

PSM 2 PRESENTATION SESSION 2023/2024-2

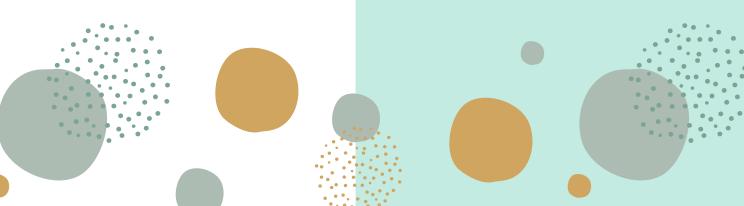
Identification of Potential Ovarian Cancer Biomarkers from Imbalanced Gene Expression with Protein-Protein Interactions

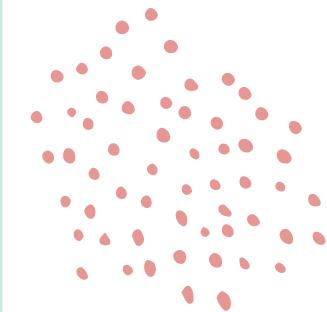
PREPARED BY: MEK ZHI QING (A20EC0077)

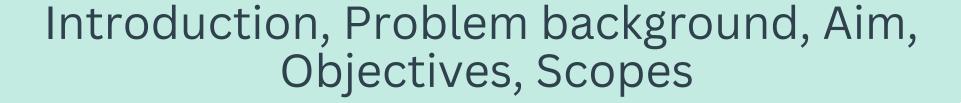
SUPERVISOR: DR. CHAN WENG HOWE

Presentation Link: https://youtu.be/ul5YbWgv5MM

Demo Link: https://youtu.be/CEcb7PErzbY







Summary of Research Methodology

Summary of Research Design and Implementation

Summary of Results and Discussion

Conclusion

Overview



Introduction

Biomarker

An indicator to measure various processes and responses including normal biological processes, pathogenic processes, and biological responses to the intervention (Ou *et al.*, 2021).

Example:

- Biological molecules
- pulse
- blood pressure (Strimbu & Tavel, 2010)

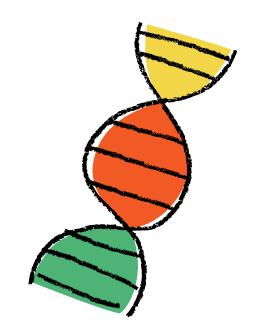
Importance:

- early detection of disease
- categorization of disease
- identify the existence of high-risk cohort
- assessing response of treatment (Samprathi & Jayashree, 2020)

Introduction

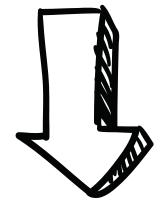
Gene Biomarker

Detected from large amount of gene expression profiling

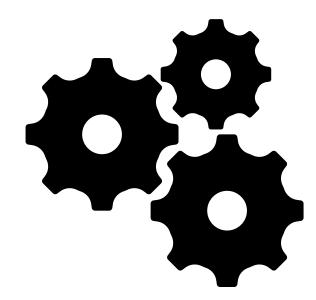


Early Phase in Discovery Biomarker

- Done in laboratory instead of using computational methods
- Disadvantage: Time-consuming, expensive



Use computational method (machine learning / deep learning)



analysis of gene expression data through computational method

Biomarker

- prone to fluctuations which may affect the accuracy of classification (Zhong et al., 2021)
- 2 using **gene expression data only** is considered **less informative** as most of the gene seems to be correlated with other genes to perform function effectively (Wu *et al.*, 2012)
- Class imbalance issue in gene expression data might decrease the ability of predictive machines to predict the minority class accurately (Koziarski *et al.*, 2020)

Problem Background

Problem Statement

The focus on high dimensional gene expression data only will leave over the interaction between genes and further lead to the less informative discovery of potential biomarkers while the imbalance class distribution might cause the classifier to become bias.

Research Aim

to implement different data resampling strategies for identifying potential biomarkers of ovarian cancer from imbalanced gene expression with protein-protein interactions.

Research Objectives

1

To study the **existing computational methods** in identification of potential biomarkers.

3

To apply different data resampling strategies on the generated input for better identification of potential biomarkers of ovarian cancer.

To generate input that considers interactions between genes from gene expression datasets with protein-protein interactions data.

4

To evaluate the **performance** of different data resampling strategies in terms of accuracy, precision, sensitivity, specificity, and F1 score.

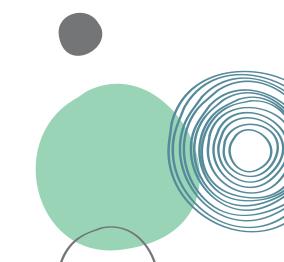
Research Scopes

The research will focus on identifying the potential biomarkers of ovarian cancer.

The dataset mainly used is gene expression data that can be downloaded from Gene Expression Omnibus (GEO).

The performance measurement will be focused on accuracy, precision, sensitivity, specificity, and F1-score.

The source of biological context verification will be based on the published journals and articles.



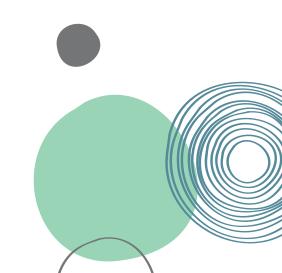
Protein-protein Interaction (PPI)

- physical interactions between two or more proteins that have complex biological activities (Farooq *et al.*, 2021).
- Interaction between proteins will control biological processes or mechanisms that can further lead to a healthy or unhealthy condition in living organisms.
- plays an important role in identifying the molecular basis of a disease. (Atan *et al.*, 2018).

Protein-protein Interaction (PPI)

Publication	Purpose	Advantages
Zhang <i>et al.</i> , 2022	Identify biomarkers for colon cancer	Reduce the bad influences caused by the size and heterogeneity of sample
Yu et al., 2020	Identify biomarkers for neurodegenerative disease	Improve the chance of successfully predicting a biomarker for the new disease
Nan et al., 2021	Identify biomarkers for lung cancer	Helps in understanding the function and behavior of the protein

Advantages of applying PPI in identifying biomarkers



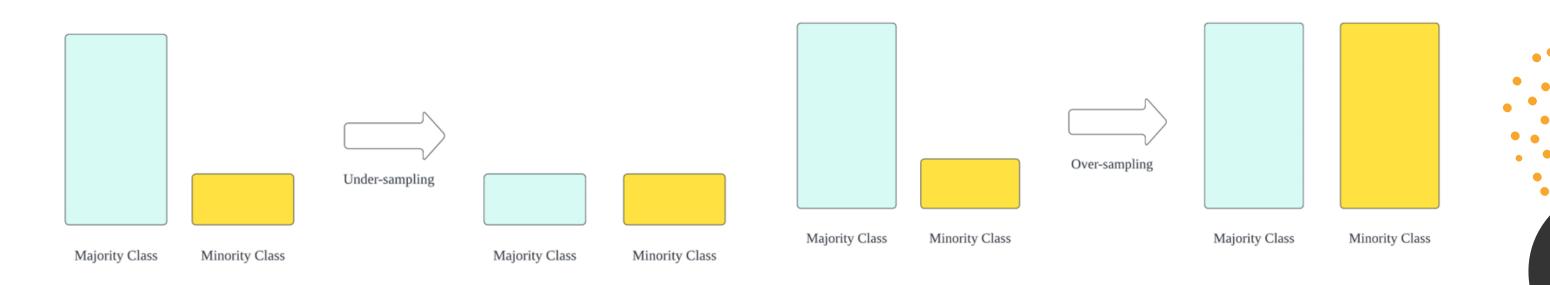
Data Integration

- The process of combining
 different data that are obtained
 from a few different sources into
 a single dataset.
- Essential for researchers to utilize the data fully and gain more insights about biological systems (Reel *et al.*, 2021).

