalso highlighted the

behavior or responses across the sample to a related environment.

A total of four biclusters were. In the dataset produced by the plaid biclustering
model, rows represented samples while columns represented genes. The dimension of
the Bicluster1 is 124 genesacross 10 samples. The dimension of the Bicluster 2 is 145
genes across 14 samples. The dimension of the Bicluster 3 is 6 genes across 1 sample

while the dimension of the Bicluster 4 is 13 genes across 1 sample.

Gene Symbol TMEM39A NUP107 TMEM38B PBK ASPM  NELFCD DNMT3B TBL1XR1 GINS2 COL5A2
GSM509804_E1507T.CEL 6.611383 9726017 5445221 7.313210 7.352215 8965812 6.870785 6.893274 7.324547  9.898811
GSM509809_E1542T.CEL 6.389347 8623677 4765128 7.265171 8088150 8763703 5790180 5530707 7.380882 8929217
GSM509810_E1546T.CEL 6.724950 8185211 5477874 8210063 7.910408 9619201 6.787680 7.152694 7.778961 10.010738
GSM509812_E1584T.CEL 6.587234 8.930046 4.597372 8368051 8356823 8400663 6.114453 6.503139 8567287  8.953696
GSM509813_E1589T.CEL 6.583535 9.160049 6.840389 8215945 8576583 9793823 8950951 7.235061 9.331082  9.496884

Figure 5.2: Example of Bicluster 1 after Implement Plaid Biclustering Model

Gene Symbol DENND1B RNF39 SLC27A6 GIPC2 EPB41L4A ADAMTSL4 RIPK4 UBAP1 VPS37B (CSNK1E
GSM509803_E2644N.CEL ~ 9.025555 8580828 4.229821 5761416 5770840 5621583 10616623 8803706 9.253934 7.787345
GSM509804 E1507T.CEL 8202442 6716919 4103199 3446680 4413280 5258764  9.521838 7.682166 6960880 7.428256
GSM509805_E1520T.CEL ~ 7.325726 5681840 3.881914 3485505  4.465795 5194580  7.898191 7.109491 7278069 7.222471
GSM509806_E1521T.CEL ~ 8.159822 5902807 3.941313 3378748  4.152978 5104112 8974263 7.553683 8003548 6.968401
GSM509809 E1542T.CEL 8361134 6493334 4079763 3.801562  4.456992 5741768 8988443 7.181832 8338481 7.648359

Figure 5.3: Example of Bicluster 2 after Implement Plaid Biclustering Model

Gene Symbol DVL3 EPHB4  APOC1 LAMB3 HOXD11 ANO1
GSM509819_E1796T.CEL  7.691792 7.516879 8240716 10.040889 4.567577 4.450293

Figure 5.4: Bicluster 3 after Implement Plaid Biclustering Model

Gene Symbol NREP HEXB EPHB4 KIF3B BRCA1 SAP30 PTK2 LAMB3 MBD4 CHN1  ALMS1 HOXD11 BANP
GSM509816_E1614T.CEL  7.82422 8918272 7471044 6550222 6.12884 5130646 9.079471 957014 8.38678 6.323455 6883904 571802 7.740366

Figure 5.5: Bicluster 4 after Implement Plaid Biclustering Model

5.4  Applying SVM Classifier for the Performance Evaluation

The samples retrieved by the plaid biclustering model showed that all the
samples retrieved were identified as tumor. Since there is only one class in the target
column, itindicated that the biclustering technique successfully identified the groups

of genes that exhibit similar expression features to the EC. As mentioned, biclustering
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algorithm grouped genes based on their expression patterns. Thus, the genes within the
resulted biclusters can be considered as the possible indicators in the development of
EC due to the identified samples are tumors. As a result, the genes identified within
the biclusters were used to filter the data from the original gene expression dataset.
This gene selection process reduced the dataset by focusing on the genes that were
relevant to EC. For further classification purpose, three different datasets were
compared which are gene expression dataset that involved genes in all bicluster, gene
expression datasetthatinvolved genes occurred in more than one bicluster and original
gene expression dataset respectively. Figure below illustrated the gene selection
process on the biclusters to filter the data from gene expression dataset.

Bicluster 1

Gene Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
Sample 1 value value value value value
Sample 2 value value value value value
Sample 3 value value value value value

Bicluster 2

Gene Gene 3 Gene 6 Gene 7 Gene 8
Sample 1 value value value value
Sample 2 value value value value
Sample 3 value value value value

Bicluster 3 Biclsuter 4

Gene Gene 2 Gene 9 Gene 10 Gene Gene 11| Gene 12

Sample 1 value value value Sample 2 value value
v
Gene Occur In All Bicluster
Gene | Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
Gene 7 Gene 8§ Gene 9 Gene 10 Gene 11 Gene 12

Gene Occur In Multiple Bicluster
| Gene 2 | Gene 3 I

Figure 5.6: The Gene Selection Process Done on Biclusters

5.4.1 Determining the Optimum Train Test Split Ratio

Before evaluating the performance of the SVM on three datasets, the optimum
train test split ratio was determined by using the original gene expression dataset. In
this step, the accuracy value of each test size was evaluated to find the most effective

ratio to split the datasetinto trainingand testing set. This step is to ensure thatthe SVM
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able to capture enough figure of the data and generalize effectively to the unseen data.
Table 5.2 demonstrated the accuracy of the Gene Expression Dataset after the gene
selection process across multiple runs with varying test sizes and different random

states starting from 5 to 50.

