Video Link: https://youtu.be/vpSNA6YuWRQ?si=NEwNqCoRjo3S09t2

FINAL YEAR PROJECT 1

FUSION OF NETWORK AND HANDCRAFTED FEATURES IN DEEP LEARNING FOR CLASSIFYING KNEE OSTEOTHRITIS

PREPARED BY: LIM YONG WEI (B22EC0025)

SUPERVISOR: TS.DR.CHAN WENG HOWE

EXAMINER 1:
DR. SHARIN HAZLIN BINTI HUSPI

EXAMINER 2: DR. NIES HUI WEN

ww.utm.mv

UTIM UNIVERSITI TEKNOLOGI MALAYSIA

PRESENTATION OUTLINE

1

Introduction

- Background of study
- Problem of statement
- Goal & Objective
- Scope of Research
- Importance of Research

2

Literature Review

- Features
- Machine Learning
- Deep Learning

3

Methodology

- Research Framework
- Convolutional Neutral Network
- Feature-level Fusion
- Description of Datasets
- Performance Measurement
- Architecture Diagram

4

Results

Preliminary Result

5

Conclusion

- Achievement of Research
- Research Constraints
- Suggestion for Improvement and Future Work

Innovating Solutions

Background of Study

What is KOA?

knee osteoarthritis, is a common

musculoskeletal disease

Why does KOA occur?

due to the **degeneration of joint**

cartilage in the knee, which leads to

joint pain and disability

Who will interact with KOA?

primarily affects elderly

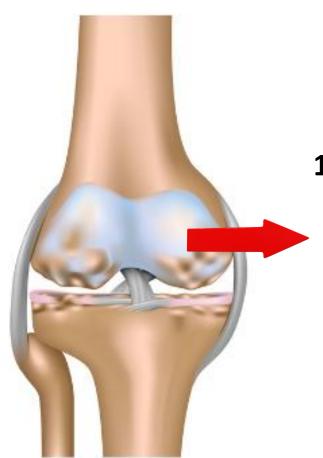
individuals, but it can also impact

those with risk factors such as

obesity, prior joint injuries, or a

family history of osteoarthritis

Problem Statement

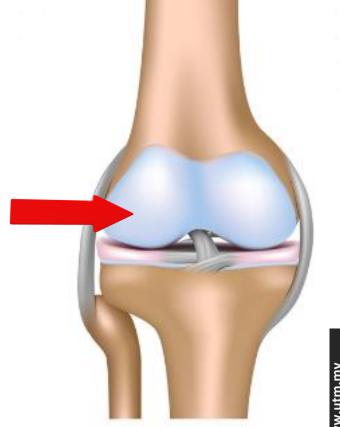


1. Need for *Improved Diagnostic* Techniques

Predicting KOA is crucial because it's still caused by many factors, affects quality of life, and varies widely in how it develops.

Source: An Evolutionary Machine Learning Approach for KOA

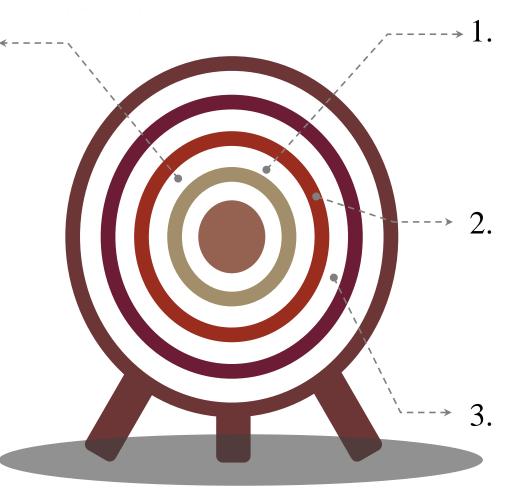
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000487/



Healthy knee joint

Goal

To **improve the** accuracy and reliability of KOA **grading**, thereby facilitating *early* detection and appropriate management **strategies** for knee osteoarthritis.



Objective

To investigate existing deep learning method and features used for classification KOA

To fuse handcrafted

features and network

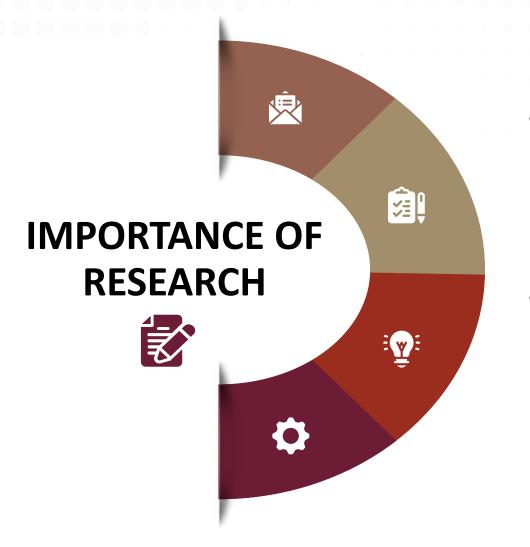
features using features level
fusion.