Publication	Dataset	Advantages	Disadvantages
Pal et al., 2007;	GE alone	Easy to understand	Limited information,
Lu et al., 2014;		and process	do not considered
Peng et al., 2006			interaction between
			genes
Yang et al., 2018;	GE + PPI	Provide more	Complicated,
Zeng et al., 2018;		information about the	required more time to
Niu <i>et al.</i> , 2020		disease, interactions	complete the whole
		between genes are	process
		considered	
Cardoso et al.,	GE + pathway	Provide more useful	Complicated,
2018; Li et al.,		insights about the	required more time to
2020		biological processes	complete the whole
			process

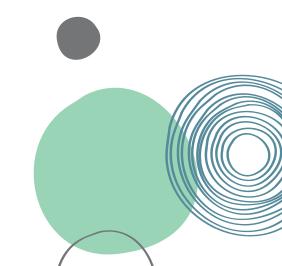
Data Resampling

- Applied in training data to **balance the proportion of class distribution** by decreasing the number of samples from the majority class or increasing the number of samples from the minority class (Khushi *et al.*, 2021).
- Under-sampling will remove the samples from the majority classes until it is almost the same as the number of samples from the minority classes.
- Over-sampling will create new samples according to the samples of the minority class to balance the class distribution.
- Hybrid-sampling combines both under-sampling and over-sampling.



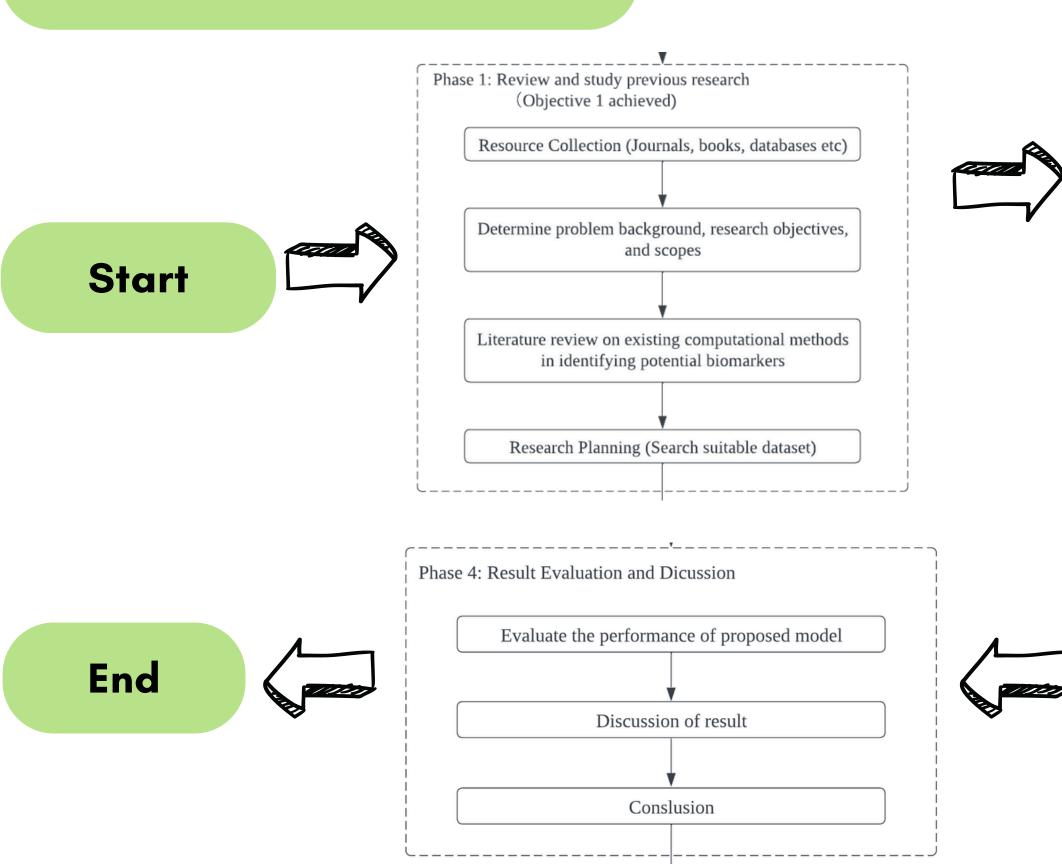
Publication	Computational method	Advantages	Disadvantages
Zhang et al., 2021; Zhou et al., 2018; Adorada et al., 2018		Low probability of over-fitting Good in handling complex function	Hard to deal with imbalanced dataset Cannot perform well if data has noise
Toth et al., 2019; Zhao et al., 2019	Random Forest (RF)	Good at handling many predictors variables Good in dealing with imbalanced dataset	Hard to interpret Computationally expensive
Mofrad et al., 2019; Alessandro et al., 2020	Decision Tree (DT)	Easy to interpret Good visualization	 Prone to over- fitting Sensitive to features
Shon et al., 2019; Folego et al., 2020; Abdeltawab et al., 2019	Neural Network	High accuracy in image classification	Computationally expensive Complex
Zhang et al., 2021; Lu et al., 2018	Deep Neural Network (DNN)	Low error rate Good in detecting complex relationship	 Computationally expensive Complex

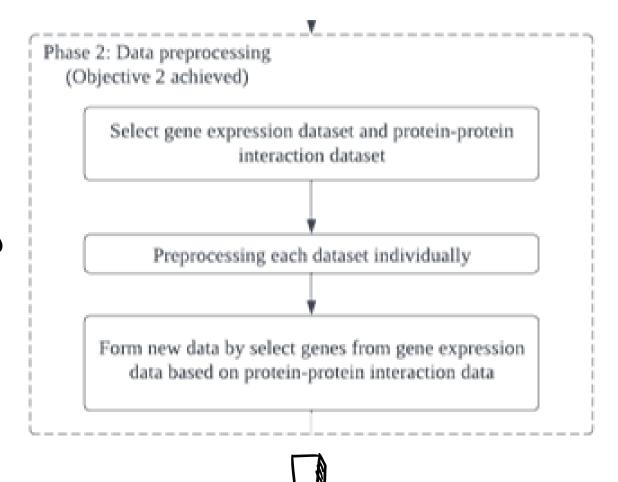
Existing computational methods and their advantages and disadvantages in identification of potential biomarkers

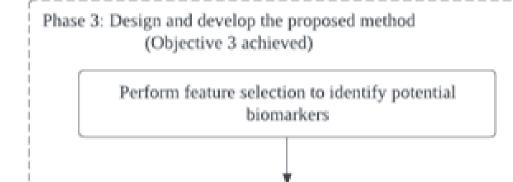


Summary of Research Methodology

Research Framework







Perform different data resampling strategies including under-sampling, over-sampling, and hybrid-sampling

Develop the classification model

Summary of Research Methodology

1

Accession Number	GSE52037	GSE10971	GSE4122	GSE6008	GSE26712
Cancerous Sample	10	13	53	99	185
Control Sample	10	24	14	4	10
Total Sample	20	37	67	103	195
Overall	422 sample				

360 cancerous sample (85%)
62 control sample (15%)

Obtained from: Gene Expression Omnibus (GEO)

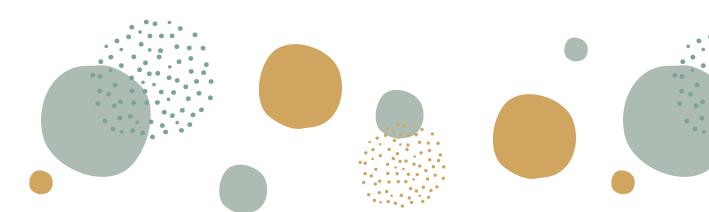
Summary of Research Methodology

Dataset

Protein-Protein Interaction Data

Consists of 39240 interaction of genes

Obtained from: Human Protein Reference Database (HPRD)

