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CHAPTER 1
INTRODUCTION



DIABETES MELLITUS (DM)

TEXT CLASSIFICATION

MACHINE LEANRING

Metabolic disorder characterised by excessively increased blood
glucose levels with numerous subtypes
Severe and varied symptoms of hyperglycemia include abnormalities
in the metabolism of carbohydrates, fats, and proteins
Early detection and efficient management is required but challenging

INTRODUCTION

A type of the NLP unstructured text analysis techniques 
A predetermined label or tag will be given to each document in the
dataset by the classifier

A discipline of artificial intelligence (AI) that enables computers to
perform tasks and learn from experience regardless of whether they
are being specifically programmed 



PROBLEM BACKGROUND
The number of people suffered
from the disease Diabetes
Mellitus (DM) keep increasing A lot of publishments regarding to

diabetes for early diagnosis, treatment,
management and prevention 

Difficulty to discover and to
classify the important
information from numerous
documents for better
understanding and is time
consuming

Early diagnosis by identifying
the symptoms is significant to
ascertain suitable treatments 

Previous studies mostly used clinical data and patient
medical record in classification using machine learning
methods such as Fine Decision Tree and SVM but lack
of study focus on the classification for medical journal
articles that describing the symptoms and treatments
of DM

Potential to develop text classification
model for diabetes symptom and
treatment documents using machine
learning approaches to optimize the
diabetes diagnosis and management



Overwhelming amount of medical literature and research on DM, which can
hinder the efficiency of early detection and the effectiveness of management
for diabetes patients and doctors

Keeping up with the latest research discoveries and therapeutic approaches is
getting harder as diabetes becomes more common and more complex

Lack of research on the application of machine learning approaches for text
classification on DM symptom and treatment documents

Text classification model is used to assist in finding crucial symptoms and
methods of therapy for DM, enhancing the effectiveness and precision of
information retrieval

PROBLEM STATEMENT



GOAL OBJECTIVES

To develop and evaluate a machine
learning-based  text classification model
for DM symptom and treatment documents

To identify the significant features that are
relevant to Diabetes Mellitus (DM)
symptoms and treatment in multiple
documents.

To perform text classification for a
collection of DM documents dataset using
machine learning methods.

To evaluate the performance of machine
learning models that apply five different
machine learning methods through several
model evaluation techniques.

RESEARCH OBJECTIVES



1 To use a collection of
articles from PubMed by
National Center for
Biotechnology Information
(NCBI)

3

2

4

The documents in the
dataset are chosen by
focusing on the symptoms
and treatments of DM

To use Term Frequency-
Inverse Document
Frequency (TF-IDF)
algorithms to do feature
extraction

To use machine learning
algorithms to classify text
documents

RESEARCH SCOPE



Contribute to the fields of natural language processing (NLP) and
machine learning

RESEARCH CONTRIBUTION

Contribute to the information retrieval fields with the enhancement of
retrieving process that enable domain stakeholders of DM to efficiently
identify and classify the important symptoms and treatments for DM
based on the analysis of a large corpus of medical documents

Potentially facilitate the development of more effective interventions for
diabetes management.



CHAPTER 2
LITERATURE REVIEW



Rasheed et al. (2018) performed text
classification of Urdu language using three
well known classifiers which are Decision
Tree, SVM and KNN.
Chowdhury and Schoen (2020) conducted
classification of textual data obtained from
research papers using SVM, Naïve Bayes, KNN
and Decision Tree.

SUMMARY OF RELATED WORK
TEXT CLASSIFICATION 

DISCUSSION
Thousands of research studies focus on diabetes mellitus (DM) but many
studies use the Pima Indian diabetes dataset and eye fundus numerical images
dataset for DM classification using machine learning.

Numerous publications pertinent to the most thoroughly studied diseases are
readily available. These unstructured data have become the potential sources
that can provide beneficial information to the medical experts in their diagnosis. 

Lack of studies that occupy thoughts with the narrative documents of DM by
classifying their symptoms and treatments.

Machine learning is the most used method for text classification, with varying
performance depending on the dataset.

Potential to conduct research studies on text classification for DM symptom and
treatment documents using machine learning algorithms

Rahul et al. (2020) proposed six machine
learning algorithms, including Random Forest,
Decision Tree, Logistic Regression, Naïve
Bayes, SVM and KNN to classify toxic
comments.
Setiawan et al. (2023) focused on student
feedback data for multilabel classification
using machine learning methods such as
SVM, KNN, Random Forest, and Decision Tree.