To implement FeedForward Neutral Network
for classification of KOA
using fused features.

Scope of Research

- Encompasses methodologies for KOA analysis and diagnosis, including feature extraction, classification algorithms, and evaluation metrics.
- To *compare and evaluate* different methodologies to determine their effectiveness in accurately diagnosing KOA.
- Focuses on *classifying the severity of KOA* to improve diagnostic accuracy.

Importance of Research



- The research contributes to progress in <u>medical image analysis and diagnosis</u>, particularly for knee osteoarthritis (KOA).
- The goal is to achieve better patient outcomes and more effective treatment planning through improved diagnostic techniques.

Studies for KOA using Features

Types	Reference	Approach	Methodology	Features	
Network Chen et al.,(2020) Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss.		severity grading using deep neural	This study detect knee joints using a customized one-stage YOLOv2 network then fine-tune the most popular CNN models to classify the detected knee joint images with a novel adjustable ordinal loss	DenseNet, InceptionV 3, Resnet, VGG	
Fusion	Prashanth a and Prakash (2022)	Feature level fusion framework for brain MR image classification using supervised deep learning and handcrafted features	This study propose an efficient fusion framework for brain magnetic resonance (MR) image classification using deep learning and handcrafted feature extraction method	Feature Level Fusion	
Hand- crafted	Khalid et al.,(2023)	Automatic Analysis of MRI Images for Early Prediction of Alzheimer's Disease Stages Based on Hybrid Features of CNN and Handcrafted Features	This study extract MRI image that by deep learning technique and combine with DWT, GLCM and LBP.	DWT, GLCM, LBP, CNN	

Studies for KOA using Machine Learning

Reference	Approach	Methodology	Accuracy / F1 Score
Heisinger et al.,(2020)	Predicting total knee replacement from symptomology and radiographic structural change using artificial neural networks—data from the osteoarthritis initiative (OAI)	This study uses longitudinal assessments of radiographic changes, knee pain, function, and quality of life, then classifies by artificial neural networks (ANN)	81.2%
Kokkotis et al.,(2020)	Identification of risk factors and machine learning-based prediction models for knee osteoarthritis patients.	This study uses a robust feature selection approach combining filter, wrapper, and embedded techniques, followed by classification with SVM	74.07%
Su et al.,(2023)	Improved Prediction of Knee Osteoarthritis by the Machine Learning Model XGBoost.	This study uses a dataset combining clinical parameters, imaging data, and patient history, then classifies by a decision tree algorithm	0.553 (F1 Score)

Studies for KOA using Deep Learning

Reference	Approach	Methodology	Accuracy
Tiwari, Poduval and Bagaria (2021)	Using deep learning methods for orthopedic radiography, artificial intelligence models for osteoarthritis of the knee are evaluated.	This study uses AI and DL to develop a neural network-based assessment for classifying KOA severity from radiographic images annotated with KL grades	74%
Yunus et al.,(2022)	YOLOv2 is used to identify knee osteoarthritis (KOA), and convolutional neural networks are employed for classification.	This study uses 3D radiographic images with LBP features and deep features from Alex-Net and Dark-net-53, then classifies by CN N	90.6%
Moustakidis et al.,(2023)	Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness	This study uses self-reported clinical data and then classifies by DNN	79.6%

Phase 3

Phase 2 : Data Pre-process then Generate Features and Fused Features

Start

Phase 1: Problem formulation & Data collection Literature review

Activity 5 : X-ray images pre-process

Activity 6 : Improve X-ray images

Activity 4 : Literature Reviews

Activity 7 : Generate handcrafted features (GLCM , DWT , LBP) then combines 3 of them

Activity 8: Generate network features (VGG-19 and ResNet-101) through convolutional layers, pooling layers and

Activity 9 : Generate 2 fusion features by fuse VGG-19 and handcrafted features & fuse ResNet-101 and handcrafted features by using feature-level fusion

Phase 3 : Develop FFNN model

Activity 10: Feed Forward Neutral Network (FFNN) with network features

Activity 11 : Feed Forward Neutral Network (FFNN) with fusion features

Phase 4: Testing and Evaluation

Activity 12: Evaluate and analyse the performance in term of accuracy of the KOA KL grading classification method