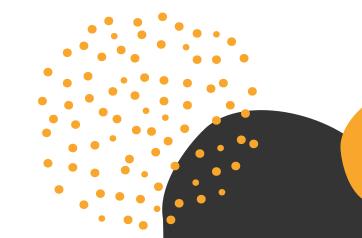


Classification Performance Measurement

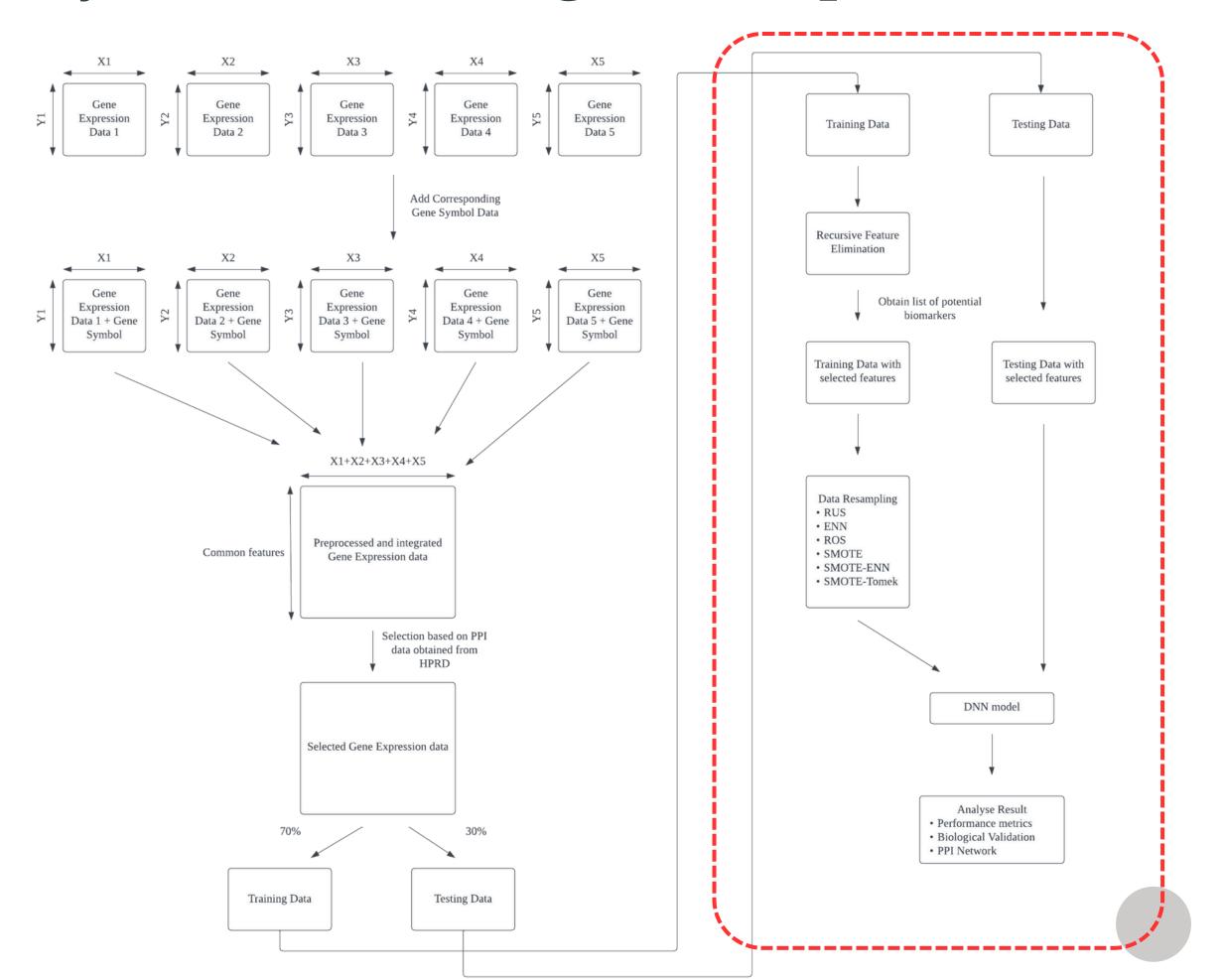
Measurement	Definition	Formula
Accuracy (Acc)	It shows the value of correctly classified sample.	$\frac{TP + TN}{TP + FP + TN + FN}$
Sensitivity (Ss)	It shows the portion of positive samples that are correctly predicted.	TD L EM
Precision (Pre)	It shows the quality of positive sample predicted.	$\frac{TP}{TP + FP}$
Specificity (Sp)	It shows the portion of negative samples that are correctly predicted.	
F1 score	The harmonic mean of Pre and Ss.	$\frac{2 \times Pre \times Ss}{Pre + Ss}$

Biological Context Validation

Validate the potential biomarkers from reliable sources to prove it is related to ovarian cancer.



Summary of Research Design and Implementation



Data Pre-processing

Gene expression data in matrix form

ID_REF	GSM139377	GSM139378	GSM139379	GSM139380
1007_s_at	3.702688968	3.851686315	3.667172672	4.138965478
1053_at	2.704150517	2.557507202	2.382017043	2.816903839
117_at	2.853698212	2.644438589	2.73239376	2.937016107
121_at	4.124014879	4.167760266	4.139532772	4.376887057
1255_g_at	2.492760389	2.531478917	2.57054294	2.586587305
1294_at	3.240299582	3.089198367	3.202215776	3.15715444

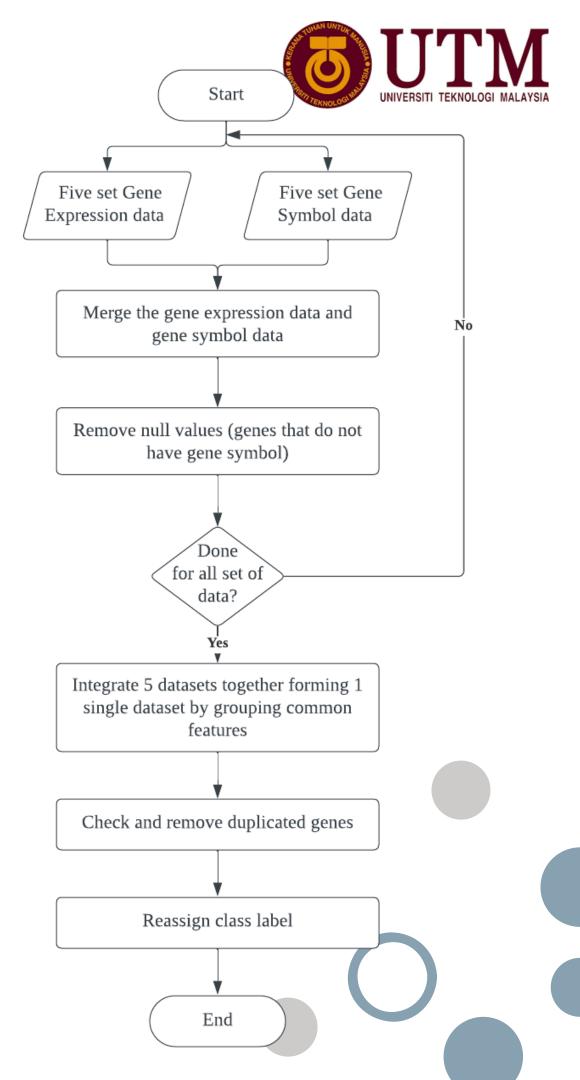
Gene Symbol data

ID_REF	Gene Symbol
1007_s_at	DDR1 /// MIR4640
1053_at	RFC2
117_at	HSPA6
121_at	PAX8
1255_g_at	GUCA1A
1294_at	MIR5193 /// UBA7
1316_at	THRA
1320_at	PTPN21

Remove missing values (genes that do not have gene symbol)