Table 5.2: Accuracy of Gene Expression Dataset with Random State and Test Size

AU Accuracy with Different Test Size

0.1 0.2 0.3 0.4

1 1 1 1 1
2 0.75 0.8571 0.9091 0.9286
3 0.75 0.8571 0.9091 0.9286

4 1 1 1 1

5 0.75 1 1 1
6 1 0.9571 0.9091 0.9286

7 1 1 1 1
8 1 0.8571 0.9091 0.9286

9 1 1 1 1
10 0.75 1 1 0.9286
Average 0.9 0.9428 0.9636 0.9643

Among the various test sizes, the 0.4 test size achieved better results than other
testsizes. The 0.1 test size, 0.2 test size and 0.4 test size achieved 90 percent accuracy,
94.28 percentaccuracy and 96.36 percent accuracy respectively. The 0.4 test size was
chosen since it performed better than other test sizes. By assigning 40 percent of the
data for testing, the model able to analyse more thoroughly across a larger percentage
of the gene expression dataset and producing a more reliable and robust results. This
test size also provided a balance by providing sufficient data for training the model
while ensuring sufficient testing data for performance evaluation and validation. In
conclusion, using 60 percent of training set and 40 percent of testing set enabled the

model to capture enough pattern of the data and generalize the unseen data accurately.
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5.4.2 Performance Evaluation of Gene Expression Dataset

Ten-fold cross validation was implemented to measure the performance of
three distinct gene expression datasets. This validation provided the score value which
indicated the overall performance of the model to each dataset. Ten-fold cross
validation divided the dataset into ten equal sized folds. Then, the model was trained
on the nine folds and tested on the remaining fold. The procedure resulted in a more

accurate and reliable measurement as the bias of the performance had been avoided.

Table 5.3 indicated all three datasets achieved an accuracy of 100 percentin
nine outof ten-fold. Forthe gene expression datasetthatinvolved genesin all bicluster
and original gene expression dataset achieved approximately 67 percent in fold six

while the gene expression dataset that involved genes that occurred in more than one

bicluster achieved 75 percent in fold three.

Table 5.3: Performance Evaluation Based on 10-Fold Cross Validation

Gene Expression Dataset that Involved Genes
In All Bicluster Oceur In More Than Original Dataset
One Bicluster
Fold 1 1 1 1
Fold 2 1 1 1
Fold 3 1 0.75 1
Fold 4 1 1 1
Fold 5 1 1 1
Fold 6 0.6667 1 0.6667
Fold 7 1 1 1
Fold 8 1 1 1
Fold 9 1 1 1
Fold 10 1 1 1
Average 0.9667 0.975 0.9667
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Table 5.4: Confusion Matrix Result based on Ten-Fold Cross Validation

Gene Expression Dataset That Involved Genes
Metrics In All Bicluster | Occur In More Than | Original Dataset
One Bicluster
No. of Features 283 genes 3 genes 2735 genes

Accuracy 0.9706 0.9705 0.9706
Precision 1 0.9444 1

Recall 0.9412 1 0.9412
Specificity 1 0.9412 1

F1 Score 0.9697 0.9714 0.9697

Accordingto Cherradiet al (2021), the 100 percentaccuracy in k-fold cross
validation is due to the effectiveness of machine learning model to learn the patterns
and relationships in the data. Besides that, feature selection also improved the ability
of model to generalize the data (Cheraddi et al, 2021). Furthermore, the efficient
feature extraction allowedthe 100 percentaccuracy performance to classify the fundus
image into different glaucoma conditions through the 5-fold cross validation (Fuadah
et al, 2022). Hence, the effectiveness of the model to learn the underlying pattems of
data had the potential to increase the performance as 100 percent. In conclusion, the
biclustering algorithm improved the performance of the model by comprehending the

data completely.

Based on the results of the ten-fold cross validation, the accuracy varied across
different folds. As there were 34 samples presented in the dataset, the training set for
each fold was 30 or 31 samples while the testing set for each fold was 4 or 3 samples
respectively. Hence, the variation in the ten-fold cross validation implied that the
model’s performance was influenced by the specific random splits of data used in each
fold. This is because different subsets of the data were used for training and testing
which indicated that the model was trained with diverse samples. Additionally, the
gene expression dataset consists of genes from different biclusters which raised the

issues regarding the strength and relevance of each gene to EC. Hence, the sudden
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drop of accuracy at fold 6 and fold 3 was due to the exhibit higher variability of the
expression patterns making the model unable to generalize well the data.

To overcome the issue of variation in accuracy value, the SVM classifier was
ran ten times with differentrandom state valuesto ensure thatthe model’s performance

is not excessively dependent on a certain random split of the data.