MULTILABEL CLASSIFICATION 



CHAPTER 3
RESEARCH

METHODOLOGY



RESEARCH
WORKFLOW



CHAPTER 4
RESEARCH DESIGN

AND IMPLEMENTATION



DATASET PREPARATION

Extract Data

1

2

3

4

5

6

Split abstracts into
sentences

Text Pre-processing

Text Labelling

Exploratory Data
Analysis

Imbalance
Data Handling

1019 articles
Search terms: "Type 1 Diabetes

Mellitus”, “Type 2 Diabetes Mellitus”,
“Symptom” and “Treatment”.
Range of years: 2019 - 2024

Drop empty rows
Convert case to lowercase

Removal of non-related elements
Removal of punctuations

Removal of html tags
Removal of digit values

Tokenization
Removal of stopwords

Lemmatization



SOURCES OF KEYWORDS
AUTHORISED WEBSITES

Mayo Clinic
Diabetes UK
WebMD
WHO

RESEARCH PAPERS
Symptoms: 

(Rahaman, 2012) (Xu et al., 2021) (Garcia, 2011) (Parikh and
Bhargava, 2021) 

Treatments:
(Tülüce et al., 2023) (Xie et al., 2018) (Pfeiffer and Klein,
2014) (Pamungkas et al., 2017)



SUMMARY OF KEYWORDS
Symptoms:

high blood sugar
hyperglycemia
high glucose level
weight loss
weight gain
thinner
losing weight
polyuria
frequent urination
urinating often
peeing more often
polyphagia
hunger
hungry
increased hunger

Treatments:
pharmacology
pharmacological treatment
pharmacotherapy
drugs
oral drugs
tablets
medication
psychology
psychotherapy
emotional support
insulin
diet
diet monitoring
healthy diet
diet therapy
blood sugar monitoring
exercise
physical activity

extreme hunger
polydipsia
thirst
thirsty
excessive thirst
feeling more thirsty than usual
fatigue
feeling fatigued
tired
feeling tired
dry skin
itchy skin
itching
blurry vision
blurred eyesight
eyesight blurred
vision loss
numbness
tingling
slow healing sores
slow in wound healing
delayed wound healing
cuts and wounds take longer to
heal

infections
irritable
mood changes
depression
depressive
depressive mood



LABELLING RESULT

The sentences are tagged with 4 Labels:
Label ‘0’: Both not exist
Label ‘1’: Symptom(s) exist
Label ‘2’: Treatment(s) exist
Label ‘3’: Both exist

Keywords will undergo text
preprocessing.

The sentences are labelled by
matching the keywords defined. 

Matching the keywords gram by
gram in the sentences by using the
ngram function in NLTK and loops.



BAR CHART



WORD CLOUD

TREATMENTSYMPTOM



HANDLE IMBALANCE DATA

The dataset is imbalanced, the 'Both not exist' category will
undergo undersampling (resampling technique) to be reduced to
1565.

Values of 1565 is obtained from the calculation of total number of
other categories.

For the 'Both exist' category, it will be removed since the amount
of values is too small and it does not have significant impact for
the model to achieve the research's objectives.



FINAL DATASET



MODEL BUILDING

SLPIT 1

Split dataset into three different
training and testing ratio

SPLIT 2

SPLIT 3

Training: 70%
Testing: 30%

Training: 80%
Testing: 20%

Training: 90%
Testing: 10%



CHAPTER 5
RESULTS, ANALYSIS

AND DISCUSSION



SUPPORT VECTOR MACHINE (SVM)

Train Test Ratio Accuracy (%) Best Parameter

70:30 95.01 C = 1.1

80:20 96.75 C = 0.9

90:10 96.43 C = 1.1

HYPERPARAMETER TUNING

PERFORMANCE
For 70:30 split, the best performance is at C=1.1 with an accuracy of
95.01%. Precision, recall, and F1-score are consistently high for class 0,
with class 1 having high precision but lower recall, and high scores
overall for class 2.

For 80:20 split, the best performance is at C=0.9 with an accuracy of
96.75%. Precision, recall, and F1-score are high for classes 0 and 2, with
class 1 showing high precision at C=0.8 and C=0.9, and stable F1-
scores starting from C=0.9.

For 90:10 split, the best performance is at C=0.9 with an accuracy of
96.75%, but C=1.1 is chosen as optimal with 96.43% accuracy due to
balanced precision, recall, and F1-score, avoiding overfitting in class 1.