Report writing and documentation

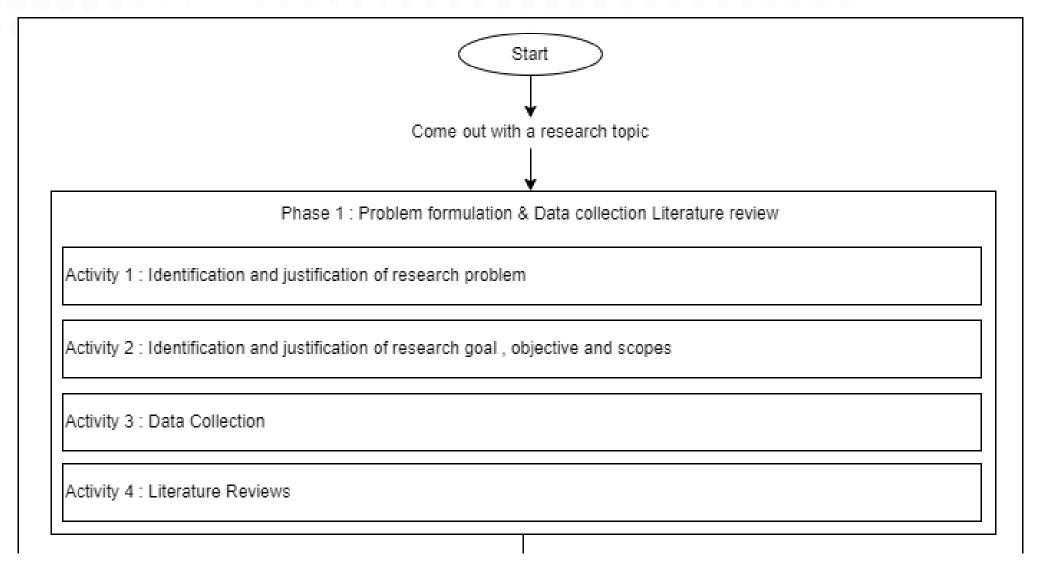
End

Innovating Solutions

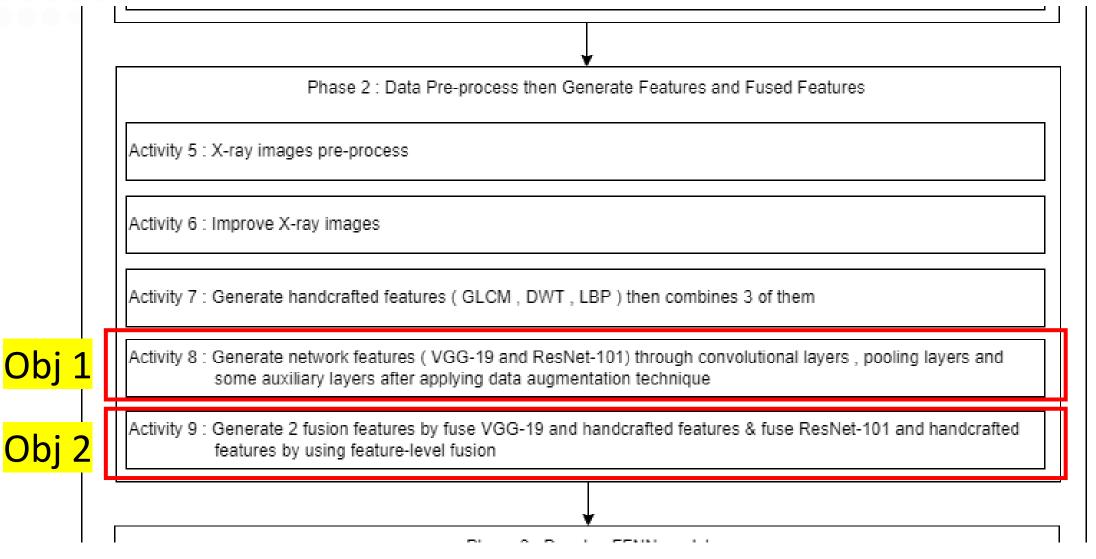
`→ Phase 2

Research Framework

Research Framework - Phase 1

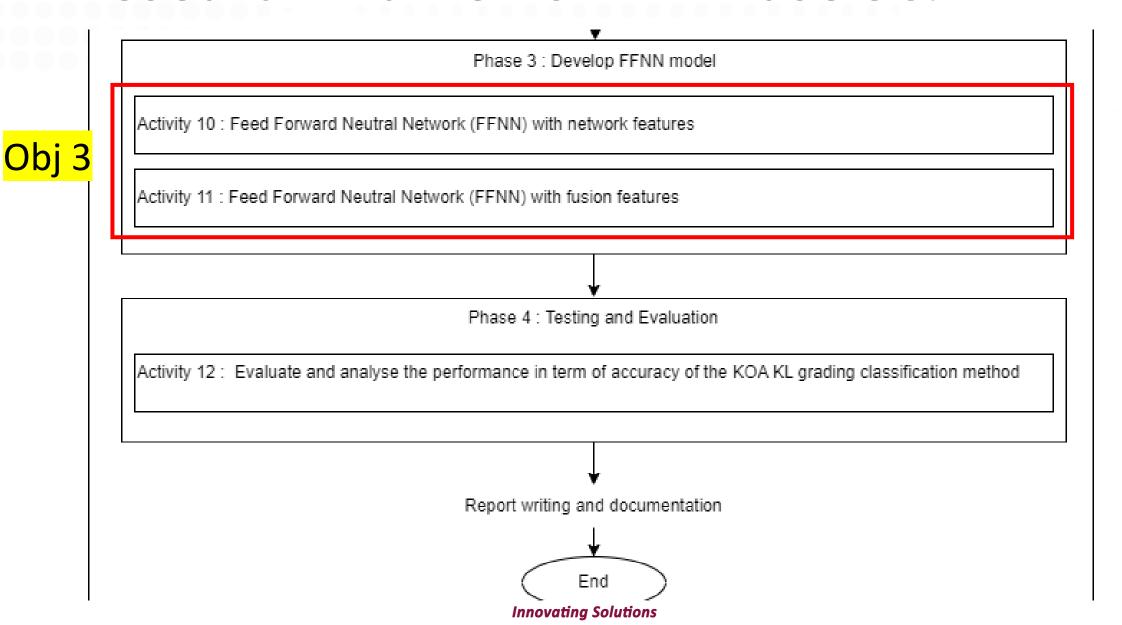


Research Framework - Phase 2

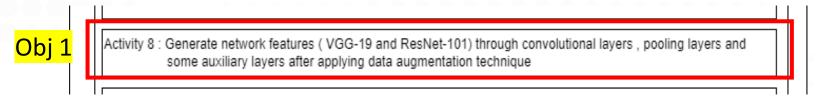


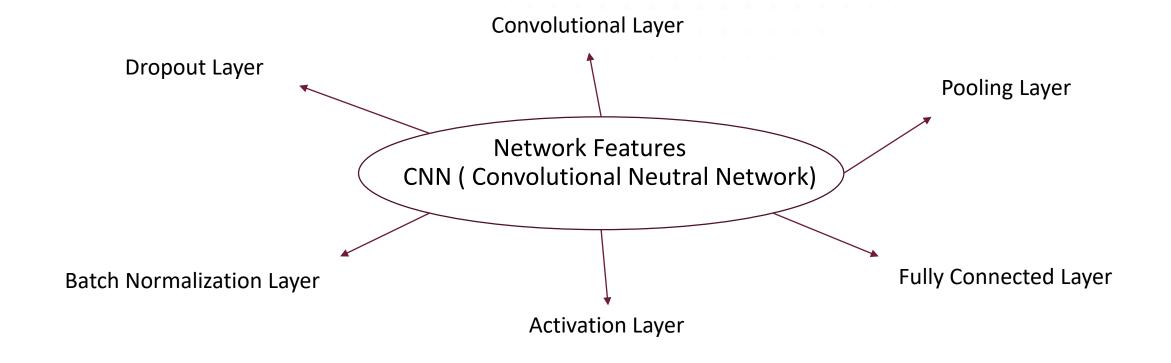