Table 5.5: Performance Evaluation Based on Multiple Run

Gene Expression Dataset that Involved Genes
o In All Bicluster Oceur In More Than Original Dataset
One Bicluster

1 1 1 1
2 0.9286 1 0.9286
3 0.9286 0.9286 0.9286

4 1 0.9286 1

5 1 0.9286 1
6 0.9286 0.9286 0.9286

7 1 1 1
8 0.9286 0.9286 0.9286

9 1 0.9286 1
10 0.9286 0.9286 0.9286
Average 0.9643 0.95 0.9643

Table 5.5 demonstrated the accuracy of SVM classifier for each gene
expression datasetwith multiple runs. The gene expression datasetthatinvolved genes
in all biclusters and the original gene expression achieved 96.43 percent accuracy
respectively. Meanwhile, the gene expression dataset that involved the genes that
occurred inmore than one biclusterachieved 95 percentaccuracy. The results obtained
highlighted that the model’s performance was affected by the different split of data for

training and testing. Furthermore, the variation of the accuracy score across multiple
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runs demonstrated that the performance was not excessively dependent on the random
split of data. Instead, the variation can be due to the diversity in bicluster pattern. As
the genes from different biclusters were combined into a dataset for classification, the
diversity of biological patterns can influence the model’s ability to generalize the
unseen data across different genes’ patterns as different biclusters showed distinct

pattern of genes to EC.

Table 5.6: Performance Measurement Based on Confusion Matrix

Gene Expression Dataset That Involved Genes
Metrics In All Bicluster | Occur In More Than | Original Dataset
One Bicluster
No. of Features 283 genes 3 genes 2735 genes

Accuracy 0.9643 0.95 0.9643
Precision 1 0.975 1

Recall 0.9286 0.9286 0.9286
Specificity 1 0.9712 1

F1 Score 0.9616 0.9482 0.9616

Table 5.6 represented the evaluation of the SVM classifier for three different
gene expression datasets. Firstly, the gene expression datasetthatinvolved genesinall
bicluster achieved 96.43 percent accuracy and the F1 score value at 96.16 percent with
283 genes. Secondly, the gene expression dataset that involved genes that occurred in
more than one bicluster achieved 95 percent of the accuracy and reached the F1 score
value at 0.9482 with 3 genes. Thirdly, the original gene expression dataset showed
96.43 percent accuracy and 0.9616 F1 score with 2735 genes. In conclusion, the
performance of SVM classifier indicated that biclustering algorithm further improved
the gene selection process by selecting the important features, thereby increasing the
performance of classification as the features for gene expression dataset that involved
genes in all biclusters and gene expression dataset that involved genes that occurred in

more than one bicluster are less than the original gene expression dataset.
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55 Gene Validation

For your information, the goal of plaid biclustering algorithm is to discover the
key features by showingthe patternsin gene and samples data. Hence, the genes found
inside the bicluster were important indicators that predictive of EC. Furthermore, the
gene expression dataset involved genes that occurred in more than one bicluster was
chosen as the better dataset based on the findings of performance measurement by
confusion matrix. The dataset not only exhibit the good performance compared to
others, but also the frequently involvement in multiple biclusters indicated that these
genes consistently aligned with the biological patterns found in the data. This situation
made the genes a significant choice for gene validation. The genes found in the gene
expression dataset involved genes that occurred in more than one bicluster were
EPHB4, LAMB3 and HOXD11.

5.5.1 EPHBA4

According to Hasina et al (2013) on the study of immunohistochemistry,
EPHB4 is considerably overexpressed in esophageal cancer cell lines and primary
tumor tissues which demonstrates that its levels are raised in disease states.
Furthermore, an increase of EPHB4 gene copy numbers in some esophageal cancer
samples and cell lines suggests a genetic foundation for its higher level of expression
in tumors (Hasina et al, 2013). Although there are no significant changes in EPHB4
within cancer cells, its functional overexpression and activity are influenced by other
focused oncogenic drivers, emphasizing its significance as an inhibitor of treatment
foresophageal cancer (Hasinaetal,2013). The disruption of EPHB4's standard control
of expression underscores the protein's significance as a biomarker for disease
diagnosis and targeted therapy, as well as its possible role in the biology of esophageal

cancer (Hasina et al, 2013).

Furthermore, a study on exploring the roles of cation-dependent mannose 6-
phosphate receptor (M6PR) and ephrin B type receptor 4 (EphB4) in serine (SRGN)

exosomes in promoting tumor angiogenesis and invasion of ESCC cells had been
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carried outby Yanetal (2023). Based on the findings, exosomes generated from ESCC
cells that overexpressed SRGN showed higher amounts of EPHBA4, indicating a
potential role for this protein in the development of cancer (Yan et al, 2023).
Significantly, exosome EPHB4 increased ESCC cells' capacity for invasion, indicating
a potential function in tumor malignancyand metastasis (Yan etal, 2023). Furthermore,
the significant association between EphB4 expression and SRGN levels in ESCC
patients' serum highlights its potential as a prognostic indicator, with high serum

EphB4 being associated with lower overall survival (Yan et al, 2023).