Across all train-test splits, C values from 0.9 to 1.1 provide the best
balance between precision, recall, and F1-score.

The SVM model shows the best overall performance at C=0.9 with a
train-test split of 80:20.

The research uses a 'linear' kernel in SVM because it
is more suitable for text data represented as high-
dimensional TF-IDF vectors, while non-linear kernels
may cause overfitting or underfitting.

The gamma parameter is set to 'auto' for
completeness but does not affect the linear kernel.

The C parameter, crucial for balancing bias, is tested
with values from 0.8 to 1.3, as the model's accuracy
stabilizes from 0.8 and optimizes at C=1.3.



LOGISTIC REGRESSION (LR)
Train Test Ratio Accuracy (%) Best Parameter

70:30 93.82
C=5.0

solver='liblinear'

80:20 95.12
C=5.0

solver='liblinear'

90:10 95.45
C=5.0

solver='liblinear'

HYPERPARAMETER TUNING

The C parameter controls regularization strength, and
values 1, 3, and 5 are chosen to find an optimal balance.

The 'class_weight' is set to 'balanced' to handle imbalanced
classes by adjusting weights inversely proportional to class
frequencies.

The 'solver' parameter is tested with 'lbfgs' and 'liblinear' to
determine the best optimization algorithm, with 'lbfgs'
being efficient for multiclass problems and 'liblinear'
suitable for smaller datasets and less computationally
intense.

PERFORMANCE
The best parameters for all train-test splits are C=5.0 and
solver='liblinear'. For 70:30 split, the highest accuracy is 93.82%, with
class 0 precision improving as C increases, and stable precision and
recall for classes 1 and 2 across all hyperparameters.

For 80:20 split, the highest accuracy is 95.28% with C=3.0 and
solver='liblinear', but C=5.0 is selected due to higher average precision,
recall, and F1-score across all classes.

For 90:10 split, the highest accuracy is 95.45% with C=5.0 and
solver='liblinear', showing consistent performance improvements in
precision, recall, and F1-score as C increases.

'liblinear' solver generally performs better than 'lbfgs', especially with
higher C values, and higher values of C improve performance,
particularly recall in class 1.

Increasing the training size enhances the model’s performance,
indicating the model benefits from more training data.

Overall, the configuration with C=5.0 and solver='liblinear' is
recommended for optimal performance.



DECISION TREE
Train Test Ratio Accuracy (%) Best Parameter

70:30 96.43
max_depth=25

max_features=10000

80:20 97.00
max_depth=25

max_features=10000

90:10 96.69
max_depth=25

max_features=10000

HYPERPARAMETER TUNING

Decision Tree constructs a tree-like decision structure
based on probability, with each node testing an attribute,
branches depicting test results, and leaf nodes containing
class labels.

Results vary with each run due to random splitting, so the
average of 10 runs will be used for evaluation.

Two parameters are defined: 'max_features' is set to
10,000 (10% of total features) for all train-test splits, and
'max_depth' is tested between 5 and 25, with the range 21
to 25 found optimal to avoid overfitting or underfitting.

PERFORMANCE
The best parameters for all train-test splits are max_depth=25 and
max_features=10000.

For 70:30 split, the highest accuracy is 96.43%. Class 0 has the highest
precision and F1-score (0.96 and 0.97), with recall stable around 0.98-
0.99. Class 1's best F1-score is 0.94 with max_depth=25. Class 2 shows
the highest precision, recall, and F1-score with values of 0.98, 0.95, and
0.97.

For 80:20 split, the highest accuracy is 97.00%. Class 0's highest
precision and F1-score are 0.97, with recall consistent at 0.98-0.99.
Class 1's best F1-score is 0.94, and Class 2's recall and F1-score are
highest at 0.97.

For 90:10 split, the highest accuracy is 96.69%. Class 0's highest
precision and F1-score are 0.95 and 0.97, with recall stable around
0.98-0.99. Class 1's best F1-score is 0.92, and Class 2's highest
precision, recall, and F1-score are 0.99, 0.97, and 0.98.

Max_depth=25 provides the highest accuracy across all train-test
splits and balances metrics well, especially for the "Symptom(s) Exist"
and "Treatment(s) Exist" classes.

The Decision Tree model's best performance is with an 80:20 train-
test split, achieving the highest accuracy of 97.00%.