www.utm.my

Research Framework - Phase 3&4



Convolutional Neutral Network

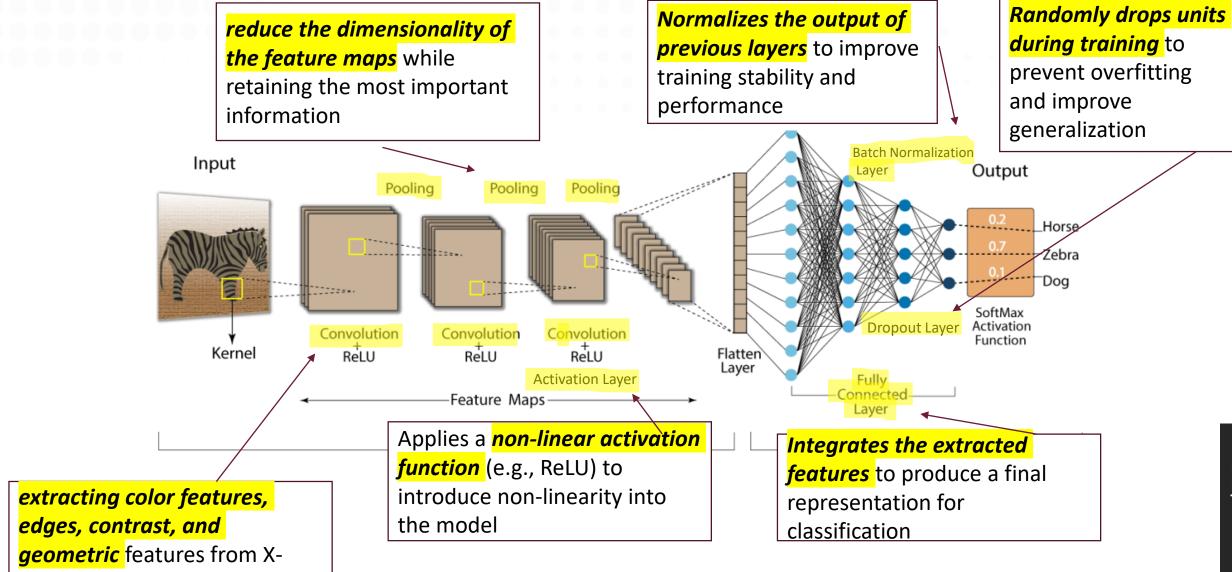




rays.

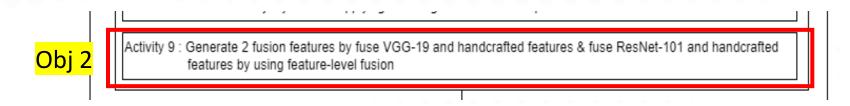
www.utm.my

CNN - EXAMPLE



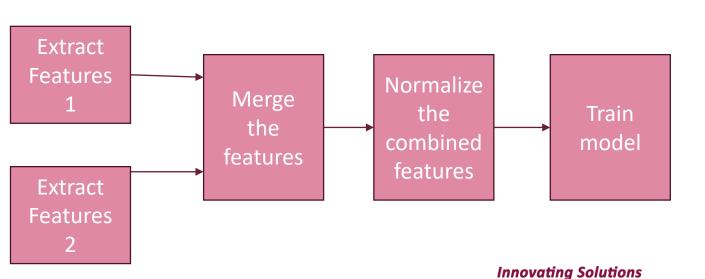
www.utm.my

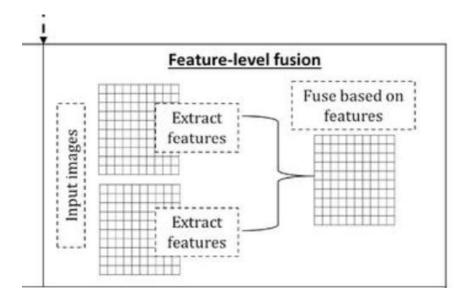
Feature Level Fusion



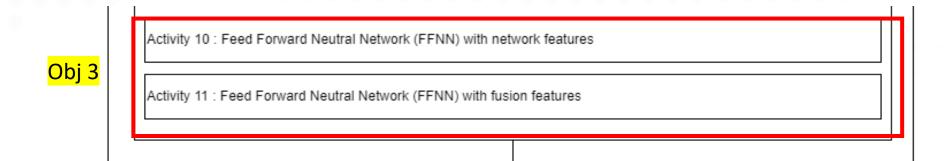
Fusion Features = Feature Level Fusion

is a technique where features extracted from multiple sources or models are combined into a single,



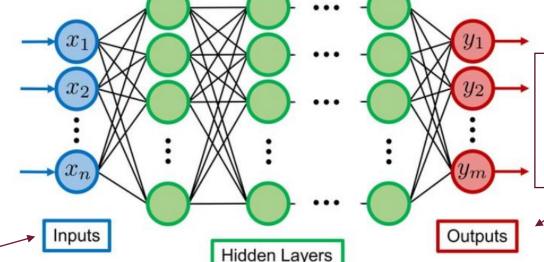


Feed-Forward Neutral Network



FFNN (Feed- Forward Neutral Network)

type of artificial neural network where each neuron in one layer is connected to every neuron in the next layer.