552 LAMB3

A study on the assessing the expression of LAMB3 in esophageal cancer stem
cell and adherent cells had been done by Ehtesham et al (2022). The study suggested
that the involvement of LAMB3 in the development of esophageal cancer stem cells
(CSCs) and the advancement of tumours highlightsits significance asa potential cause
of the cancer (Ehtesham et al, 2022). The different expression pattern of CSCs and
adherentcells showsthatitis involved in critical processes such as spheroid formation,
CSC development, and tumour growth (Ehtesham etal, 2022). Hence, LAMB3 might
be a good target for treatments which use to prevent CSC-driven tumour growth and
spreading in esophageal cancer (Ehtesham et al, 2022).

The research also explained that LAMB3 helps to produce Laminin-332, an
important extracellular matrix (ECM) protein for the CSC microenvironment
(Ehtesham et al, 2022). Downregulation of LAMB3 in esophageal CSCs has been
linked to increased sphere formation, implying a role in enhancing CSC traits such as
self-renewal and tumorigenicity (Ehtesham et al, 2022). Laminin-332, which includes
LAMB3, has been linked to cancer invasion, migration, and metastasis which possibly

are one of the factors that gave rise to EC cancer. (Ehtesham et al, 2022).
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5.53 HOXD11

Accordingto the National Library of Medicine (2024), HOXD11 is belongs to
the homeobox (HOX) gene family, which consists of transcription factors that are
important for morphogenesis in a variety of organisms with multiple cells and are
highly conserved. The HOX gene family isimportantforembryonic development, and
its dysregulation is associated with several malignancies, including esophageal cancer
(Akbar, Zhang and Liu, 2023). When HOX genes are dysregulated, their normal
developmental functions are disrupted, causing cancer cells to behave abnormally
(Akbar et al, 2023). Dysregulated HOX genes, such as HOXD11, may affect cell
proliferation, metastasis, and treatment resistance of cancer cells, thereby affecting

tumor progression and patient prognosis (Akbar et al, 2023).

Dysregulation of HOX genes, such as HOXD11, can have a significant impact
on cancer biology (Akbar etal, 2023). The overexpression of HOX genes can lead to
uncontrolled growth of cells, which can enable tumors to spread quickly and escape
regulatory systems that typically prevent excessive cell division (Akbar et al, 2023).
Dysregulated HOX genes can also help cancer cells spread to distant regions of the
body and improve their capacity for metastasis (Akbar et al, 2023). As a result,
misregulation of HOX genes enhances the complexity of cancer development and

creates major difficulties for the treatment (Akbar et al, 2023).

5.6  Additional Testing

5.6.1 Investigating SVM Classification Effectiveness on Each Bicluster

In this study, the experiments focused on filtering the gene expression dataset
by combining the genes found in the bicluster together. However, a further analysis
had been conducted to investigate the effectiveness of SVM on each bicluster. The
procedure started by filtering the data from the gene expression dataset by the genes
in each bicluster. Four gene expression datasets were analyzed using SVM classifier
to evaluate the performance of each bicluster by ten-fold cross validation and
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confusion matrix. This step is to understand the effectiveness of SVM to learn the

specific gene expression patterns to classify the data.

The results presented in Table 5.7 indicated an improvement in performance
compared to the study. Bicluster 1 achieved an accuracy of 95 percent and 94.49
percent of F1 score. Besides that, bicluster 2 demonstrated the strongest performance
among four biclusters with 98.57 percent of accuracy and 98.46 percent of F1 score.
Additionally, bicluster 3 indicated accuracy at 0.90 with 0.8906 F1 score. Lastly,
bicluster 4 achieved 95.72 percent of accuractand 0.9539 of F1 score. In general, the
performance was better than the study due to the bicluster focused on the gene
expression patterns that exhibit common behavior under specific conditions. This
expression patterns of bicluster provided a clearer insight for SVM classifier to leam
from the data and resulted in enhancing the ability to classify the samples accurately.

In contrast, the gene expression dataset contained more diverse expression patterns.

Table 5.7: Performance Measurement Based on Multiple Run and Confusion Matrix

Gene Expression Dataset That Involved Genes In

Bicluster 1 Bicluster 2 Bicluster 3 Bicluster 4

Multiple Run of SVM Classifier

Accuracy 0.95 0.9857 0.9 0.9572

Confusion Matrix

Accuracy 0.95 0.9857 0.9 0.9572
Precision 1 1 0.9732 1
Recall 0.9 0.9714 0.8286 0.9143
Specificity 1 1 0.9714 0.9857
F1 Score 0.9449 0.9846 0.8906 0.9539
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5.6.2 Applying the Experiment to New Gene Expression Dataset

A new gene expression dataset that indicated the expression pattern of ovarian
cancer had been retrieved. After the data preprocessing and gene selection process, the
dimension dataset become 67 samples with 2140 genes. The varying scalesin the data
suggested the presence of noise within the ovarian cancer dataset. The inconsistency
can be due to the biological differences among the samples. As the genes can be
detected in various tissues, body fluids and blood, hence their activities can be varied

depending on the specific conditions within samples.