K-NEAREST NEIGHBOR (KNN)
Train Test Ratio Accuracy (%) Best Parameter

70:30 78.85 n_neighbors=19

80:20 80.16 n_neighbors=20

90:10 78.24 n_neighbors=16

PERFORMANCE
For 70:30 split, the best accuracy is 78.85% with n_neighbors=19 , with
moderate precision and recall for class 0, high precision but low recall
for class 1, and stable performance for class 2.

For 80:20 split, the best accuracy is 80.16% with n_neighbors=20 , with
moderate precision and recall for class 0, high precision but low recall
for class 1, and slightly better precision and recall for class 2 compared
to class 0.

For 90:10 split, the best accuracy is 78.24% with n_neighbors=16, 17,
and 18, with the best parameter being n_neighbors=16 for slightly
higher precision, recall, and F1-score for class 1 and 2.

Class 1 consistently shows high precision but low recall across all
splits, affecting its F1-score.

Higher values of n_neighbors generally improve the model's accuracy,
especially in the 70:30 and 80:20 splits.

The KNN model's best performance is with n_neighbors=20, achieving
the highest accuracy of 80.16% for an 80:20 train-test split.

HYPERPARAMETER TUNING

In KNN, the only hyperparameter tuned is
'n_neighbors'.

Values for 'n_neighbors' from 5 to 25 were tested to
observe performance and determine the optimal
range.

.
The final 'n_neighbors' value is set between 16 and
20 for performance comparison.



RANDOM FOREST
Train Test Ratio Accuracy (%) Best Parameter

70:30 94.14
max_depth=14

max_features=900

80:20 93.98
max_depth=14

max_features=900

90:10 93.51
max_depth=15

max_features=900

HYPERPARAMETER TUNING

Random Forest builds multiple decision trees and selects
the tree with the most votes as the final output, offering
more stability and robustness than a single Decision Tree.

The 'class_weight' is set to 'balanced' to improve
classification of imbalanced classes.

'Max_features' is fixed at 900 for all train-test splits,
determined to be optimal after extensive testing.
'Max_depth' is tested from 5 to 20, with 11 to 15 found to be
the suitable range to avoid overfitting or underfitting.

PERFORMANCE
The best max_depth for the 70:30 and 80:20 splits is 14, while for the
90:10 split, it is 15.

For 70:30 split, max_depth=14 and max_features=900 yield the
highest accuracy of 94.14%, with class 0 showing stable precision and
F1-score, and class 2 achieving the highest precision, recall, and F1-
score.

For 80:20 split, the highest accuracy is 93.98% with max_depth=14,
with class 0 maintaining high precision and recall, and class 1 achieving
the best F1-score of 0.87.

For 90:10 split, the highest accuracy is 93.51% with max_depth=15, with
class 0 showing improved precision, recall, and F1-score, and class 1
achieving the best F1-score of 0.90.

Across all splits, class 1 precision and recall improve with increasing
max_depth, with class 2 showing consistently high performance.

Overall, max_depth=14 provides the best performance for the Random
Forest model, particularly with the 70:30 train-test split.



Classifier Accuracy (%)

Both Not Exist (0) Symptom(s) Exist (1) Treatment(s) Exist (2)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Support Vector
Machine

96.75 0.98 0.96 0.97 0.98 0.93 0.95 0.95 0.98 0.97

Logistic Regression 95.12 0.98 0.93 0.96 0.87 0.93 0.90 0.93 0.98 0.96

Decision Tree 97.00 0.97 0.98 0.97 0.94 0.93 0.94 0.98 0.97 0.97

K-Nearest Neighbor 80.16 0.77 0.90 0.83 0.96 0.54 0.66 0.84 0.73 0.78

Random Forest 93.98 0.94 0.95 0.95 0.89 0.86 0.87 0.96 0.94 0.95

COMPARISON ON OVERALL PERFORMANCE (80:20)



Classifier

Both Not Exist (0) Symptom(s) Exist (1) Treatment(s) Exist (2)

Correctly
Predicted

Incorrectly Predicted
Correctly
Predicted

Incorrectly Predicted
Correctly
Predicted

Incorrectly Predicted

(1) (2) (0) (2) (0) (1)

Support Vector Machine 314 1 11 52 4 0 229 4 0

Logistic Regression 304 7 15 52 3 1 229 3 1

Decision Tree 319 3 4 52 4 0 226 7 0

K-Nearest Neighbor 294 5 27 30 22 4 169 64 0

Random Forest 311 5 10 48 8 0 219 13 1

COMPARISON ON CONFUSION MATRIX (80:20)