ID_REF	Gene Symbol	GSM139377	GSM139378	GSM139379	GSM139380	GSM139381	GSM139382
1007_s_at	DDR1 /// MIR4	3.702688968	3.851686315	3.667172672	4.138965478	3.835500328	3.392872745
1053_at	RFC2	2.704150517	2.557507202	2.382017043	2.816903839	2.88592634	2.630427875
117_at	HSPA6	2.853698212	2.644438589	2.73239376	2.937016107	2.828659897	2.855519156
121_at	PAX8	4.124014879	4.167760266	4.139532772	4.376887057	4.244821195	4.142702246
1255_g_at	GUCA1A	2.492760389	2.531478917	2.57054294	2.586587305	2.542825427	2.526339277
1294_at	MIR5193 /// U	3.240299582	3.089198367	3.202215776	3.15715444	3.260548373	3.01494035
1316_at	THRA	2.777426822	3.017867719	2.797959644	2.733197265	2.866877814	2.654176542
1320_at	PTPN21	2.487138375	2.57054294	2.480006943	2.492760389	2.392696953	2.307496038

Gene symbol is added as it is needed for selecting the genes based on PPI data



Data Pre-processing

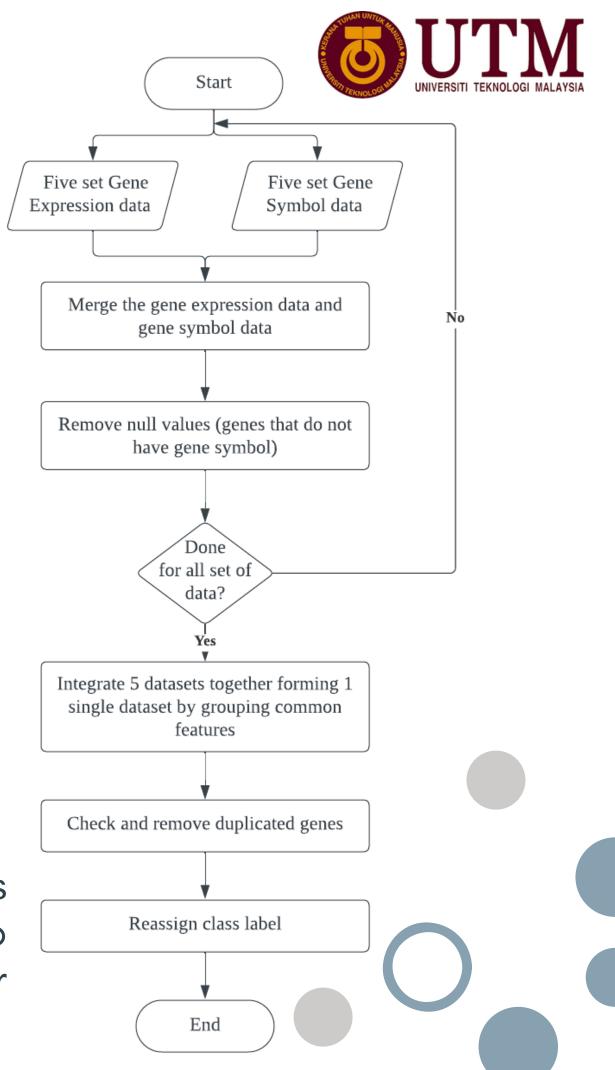
1	64432_at	MAPKAPK	2.30103	2.499687	2.456366	2.721811	2.584331
	65517_at	AP1M2	3.317854	3.215902	3.156549	3.359646	3.268812
	65521_at	UBE2D4	3.2266	3.330819	3.142389	3.303844	3.2403
	65884_at	MAN1B1	3.028571	3.004751	3.130334	3.111599	3.161368
	78330_at	ZNF335	2.371068	2.798651	2.359835	2.660865	2.612784
	823_at	CX3CL1	2.828015	2.800029	2.689309	3.025306	2.876218
ı	90265_at	ADAP1	3.559548	3.513617	3.297323	3.734079	3.741546
ı	90610_at	LRCH4	3.068557	3.0306	3.036629	3.037825	3.084576
	91920_at	BCAN	3.140508	3.220108	3.269746	3.270912	3.216957
1	Class		1	1	1	1	1

Integrate 5 GE dataset

Common

Features

- only the common features (genes) will remain
- 8250 common features remain after the process
- Remove duplicated genes (only 8134 genes remaining)
- Combined as the **sample size** of each dataset is **small** and the number of normal control samples is too small. Wong *et al.* (2022) also used this method in their research to identify potential biomarkers.

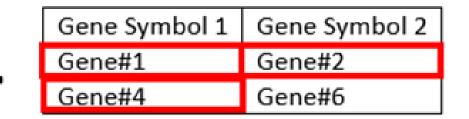


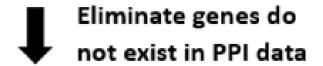
Select Gene Expression Data Based on PPI Data

GE data

	Gene Symbol	Sample#1	Sample#2	Sample#3
	Gene#1			
Г	Gene#2			
	Gene#3			
Γ	Gene#4			
	Gene#5			

PPI data



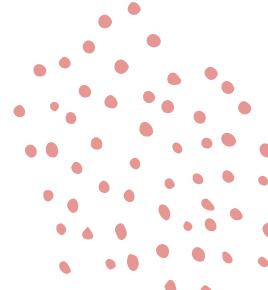


New GE data

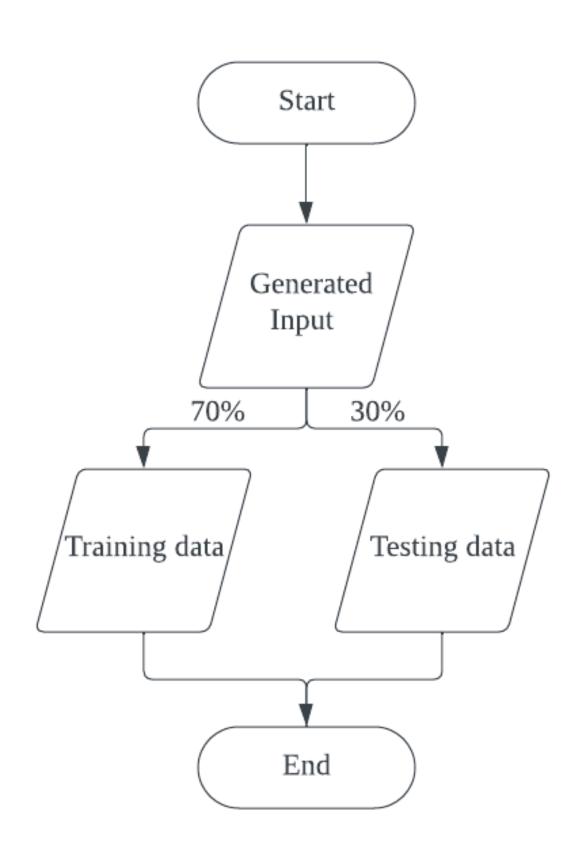
Gene Symbol	Sample#1	Sample#2	Sample#3
Gene#1			
Gene#2			
Gene#4			

5729 features
(genes) remain after
the process

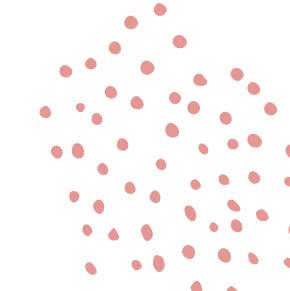
To ensure only genes that have interaction with other genes will be remained