Syi?;:)el GSM94332 GSM94339 GSM94341 GSM94344 GSM94346 GSM94347 GSM94348 GSM94349
0 HSPAG 1427 67.0 271 87.5 188.0 262.0 1714 99.6
1 GUCATA 336 61.7 303 32.6 39.5 354 57.8 47.3
2 MMP14 662.6 483.5 266.6 697.9 850.7 7344 3934 1571.7
3 TRADD 3169 300.8 3919 1055.9 398.6 3896 416.6 369.5
4 PLD1 1302 130.6 115.0 89.5 67.3 73.0 2541 97.9

Figure 5.7: Ovarian Cancer Dataset after Gene Selection Process

Applying normalization to the ovarian cancer dataset is essential to ease the
effects of noise and different scaling of data. By standardizing the gene expression
data able to improve the reliability of the biclustering and classification method. This
is because normalization ensured the data was transformed into a comparable scale
and reduced the bias among samples. Figure below showed the ovarian cancer dataset

after normalization.

Sygj::)el GSM94332 GSM94339 GSM94341 GSM94344 GSM94346 GSM94347 GSM94348

0 HSPAG 0.004800 0.002011 0.001385 0.003290 0.006445 0.009737 0.006028
1 GUCA1A 0.001107 0.001850 0.001552 0.001209 0.001332 0.001303 0.002014
2 MMP14 0.022398 0.014663 0.013946 0.026424 0.029260 0.027321 0.013871
3 TRADD 0.010697 0.009113 0.020517 0.039993 0.013695 0.014487 0.014691
4 PLD1 0.004377 0.003943 0.005995 0.003366 0.002289 0.002702 0.008949

Figure 5.8: Ovarian Cancer Dataset after Normalization

Based on the result in Table 5.8 indicated that the involvement of PPI data
significantly improved the accuracy of the ovarian cancer dataset analysis.
Furthermore, table 5.9 demonstrated that using a test size of 0.1 test size generated the
better result for the SVM classifier. This suggests that a smaller test set which only

comprising 10 percent of the data allowed for more effective training and validation.
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This is because the model able to learn from larger number of data which lead to a
better generalization.

Table 5.8: Accuracy of Ovarian Cancer Dataset with and Without PPl Data

) Ovarian Cancer Dataset
Test Size i _
Without PPI Data With PPI Data
0.1 0.8571 0.8571
0.2 0.7857 0.7857
0.3 0.8095 0.8095
0.4 0.7407 0.8148
Average 0.7983 0.8168

Table 5.9: Accuracy of Ovarian Cancer Dataset with Different Random State and Test

Size
Accuracy with Different Test Size
Run
0.1 0.2 0.3 0.4

1 0.8571 0.8571 0.8095 0.8148
2 1 0.7143 0.7143 0.6667
3 1 0.8571 0.8571 0.7037
4 0.7143 0.7143 0.6667 0.7407
5 0.7143 0.8571 0.7143 0.7407
6 0.8571 0.7857 0.8095 0.8148
7 0.8571 0.8571 0.8095 0.7778
8 0.7143 0.8571 0.8571 0.8519
9 0.8571 0.7857 0.8095 0.8148
10 0.7143 0.7857 0.7619 0.8148
Average 0.8428 0.8071 0.7809 0.7741

Afterapplyingthe Plaid Biclustering Model to the ovarian cancer dataset, three

biclusters were generated. The genes identified within the biclusters were then used to
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create two distinct datasets for further analysis. Figures below showed the biclusters
formed by Plaid Biclustering Model.

Gene Symbol BACH2 PRMTZ2 KCNMA1 ADAMTS1 CHST3 PRELP PRDX2 Target
GSM94332  0.067/106 0.092070 0.096593 0.283825 0.080160 0.182937 0574880 0
GSM94339  0.044100 0.166408 0.100546 0.353890 0.279701 0.131840 0.412001
G5M94341  0.024932 0.185145  0.021065 0.026433 0.132625 0.082299 0.579574
GSM94344  0.057520 0.216188  0.258553 0.278014 0.259472 0.177095 0.576480
GSM94346  0.049674 0.163660 0277762 0304385 0.210223 0.339423 0578648

o o o O

Figure 5.9: Ovarian Cancer Dataset - Bicluster 1

Gene Symbol MuUC1 KRT8 SLC35A2 MTX1 PSMD14 MTCH2 RIPK4 Target
G5M94344 0576480 0576480 0417910 0.709127 0.432721 0502354 0.780367 0
GSM94346 0578648 0578648 0.269406 0.533280 0578648 0.618510 0.275802 0
G5M94350 0.097479 0.062923 0.129398 0.365731 0328309 0341490 0.019542 1
G5M94352 0577740 0.872684 0.247037 0.323553 0.723104 0.790185 0.240996 0
GSM94374 0127823 0.104086 0.134605 0426404 0.258578 0.285476 0.032071 1

Figure 5.10: Ovarian Cancer Dataset - Bicluster 2

Gene Symbol FANCA Target

GSM94352  0.138362 0
GSM94395  0.097620 0
GSMB94411  0.134773 0

Figure 5.11: Ovarian Cancer Dataset - Bicluster 3

Table5.11 indicated the datasets involvinggenesin all biclusters demonstrated
the accuracy value at 0.8071. In contrast, the original ovarian cancer dataset showed a
slightly lower accuracy of 79.29 percent indicating that biclustering algorithm provide
an improvement in classification performance. From the result, a conclusion that
ovarian cancer dataset that involved genes in all bicluster achieved the better result in

the classification performance.