- Produces the final predictions
- For classification tasks, it might use a softmax activation function to output probabilities

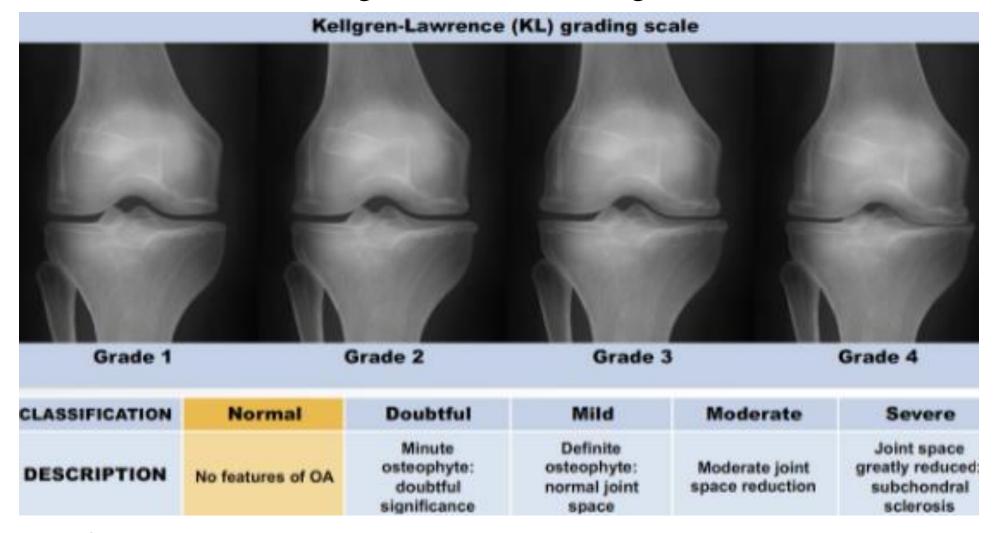
set of features extracted from an image

- Consist of multiple layers of neurons
- Learn to capture complex patterns and relationships in the data

Innovating Solutions

Description of Datasets - Classify

Kellgren and Lawrence grades



Description of Datasets - OAI

Osteoarthritis Initiative (University of California, San Francisco's Osteoarthritis Initiative (OAI))

Types	Description of KL Grading	Data Sets
Grade 0	Healthy X-ray	3857
Grade 1	X-rays of doubtful narrowing of the joint with osteophytes tip over	1770
Grade 2	X-rays have minimal osteoarthritis containing joint space narrow with osteophytes	2578
Grade 3	X-rays have moderate osteoarthritis containing joint space stenosis, multiple osteophytes, and mild sclerosis	1286
Grade 4	X-rays have severe injuries containing large osteophytes and severe sclerosis with clear narrowing of the joints	295
	Total	9786

Performance Measurement

Confusion Matrix

is a table shown in below(Table 3) that summarizes the performance of a classification model, showing the counts of true positive(TP), true negative(TN), false positive(FP), and false negative(FN) predictions.

	Predict Positive	Predict Negative	Sum
Actual Positive	TN	FP	TN + FP
Actual Negative	FN	TP	FN + TP

Table 3 Confusion Matrix

Performance Measurement

Then, the systems' performance as determined by the evaluation scales listed in

$$ext{AUC} = rac{ ext{TPRate}}{ ext{FPRate}} imes 100\%$$

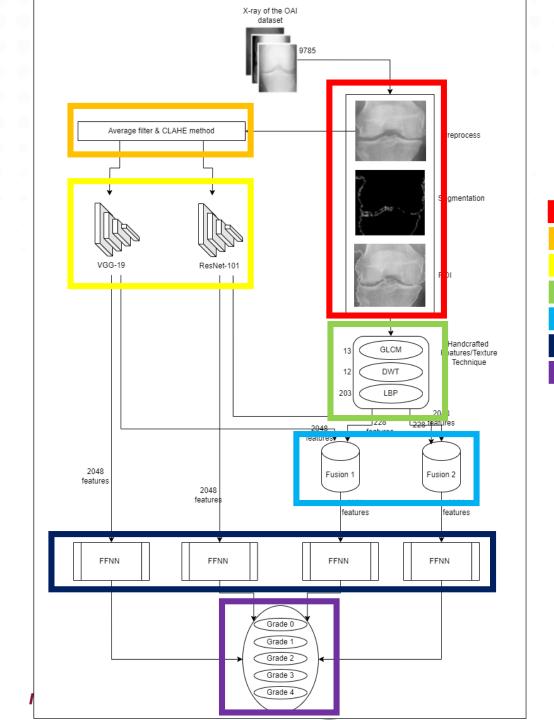
$$Accuracy = \frac{TN + TP}{TN + TP + FN + FP} \times 100\%$$

$$ext{Sensitivity} = rac{ ext{TP}}{ ext{TP} + ext{FN}} imes 100\%$$

$$ext{Specificity} = rac{ ext{TN}}{ ext{TN} + ext{FP}} imes 100$$

$$ext{Precision} = rac{ ext{TP}}{ ext{TP} + ext{FP}} imes 100\%$$

Architecture Diagram

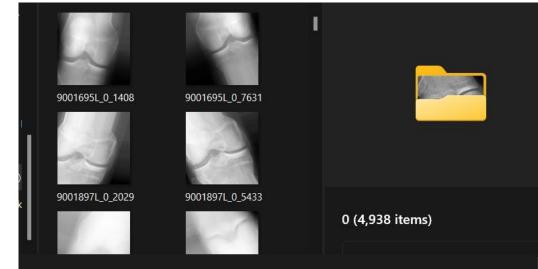


Balancing with Augmentation Data

Parameters	Value/description
Rotation	30 degree
Horizontal Flip	Probability: 0.5
Vertical Flip	Probability: 0.5
Width Shift	Range: ±20% of the total width
Height Shift	Range: ±20% of the total height
Zoom	Range: ±20% of the original size
Shear	Range: ±20% of the original size