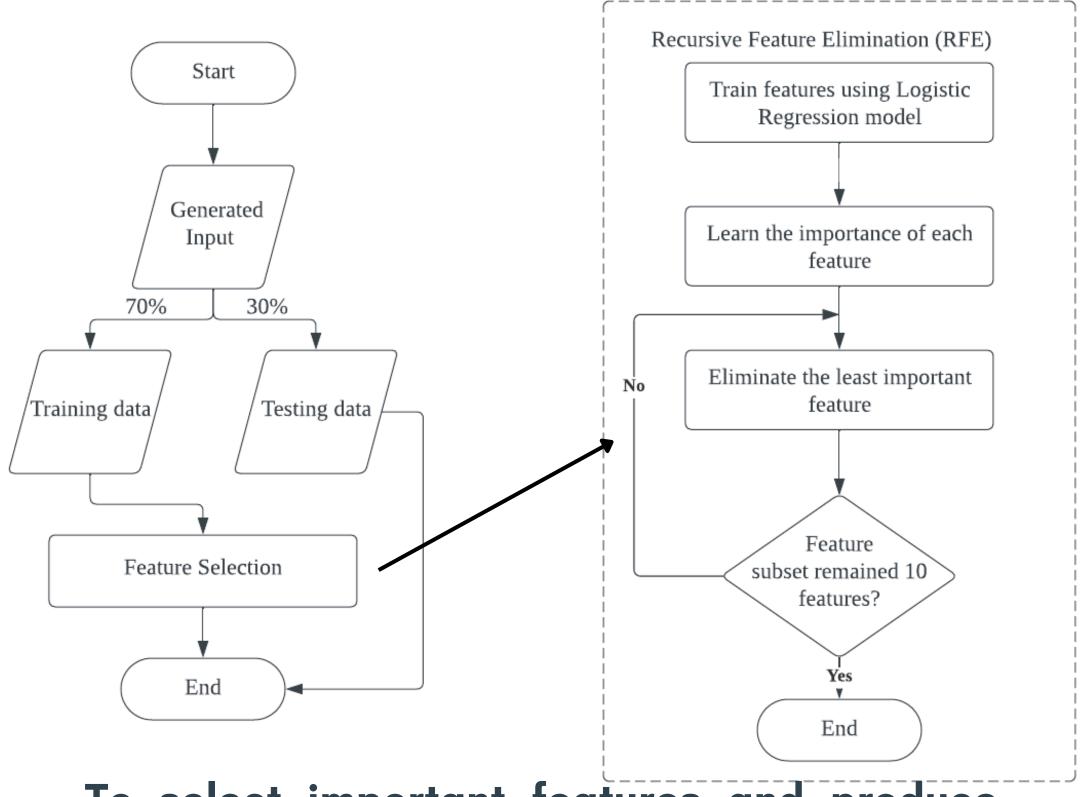
Data Splitting



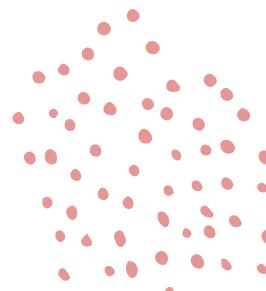
- The random state hyperparameter is set to ensure the data subsets produced are **reproducible**.
- This experiment uses **five different** random states to run the experiment five times to ensure the result of the experiment is not biased.



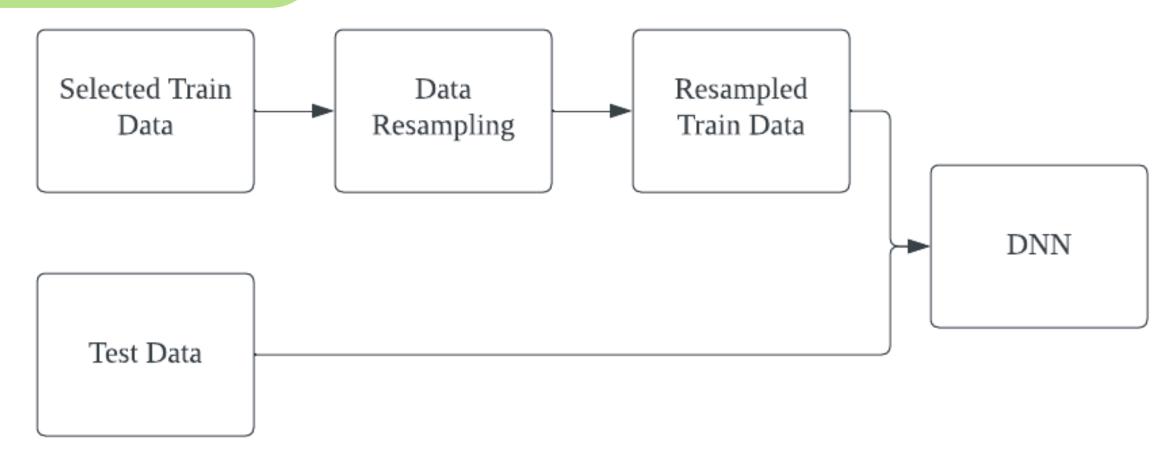
Feature Selection



To select important features and produce list of potential biomarker

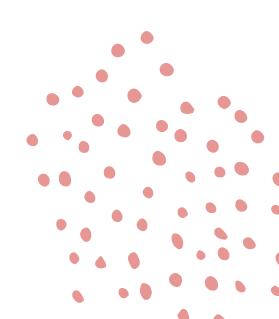


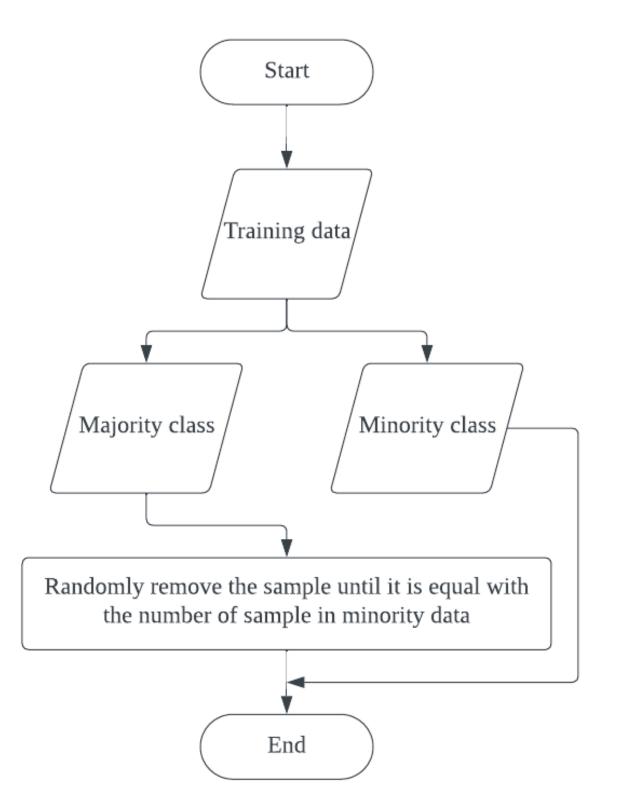
Data Resampling



- Random Under-Sampling (RUS)
- Edited Nearest Neighbors (ENN)
- Random Over-Sampling (ROS)
- Synthetic Minority Over-Sampling Technique (SMOTE)
- SMOTE-RUS
- SMOTE-Tomek Link

To balance the class distribution of gene expression data





Before RUS

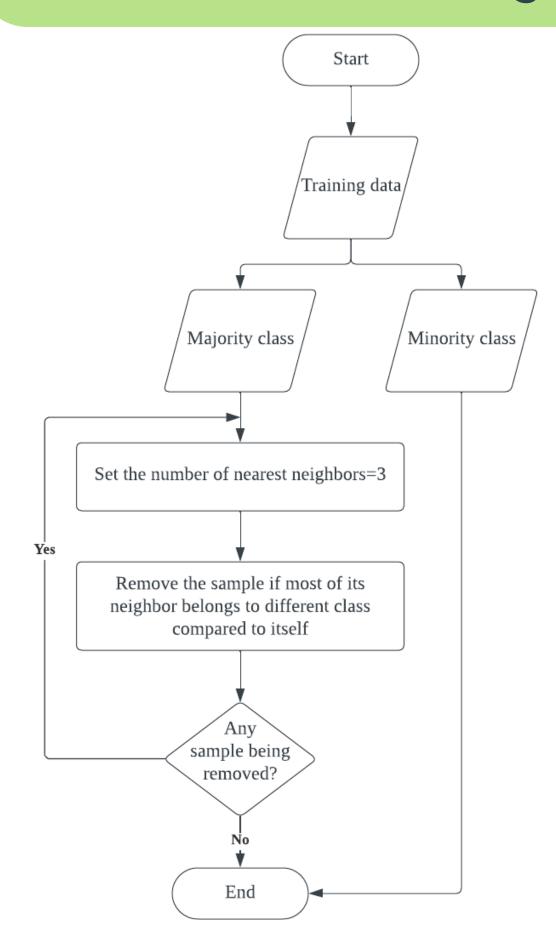
Normal Control Sample	42	minority
Cancerous Sample	253	majority