Table 5.10: The Dimension of Three Different Ovarian Cancer Dataset

Ovarian Cancer Dataset Samples Genes
Genes In All Bicluster 67 129
Original Dataset 67 2140
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Table 5.11: Cross Validation of Different Ovarian Cancer Dataset

Ovarian Cancer Dataset That Involved Genes
In All Bicluster Original Dataset
Fold 1 1 1
Fold 2 0.8571 0.8571
Fold 3 0.7143 0.5714
Fold 4 0.7143 0.8571
Fold 5 0.5714 0.7143
Fold 6 0.8571 0.5714
Fold 7 0.8571 0.8571
Fold 8 0.8333 0.8333
Fold 9 0.8333 0.6667
Fold 10 0.8333 1
Average 0.8071 0.7929

The datasets were further analysed by multiple runs to evaluate the consistency
of the SVM performance. This approach to ensure obtained with a more reliable result
of the model’s effectiveness. Table 5.12 indicated the accuracy of two differentovarian
dataset across multiple runs. The result demonstrated that the ovarian cancer dataset
that involved genes in all bicluster achieved an accuracy of 75.71 percent while the
original ovarian cancer dataset achieved 79.29 percent accuracy. By considering the
dimensions of two datasets, the dataset with genes in all bicluster consisted of 67
sampleswith 129 geneswith a slightly lower accuracy than the original dataset showed
that the genes selected through the biclusters contributed to the effectiveness of SVM.
The gene selection process enabled the classifier to focus on the important indicators
across multiple samples. The model able to have a clearer understanding of the genes’

pattern in the dataset with genes in all bicluster rather than the original dataset.
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Table 5.12: Accuracy of Three Different Dataset with Different Random State

Ovarian Cancer Dataset That Involved Genes
Run
In All Bicluster Original Dataset
1 0.7143 1
2 0.5714 0.8571
3 1 0.5714
4 0.7143 0.8571
5 0.7143 0.7143
6 0.8571 0.5714
7 0.8571 0.8571
8 1 0.8333
9 0.5714 0.6667
10 0.5714 1
Average 0.7571 0.7929

Table 5.13 provided the information on the classification performance of two
distinct ovarian cancer dataset. However, the concerning aspect raised from the
precision, recall and F1 Score as the dataset a lower score. These metrics suggest a
significant issue with the model’s performance as it failed to correctly identify any
positive samples. The presence of noisy data, outliers and different scaling across the
ovarian cancer dataset misrepresent the model’s ability to learn the meaningful
patterns. Secondly, the imbalanced class distribution within the dataset with only 13
outof 67 samplesrepresentingthe normal class. The imbalanced class distribution bias
the model towards the majority class which is tumour and resulting in poor
performance on the normal tissues. Hence, to address these challenges, preprocessing
techniques such as outlier detection and replacement, noise reduction and balancing
the class distribution must be carried out to derive more accurate insights for effective
treatmentand disease diagnosis. However, despite these challenges, the biclustering
algorithm had demonstrated its ability to enhance the performance in identifying

potential biomarkers.
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Table 5.13: Confusion Matrix of Two Different Dataset

_ Ovarian Cancer Dataset that Involved Genes
Metrics
In All Bicluster Original Dataset

Accuracy 0.7571 0.7714
Precision 0.2 0.2
Recall 0.2 0.2

Specificity 0.85 0.8667
F1 Score 0.2 0.2

5.7  Chapter Summary

In conclusion, the involvement of PPl data with gene expression datasets
significantly enhances the accuracy of identifying potential biomarkers for EC as the
gene selection process filters out the insignificant features. Furthermore, using 60
percent of gene expression dataset for training provides enough data to train the model
and capture underlying patterns. Additionally, plaid biclustering algorithm grouped
related genes making it efficient in highlighting the potential biomarkers. However, it

is important to preprocess the dataset before training the model to ensure the optimal

results.
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CHAPTER 6

CONCLUSION & RECOMMENDATION

6.1 Introduction

The research mainly focused on the identification of potential biomarkers of
EC using plaid biclustering algorithm. The experiment had been carried out by using
gene expression dataset with PPI data. Plaid biclustering model form a collection of
biclusters with the underlying patterns of the data. The performance of each biclusters
had been further observed and verified by SVM classifier. The results showed that
biclustering algorithm able to classify the genes with the similar features and able to

identify the biomarker for EC.

6.2 Achievements

The achievements for this research are generate the input data from gene
expression and PPl data, implement the biclustering algorithm in identification of
potential biomarkers from the input data, evaluate the selected potential biomarkers
using SVM classifier and verify the identified potential biomarkers with biological

knowledge bases.