Classifier Accuracy (%) Both Not Exist (0) Symptom(s) Exist (1) Treatment(s) Exist (2)

Support Vector
Machine

has the second
highest accuracy

(96.75)

has the highest precision (0.98)
and F1-score (0.97)
correctly predict 314 instances

has the highest precision (0.98),
recall (0.93) and F1-score (0.95)
correctly predict 52 instances

has the highest recall (0.98) and f1-
score (0.97)
correctly predict 229 instances

Logistic
Regression

has the third highest
accuracy (95.12)

has the highest precision (0.98)
correctly predict 304 instances

has the highest recall (0.93) but
lowest precision (0.87)
correctly predict 52 instances

has the highest recall (0.98)
correctly predict 229 instances

Decision Tree
has the highest

accuracy (97.00)

has the highest recall (0.98) and
f1-score (0.97)
correctly predict 319 instances

has the same recall (0.93) as  SVM
and LR
correctly predict 52 instances

has the highest precision (0.98)  and
F1-score (0.97)
correctly predict 226 instances

K-Nearest
Neighbor

has the worst
performance (80.16)

has the lowest precision (0.77) ,
recall (0.90) and F1-score (0.83)
correctly predict 294 instances

has the lowest recall (0.54) and F1-
score (0.66)
correctly predict 30 instances

has the lowest precision (0.84) ,
recall (0.73) and F1-score (0.78)
correctly predict 169 instances

Random Forest
has slightly lower
accuracy (93.98)

has slightly lower precision (0.94),
recall (0.95) and F1-score (0.95) as
compared to SVM and Decision
Tree
correctly predict 311 instances

has lower precision (0.89), recall
(0.86) and F1-score (0.87) that less
than 0.90
correctly predict 48 instances

has slightly lower recall (0.94) and
F1-score (0.95) as compared to
SVM, LR and Decision Tree
correctly predict 219 instances

SUMMARY OF COMPARISON BETWEEN 5 MODELS
*Precision, Recall, F1-score, Confusion Matrix



DISCUSSION
Top-Performing Models: Support Vector Machine and Decision Tree, due to their high accuracy and
balanced performance across all classes.

Well-Performing Models: Logistic Regression and Random Forest, though with slightly lower metrics for the
"Symptom(s) Exist (1)" class.

Underperforming Model: K-Nearest Neighbor, which is less suited for this dataset due to high dimensionality
and noise issues.

REASONS FOR PERFORMANCE

Data Characteristics:
Well-defined boundaries for
"Both Not Exist (0)" and
"Treatment(s) Exist (2)" classes
make them easier to classify.
"Symptom(s) Exist (1)" class is
less frequent, making it harder
for models to learn and
distinguish accurately.

Model Strengths:
SVM and Decision Tree: Excel
due to their ability to
capture complex patterns.
Logistic Regression:
Performs well with linearly
separable data structure.
Random Forest: Balances
variance and bias effectively.

Model Limitations:
KNN: Struggles with high
dimensionality and noise.
Random Forest: Less
effective for the
"Symptom(s) Exist (1)" class.

Ultimately, the choice of model depends on the specific requirements and constraints of the
application, but SVM and Decision Tree show the best adaptability and performance for this dataset.



CHAPTER 6
CONCLUSION AND

RECOMMENDATIONS



01 
Most of the classifiers show their best results in the text classification on
DM symptoms and treatments using journal articles from PubMed website
when the splitting is 80% for training data and 20% for testing data.

SVM was proven as the best model in terms of performance metrics and
confusion matrix followed by Decision Tree, Logistic Regression and
Random Forest.

The proposed machine learning algorithms have been proved that it is
capable to be employed to classify text data based on the keywords
defined for DM.

CONCLUSION

02 

03



ACHIEVEMENTS

Diabetes Mellitus (DM) symptoms and
treatments in the datasets were successfully
labelled based on the predefined keyword.

Five machine learning models were built to
classify the DM symptoms and treatments in
the datasets.

Performance of the models were evaluated
and SVM outperforms in term of performance
metrics and confusion matrix.



1

Try different types of feature
extraction methods to compare and
observe the performance of the
machine learning algorithms.

FUTURE WORKS...

3

Implementation of imbalance data
handling technique such as
MLSMOTE to handle data imbalance
problems in multi-label text data.

2

Implementation of hyperparameter
tuning using search techniques like
GridSearchCv and
RandomizedSerachCV to further
optimize the performance.
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