After RUS

Normal Control Sample	42	minority
Cancerous Sample	42	majority

UNIVERSITI TEKNOLOGI MALAYSIA

Edited Nearest Neighbors (ENN)

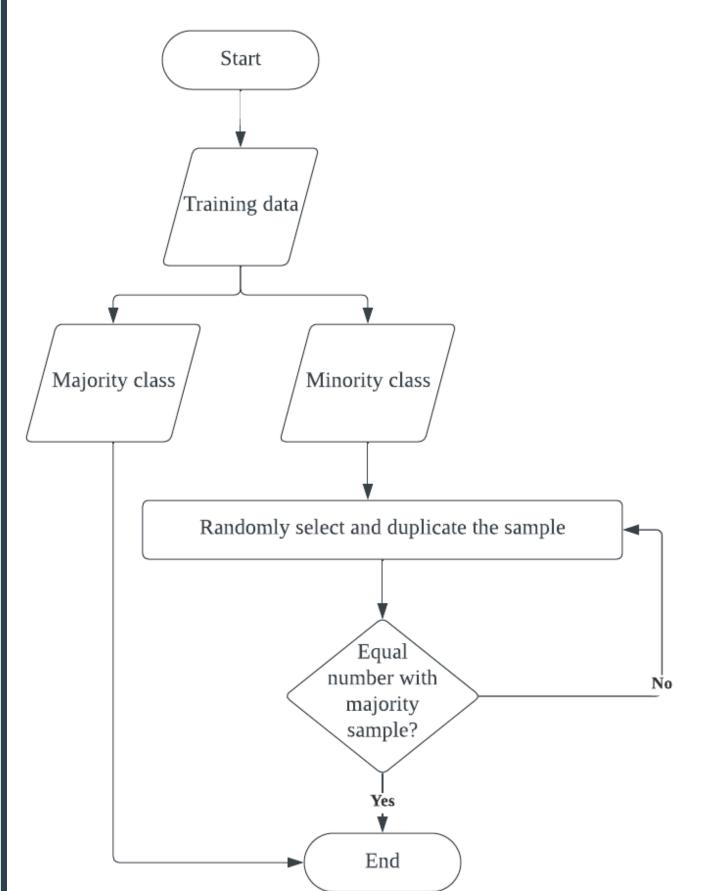


Before ENN

Normal Control Sample	42	minority
Cancerous Sample	253	majority

After ENN

Normal Control Sample	42	minority
Cancerous Sample	240	majority



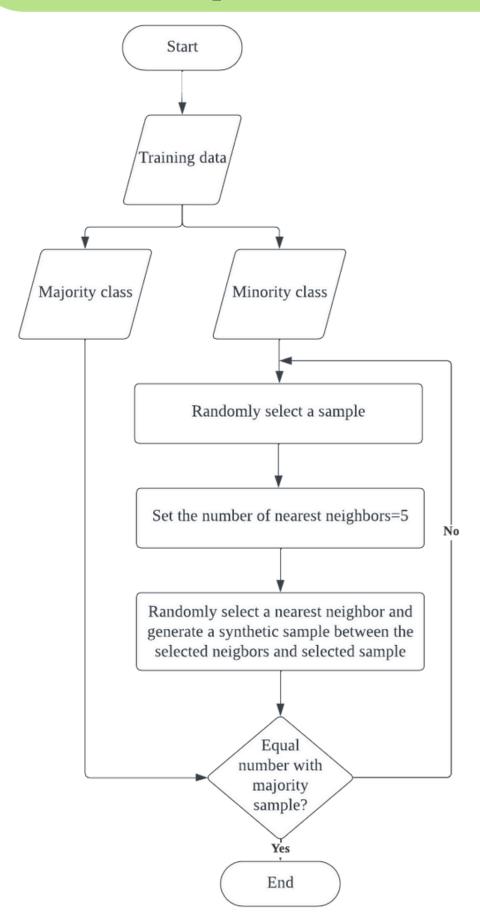
Before ROS

Normal Control Sample	42	minority
Cancerous Sample	253	majority

After ROS

Normal Control Sample	253	minority
Cancerous Sample	253	majority

Synthetic Minority Over-Sampling Technique (SMOTE)