Table 4.1 Balancing with Data Augmentation

```
import numpy as np
     from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_arra
     # Define input and output directories for each grade
     grades = {
         '0': {'input_dir': 'data/train/0', 'output_dir': 'data/aug/0'},
         '1': {'input_dir': 'data/train/1', 'output_dir': 'data/aug/1'},
         '2': {'input_dir': 'data/train/2', 'output_dir': 'data/aug/2'},
         '3': {'input_dir': 'data/train/3', 'output_dir': 'data/aug/3'},
11
         '4': {'input_dir': 'data/train/4', 'output_dir': 'data/aug/4'},
13
14
     # Initialize ImageDataGenerator with augmentation options
     datagen = ImageDataGenerator(
17
         rotation_range=30,
         horizontal_flip=True,
18
         vertical_flip=True,
19
         width_shift_range=0.2,
21
         height_shift_range=0.2,
22
         shear range=0.2,
23
         zoom_range=0.2
24
```



www.utm.m

Before and After Augmentation Data

Classes	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Total
Bef-aug	3857	1770	2578	1286	295	9786
Aft-aug	4938	4532	4950	4938	4914	24272

Table 4.2 Before and After Data Augmentation

Data Division and Arrangement

The OAI dataset will be partitioned into <u>80:20 (train test) and validation sets will be obtained from 20% of training data</u> segments because to its substantial size. Accordingly, training will occupy <u>80% of the data</u>, with the <u>remaining 20% going toward testing and validation</u> for

Grade 0 (Total: 4938)

- Training (80%): (4938 * 0.8 = 3950.4 = 3950)

- Testing (20%): (4938 * 0.2 = 987.6 = 987)

Grade 0(Training: 3950)

- Training (80%): (3950*0.8 = 3160)

- Validation (20%): (3950*0.2 = 790)

Grade 1(Total: 4532)

- Training (80%): (4532 * 0.8 = 3625.6 = 3626)

- Testing (20%): (4532 * 0.2 = 906.4 = 906)

Grade 1(Training: 3626)

- Training (80%): (3626 * 0.8 = 2900.8 = 2901)

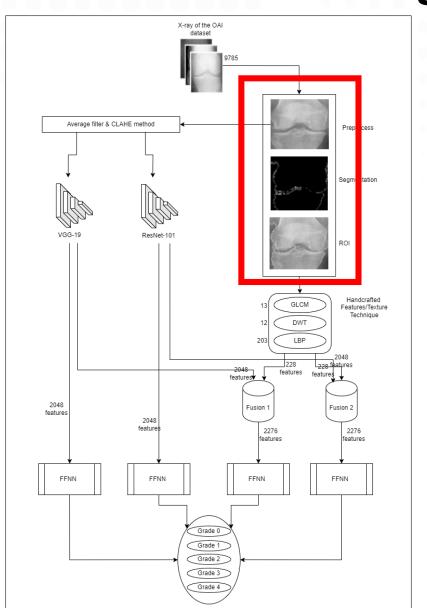
- Validation (20%): (3626 * 0.2 = 725.2=725)

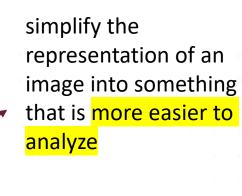
Grade 2 (Total:4950)

Phase/Classes	Training 80% (Validation 20%)	Testing 20%
	(Validation 20%)	
Grade 0	3160 (790)	987
Grade 1	2901 (725)	906
Grade 2	3168 (792)	990
Grade 3	3160 (790)	988
Grade 4	3145 (786)	983