6.2.1 Objective 1: To derive input data from gene expression and PPI data

In this step, data preprocessing had been carried out to remove the missing
genesand obtained the average value of duplicated genes. Then, gene selection process
was applied to the gene expression dataset in order to filter out the insignificant

features. The filtering process of gene expression dataset was based on the genes in

79



PPI data. After the gene selection process, the dimensions of the gene expression
dataset become 2735 genes with 34 samples.

6.2.2 Objective 2: To implement biclustering algorithms in identification of

potential biomarkers from the derived input data

The optimum number of biclusters was identified by using the elbow method.
The Elbow method is the technique based on KMeans algorithm to retrieve the sum of
square error with the different number of clusters. The result of elbow method showed
thatthe optimum number of biclusters for gene expressiondatasetis four. Then, a plaid
biclustering model was implemented to form four biclusters. The general process of
plaid biclustering model was found the coherent groups of genes and samples and
captured the shared behaviour in a common layer. After that, the behaviour had been
compared and verifiedbefore formed a bicluster. There are total of four biclusters were

formed.

6.2.3 Objective 3: To evaluate the selected potential biomarkers using SVM

through ten-fold cross validation and confusion matrix

Thebiclusteringresultindicated thatthe retrieved samples are cancerous. SVM
classifier cannot classify the dataset when only consists of one target case. Since the
goal of biclustering is to discover a group of genes and samples with similar features,
hence the assumption that the genesfound in the biclusters are important indicators of
EC can be made. Hence, the genes in the biclusters were used to do another gene
selection process. In this process, two gene expression datasets were formed whichare
gene expression dataset that involved genes in all biclusters and gene expression
dataset that involved genes that occurred in more than one bicluster. Then, these two
datasets were compared with the original gene expression dataset. The SVM classifier
demonstrated with the result of gene expression dataset that involved genes that
occurred in more than one bicluster is better than others.
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6.2.4 Objective 4: To verify the identified potential biomarkers with biological
knowledgebases such as NCBI

The genes found in the gene expression dataset that involved genes that
occurred in more than one bicluster were further validated with the NCBI. The genes
found inside the datasetare EPHB4, LAMB3 and HOXD11. These three genes showed
their effort in the EC cell development after validated with NCBI.

6.3  Suggestion for Improvement and Future Works

There are still available improvements and future works can be done in this

research. These includes:

(a) Developmenta method of determining the optimal pruning threshold value to
be used in Plaid Model Biclustering Algorithm.

(b) Integration of machine learning techniques to enhance the performance and

scalability of biclustering algorithms in handling high dimensional dataset.

(c) Perform hyperparameter tuning to enhance the model’s performance.
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Appendix A Figures of the Experiment’s Output

Github link to the code: https://github.com/wyu04/FYP

A - Gene In All Bicluster
B - Gene In Multiple Bicluster
C - Original Dataset
Random State 5 10 15 20 25 30 35 40 45 50
A 1 0.9286 | 0.9286 1 1 0.9286 1 0.9286 1 0.9286
Accuracy B 1 1 0.9286 | 0.9286 | 09286 0.9286 1 0.9286 | 0.9286 | 09286
& 1 0.9286 | 0.9286 1 1 0.9286 1 0.9286 1 0.9286
A 1 1 1 1 1 1 1 1 1 1
Precision B 1 1 1 0.875 0.875 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1
A 1 0.8571 | 0.8571 1 1 0.8571 1 0.8571 1 0.8571
Recall B 1 1 0.8571 1 1 0.8571 1 0.8571 0.8571 0.8571
& 1 0.8571 0.8571 1 1 0.8571 1 0.8571 1 0.8571
A 1 1 1 1 1 1 1 1 1 1
Specificity B 1 1 1 0.8571 0.8571 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1
A 1 0.9231 | 0.9231 1 1 0.9231 1 0.9231 1 0.9231
F1 Score B 1 1 0.9231 | 0.9333 | 09333 | 0.9231 1 0.9231 | 0.9231 | 09231
& 1 0.9231 0.9231 1 1 0.9231 1 0.9231 1 0.9231