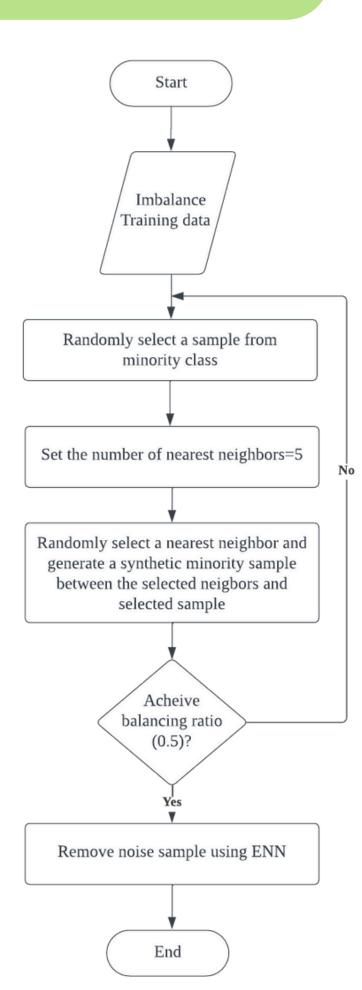
Before SMOTE

Normal Control Sample	42	minority
Cancerous Sample	253	majority

After SMOTE

Normal Control Sample	253	minority
Cancerous Sample	253	majority

SMOTE - ENN



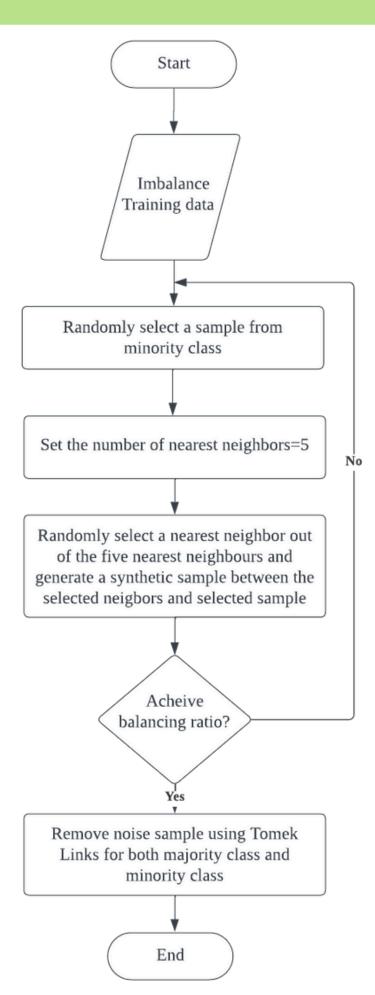
Before SMOTE-ENN

Normal Control Sample	42	minority
Cancerous Sample	253	majority

After SMOTE-ENN

Normal Control Sample	247	minority
Cancerous Sample	239	majority

SMOTE - Tomek Link



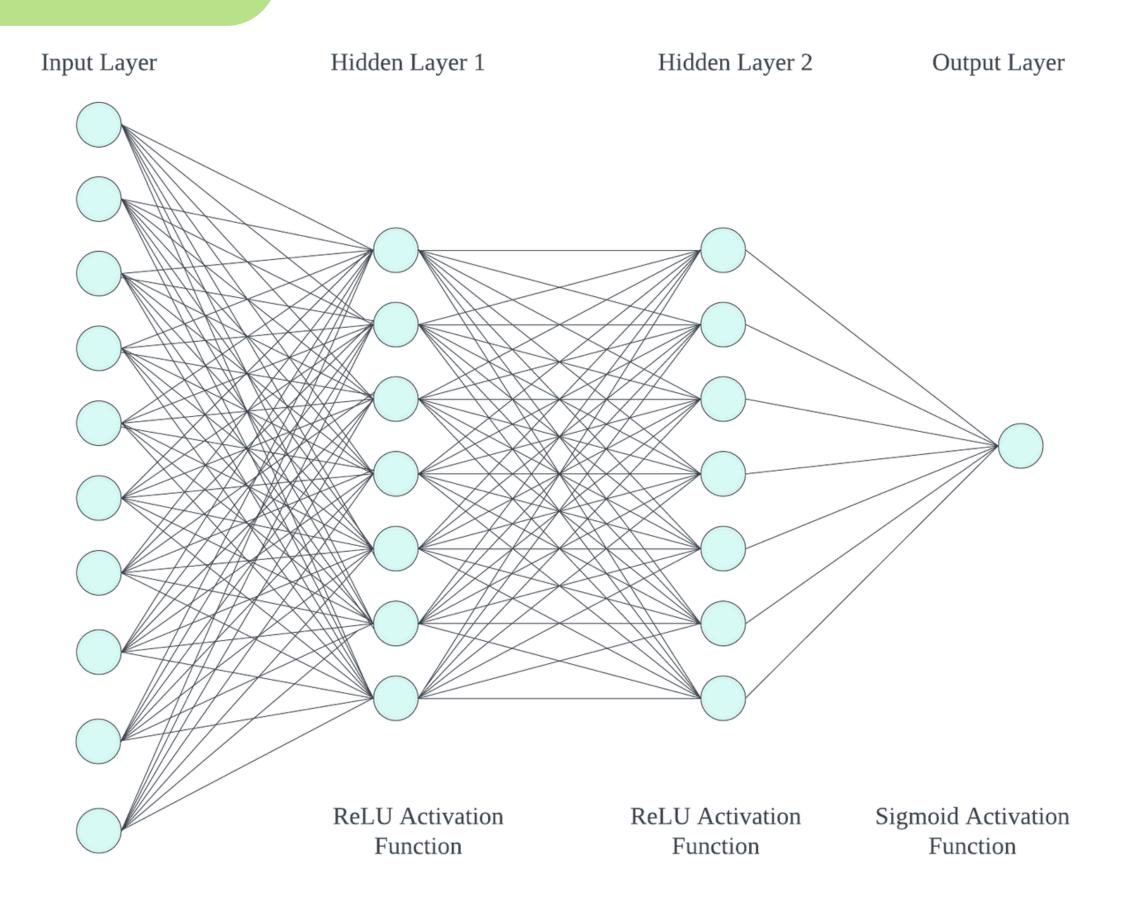
Before SMOTE-Tomek Link

Normal Control Sample	42	minority
Cancerous Sample	253	majority

After SMOTE-Tomek Link

Normal Control Sample	252	minority
Cancerous Sample	252	majority

DNN Model



Epochs:250 Batch size:32

Effect of Integrating GE Data with PPI Data

Data	ъ	Accuracy	Specificity	Sensitivity	Precision	F1 score
	Runs	(Acc)	(Sp)	(Ss)	(Pre)	
	1	90.55%	29.41%	98.18%	90.00%	93.91%
CF	2	88.98%	26.32%	100.00%	88.52%	93.91%
GE	3	90.55%	36.84%	100.00%	90.00%	94.74%
Only	4	89.76%	35.00%	100.00%	89.17%	94.27%
	5	91.34%	35.29%	100.00%	90.91%	95.24%
Average		90.24%	32.57%	99.64%	89.72%	94.41%
	1	86.02%	58.82%	97.27%	93.86%	95.54%
GE	2	90.55%	57.89%	96.30%	92.86%	94.55%
+	3	89.91%	42.11%	100.00%	90.76%	95.15%
PPI	4	95.28%	70.00%	100.00%	94.69%	97.27%
	5	91.34%	35.29%	100.00%	90.91%	95.24%
Ave	rage	90.62%	52.82%	98.71%	92.62%	95.55%

There is a significant increase in the specificity by integrating GE data with PPI data. This shows that more normal control samples are predicted correctly although it is the minority class.

Effect of Feature Selection

Method	Runs	Accuracy	Specificity	Sensitivity	Precision	F1 score
		(Acc)	(Sp)	(Ss)	(Pre)	
	1	86.02%	58.82%	97.27%	93.86%	95.54%
GE	2	90.55%	57.89%	96.30%	92.86%	94.55%
+	3	89.91%	42.11%	100.00%	90.76%	95.15%
PPI	4	95.28%	70.00%	100.00%	94.69%	97.27%
	5	91.34%	35.29%	100.00%	90.91%	95.24%
Average		90.62%	52.82%	98.71%	92.62%	95.55%
GE	1	88.98%	58.82%	93.64%	93.64%	93.64%
+	2	90.55%	73.68%	93.52%	95.28%	94.39%
PPI	3	94.49%	73.68%	98.15%	95.50%	96.80%
+	4	92.13%	65.00%	97.20%	93.69%	95.41%
RFE	5	88.19%	58.82%	92.73%	93.58%	93.15%
Average		90.87%	66.00%	95.05%	94.34%	94.68%

The specificity has improved around 13%. This indicates that through the application of RFE, more significant features are identified and the noisy features remaining from the previous process are removed now.

Effect of Data Resampling

				AVERAGE		
	Method	Accuracy	Specificity	Sensitivity	Precision	F1
		(Acc)	(Sp)	(Ss)	(Pre)	score
	Without Data	90.87%	66.00%	95.05%	94.34%	94.68%
	Resampling					
Under-	RUS	87.40%	80.15%	89.89%	96.47%	92.99%
sampling	ENN	90.39%	80.32%	92.08%	94.29%	94.21%
Over-	ROS	93.54%	93.54%	93.57%	98.86%	95.85%
sampling	SMOTE	94.65%	87.96%	95.77%	97.96%	96.83%
Hybrid-	SMOTE-ENN	93.70%	90.24%	94.31%	98.31%	96.24%
sampling	SMOTE-	95.12%	90.14%	95.96%	98.32%	97.11%
	Tomek					

The implementation of data resampling methods has successfully solved the class imbalance issue and led to the yield of improved results. Overall, the specificity shows huge improvement after applying the data resampling method.

Comparison of Under-Sampling Results

Method	Runs	Accuracy	Specificity	Sensitivity	Precision	F1 score
		(Acc)	(Sp)	(Ss)	(Pre)	
RUS	1	88.98%	76.47%	90.91%	96.15%	93.46%
	2	84.25%	89.47%	83.33%	97.83%	90.00%
	3	84.25%	84.21%	90.74%	97.03%	93.78%
	4	95.28%	80.00%	98.13%	96.33%	97.22%
	5	84.25%	70.59%	86.36%	95.00%	90.48%
Average		87.40%	80.15%	89.89%	96.47%	92.99%
ENN	1	90.55%	82.35%	91.82%	97.12%	94.39%
	2	86.61%	84.21%	87.04%	96.91%	91.71%
	3	88.98%	89.47%	88.88%	97.96%	93.20%
	4	93.70%	75.00%	97.20%	95.41%	96.30%
	5	92.13%	70.59%	95.45%	95.45%	95.45%
Average		90.39%	80.32%	92.08%	94.29%	94.21%

performance and reliability in identifying both normal control samples and ovarian cancer samples despite its slightly lower precision

Comparison of Over-Sampling Results

Method	Runs	Accuracy	Specificity	Sensitivity	Precision	F1 score
		(Acc)	(Sp)	(Ss)	(Pre)	
	1	95.28%	94.12%	95.45%	99.06%	97.22%
	2	90.55%	100.00%	88.88%	100.00%	94.12%
ROS	3	96.06%	89.47%	97.22%	98.13%	96.47%
	4	96.07%	90.00%	97.20%	98.11%	97.65%
	5	89.76%	94.12%	89.09%	98.99%	93.78%
Ave	Average		93.54%	93.57%	98.86%	95.85%
	1	94.49%	94.12%	94.55%	99.05%	96.74%
	2	92.91%	89.47%	93.52%	98.06%	95.73%
SMOTE	3	94.49%	94.74%	94.44%	99.03%	96.68%
	4	96.85%	85.00%	99.07%	97.25%	98.15%
	5	94.49%	76.47%	97.27%	96.40%	96.83%
Average		94.65%	87.96%	95.77%	97.96%	96.83%

SMOTE perform well overall and is good at identifying ovarian cancer samples. However, the low specificity of SMOTE caused some of the normal control samples to be classified incorrectly and led to a lower reliability in the negative predictions.

Comparison of Hybrid-Sampling Results

Method	Runs	Accuracy	Specificity	Sensitivity	Precision	F1
		(Acc)	(Sp)	(Ss)	(Pre)	score
	1	92.91%	94.12%	92.73%	99.03%	95.77%
	2	93.70%	100.00%	92.59%	100.00%	96.15%
SMOTE-	3	94.49%	94.74%	94.44%	99.03%	96.68%
ENN	4	95.28%	80.00%	98.13%	96.33%	97.22%
	5	92.13%	82.35%	93.64%	97.17%	95.37%
Avei	Average		90.24%	94.31%	98.31%	96.24%
	1	94.49%	88.24%	95.45%	98.13%	96.77%
	2	95.28%	100.00%	94.44%	100.00%	97.14%
SMOTE-	3	96.06%	84.21%	98.13%	97.25%	97.70%
Tomek	4	96.85%	90.00%	98.15%	98.13%	98.13%
	5	92.91%	88.24%	93.64%	98.10%	95.81%
Average		95.12%	90.14%	95.96%	98.32%	97.11%

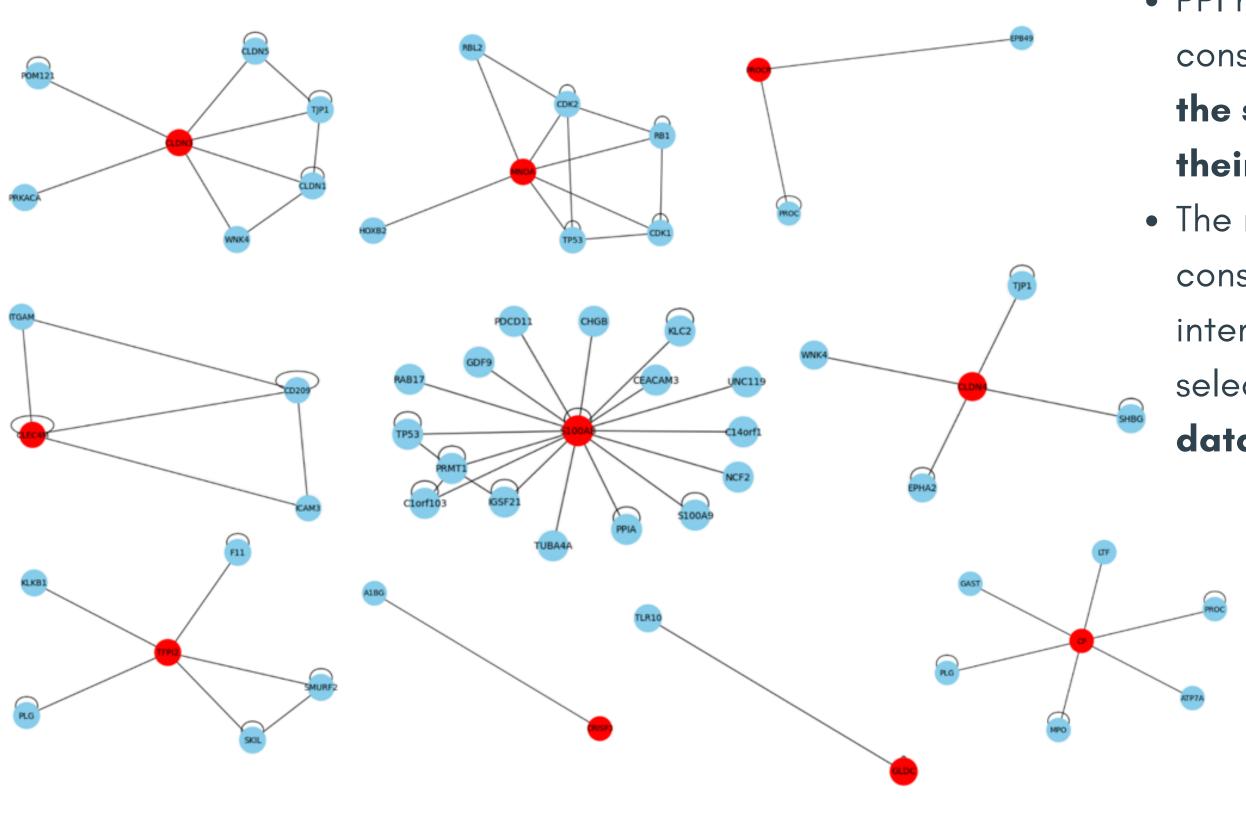
SMOTE-Tomek outperforms overall, especially in identifying the ovarian cancer samples. However, its lower specificity indicates that its capability to identify the normal control samples is lower than the SMOTE-ENN

Biological Context Validation

Gene	Gene Name	Descriptions	Publications	
Symbol				
CLDN3	Claudin 3	positively correlated	Hao et al., 2023;	
		with the development	Yuan et al., 2020	
		of ovarian cancer		
MNDA	Myeloid Cell	-	-	
	Nuclear			
	Differentiation			
	Antigen			
CLEC4M	C-Type Lectin	play an important role	Wang et al.,	
	Domain Family 4	in oncogenesis in	2024; Li et al.,	
	Member M	ovarian cancer	2022	
S100A8	Calcium-binding	prognostic biomarker of	Muqaku et	
	Protein A8	ovarian cancer	al.,2020; Xu et	
			al., 2020	
CP	Ceruloplasmin	ovarian cancer patient	Trifanescu et al.,	
		usually has a higher	2023; Chen et al.,	
		level of CP	2021	
CRISP3	Cysteine Rich	secreted at increased	Gasiorowska et	
	Secretory Protein 3	levels in women with	al., 2018; Yu et	
		ovarian tumours and	al., 2022	
		cancer		
PROCR	Protein C Receptor	increased level of	Yuan et al., 2020;	
		PROCR caused poor	Torabian et al.,	
		prognosis for ovarian	2023	
		cancer patients		
TFPI2	Tissue Factor	preoperative biomarker	Li et al., 2023;	
	Pathway Inhibitor	for ovarian cancer	Miyagi <i>et al.</i> ,	
	2		2021	
CLDN4	Claudin 4	predictive biomarker of	Hu et al., 2023;	
		ovarian cancer	Wang et al., 2021	

9 out of 10 of the selected features have been proved their relatedness with ovarian cancer

PPI Network Diagram



 PPI network diagrams are constructed to visualise the selected features on their interacting genes.

 The network diagrams are constructed based on the interaction of the selected features with the data in HPRD.

Conclusion

Research Outcomes

Findings from PPI

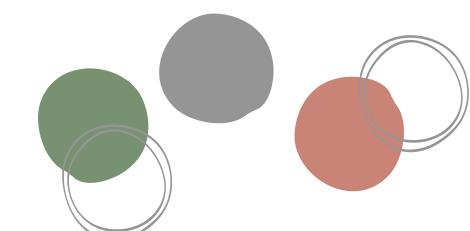
The integration of PPI data with GE data improve the result of classifier in comparison with using GE data only

Findings from Resampling

SMOTE-Tomek performs the **best** out of all of the data resampling strategies

Findings from Biological Context Validation

Obtain 9 verify potential ovarian biomarkers



Conclusion

Suggestions for Improvement and Future Work

Explore different
feature selection to
see the relations
within feature
selection and data
resampling in dealing
with imbalanced data.

Use a **larger** imbalanced GE data with more samples

PPI network can be further analysed in detail whether their interactions with those genes will lead to ovarian cancer

THANK YOU