Figure 1: Confusion Matrix Result of EC Cancer Dataset with Different Random

State
A - Bicluster 1
B - Bicluster 2
C - Bicluster 3
D - Bicluster 4
Random State 5 10 15 20 25 30 35 40 45 50
A 1 0.9286 | 0.9286 1 0.9286 | 0.8571 1 0.9286 1 0.9286
B 1 1 0.9286 1 1 1 1 0.9286 1 1
Accuracy
] C | 09286 | 09286 | 0.9286 | 0.9286 | 0.8571 | 0.8571 | 0.9286 | 0.8571 | 0.9286 | 0.8571
D 1 0.9286 | 0.9286 1 1 0.9286 1 0.9286 | 0.9286 | 0.9286
A 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1
Precision
C 1 1 1 0.875 | 0.8571 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1
A 1 0.8571 | 0.8571 1 0.8571 | 0.7143 1 0.8571 1 0.8571
Recall B 1 1 0.8571 1 1 1 1 0.8571 1 1
eca
C | 0.8571 | 0.8571 | 0.8571 1 0.8571 | 0.7143 | 0.8571 | 0.7143 | 0.8571 | 0.7143
D 1 0.8571 | 0.8571 1 1 0.8571 1 0.8571 | 0.8571 | 0.8571
A 1 1 1 1 1 1 1 1 1 1
N B 1 1 1 1 1 1 1 1 1 1
Specificity —
C 1 1 1 0.8571 | 0.8571 1 1 1 1 1
D 1 0.8571 1 1 1 1 1 1 1 1
A 1 09231 | 0.9231 1 0.9231 | 0.8333 1 0.9231 1 0.9231
. B 1 1 0.9231 1 1 1 1 0.9231 1 1
FI Score
C | 0.9231 | 0.9231 | 0.9231 | 0.9333 | 0.8571 | 0.8333 | 0.9231 | 0.8333 | 0.9231 | 0.8333
D 1 09231 | 0.9231 1 1 09231 1 09231 | 0.9231 | 0.9231

Figure 2: Confusion Matrix Result of EC Cancer Bicluster Dataset with Different

Random State
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A - Gene In All Bicluster
B - Gene In Multiple Bicluster
C - Original Dataset"
Random State 5 10 15 20 25 30 35 40 45 50
A 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571
Accuracy B 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571
C 0.7143 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571
A 0 0 0 0 0 0 0 0 0 0
Precision B 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
Recall B 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
A 1 1 1 1 1 1 1 1 1 1
Bpecificit B 1 1 1 1 1 1 1 1 1 1
C 0.8333 1 1 1 1 1 1 1 1 1
A 0 0 0 0 0 0 0 0 0 0
F1 Score B 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0

Figure 3: Confusion Matrix of Ovarian Cancer Dataset with Different Random State

A - Bicluster 1
B - Bicluster 2
C - Bicluster 3
D - Bicluster 4
Random State 5 10 15 20 25 30 35 40 45 50
A 0.8571 0.8571 0.8571 (0.8571 (0.8571 () 8571 0.8571 0.8571 (.8571 (0.8571
Aceuracy B (0.8571 | 08571 | 08571 | 08571 | 08571 | 08571 | 08571 | 08571 | 08571 | 08571
i C 0.8571 0.8571 0.8571 (0.8571 (0.8571 0 8571 0.8571 0.8571 0.8571 08571
D 0.8571 0.8571 0.8571 (0.8571 ().8571 (). 8571 (0.8571 0.8571 (.8571 ().8571
A 0 0 0 0 0 0 0 0 0 0
Precision B 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
Recall B 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0
A 1 1 1 1 1 1 1 1 1 1
s - B 1 1 1 1 1 1 1 1 1 1
precificiy—g 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1
A 0 0 0 0 0 0 0 0 0 0
y B 0 0 0 0 0 0 0 0 0 0
kI Seore =7 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0

Figure 4: Confusion Matrix of Ovarian Cancer Bicluster Dataset with Different

Random State

The number of outliers: 15184

Outlier values: [ 1866.7 4879.9 2504.2 ... 10484.4
10176.76666667 9625.8 ]

The number of normal samples: 13

The dimension of ovarian cancer dataset: (2148, 68)

Figure 5: The Noise and Class Imbalance Distribution of Ovarian Cancer Dataset
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Randon Stole Accuracy with Different Test Swe
0.1 0.2 0.3 0.4

5 0.8571 0.8571 0.8095 0.8148

10 1 0.7143 0.7143 0.6667

15 1 0.8571 0.8571 0.7037

20 0.7143 0.7143 0.6667 0.7407

25 0.7143 0.8571 0.7143 0.7407
30 0.8571 0.7857 0.8095 0.8148

35 0.8571 0.8571 0.8095 0.7778
40 0.7143 0.8571 0.8571 0.8519
45 0.8571 0.7857 0.8095 0.8148
50 0.8571 0.7857 0.7619 0.8148
Average 0.84284 0.80712 0.78094 0.77407

Figure 6: Accuracy of Ovarian Cancer Dataset with Different Test Size and Random

State after Outlier Replacement

Gene In All Bicluster Original Dataset
Accuracy 0.7571 0.7714
Precision 0.2 0.2
Recall 0.2 0.2
Specificity 0.85 0.8667
F1 Score 0.2 0.2
Dataset Gene In All Bicluster Original Dataset
Sample 67 67
Genes 129 2140
Accuracy 75.71% 77.14%

Figure 7: Performance Measurement of Ovarian Cancer Dataset after Outlier

Replacement
Bicluster 1 Bicluster 2 Bicluster 3
Accuracy 0.8 0.8571 0.8571
Precision 0.225 0 0
Recall 0.3 0 0
Specificity 0.9167 1 1
F1 Score 0.24 0 0
Sample 67 67 67
Gene 103 25 1
Dataset Bicluster 1 Bicluster 2 Bicluster 3
Accuracy 80.00% 85.71% 85.71%
Sample 67 67 67
Gene 103 25 1

Figure 8: Performance Measurement of Each Bicluster after Outlier Replacement
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