Table 4.3 Data Division and Calculation

Architecture Diagram





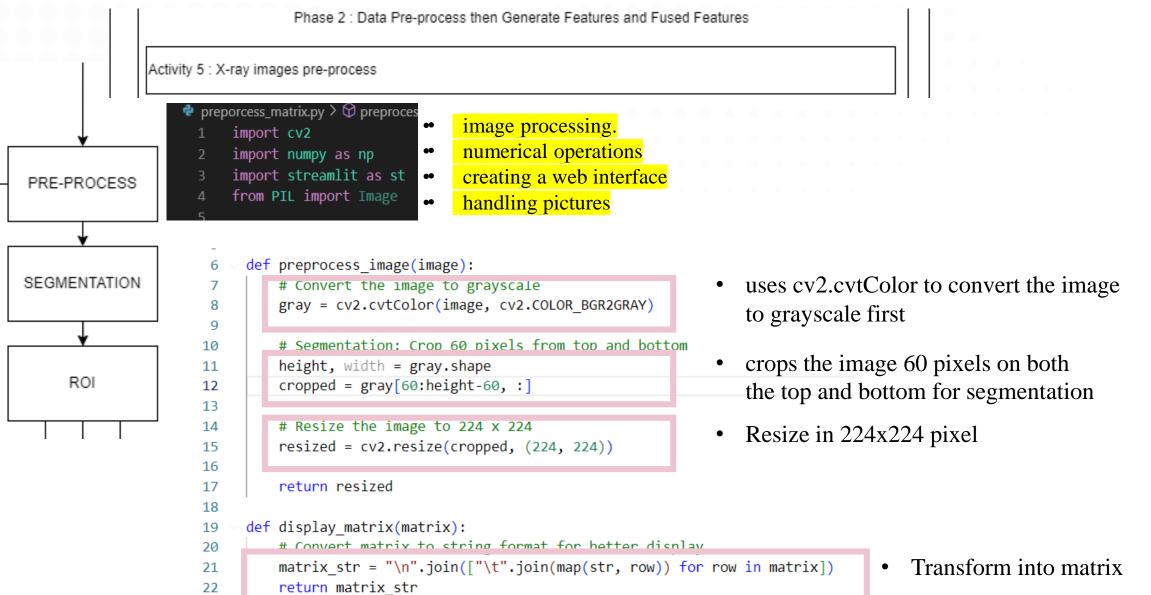
Segmentation & ROI

selecting a

specific part of an image that is particular interest

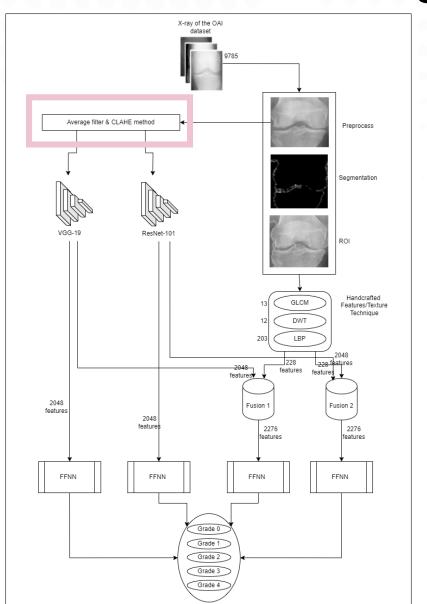
Innovating Solutions

Datasets Pre-Processing – Segmentation & ROI



www.utm

Architecture Diagram



Use to reduce the noise, works by replacing each pixel's value with the average value of its neighboring pixels

Average Filter & CLAHE

improves the contrast of an image by applying adaptive histogram equalization

Datasets Pre-Processing – Average Filter & CLAHE


```
Activity 6 : Improve X-ray images
```

```
preprocess_filterclahe.py > ② prepr
import cv2
import numpy as np
import streamlit as st
from PIL import Image
```

AVRG FILTER & CLAHE METHOD

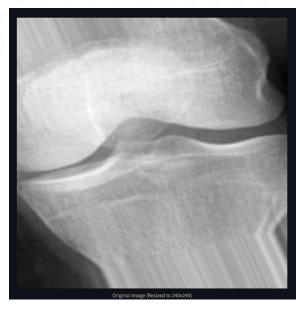
224X224X3

- image processing.
- numerical operations
- creating a web interface
- handling pictures

```
def preprocess image(image):
         # Convert the image to grayscale
         gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
         # Segmentation: Crop 60 pixels from top and bottom
         height, width = gray.shape
11
         cropped = gray[60:height-60, :]
12
13
         avg filtered = cv2.blur(cropped, (5, 5))
15
         # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)
17
         clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
         clahe applied = clahe.apply(avg filtered)
19
         # Resize the image to 224 x 224
21
         resized = cv2.resize(clahe applied, (224, 224))
22
23
         return resized
```

- applies average filtering (`cv2.blur`) to reduce noise
 - enhances contrast using CLAHE (`cv2.createCLAHE`)

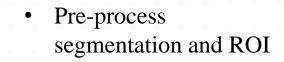
Datasets After Pre-Processing

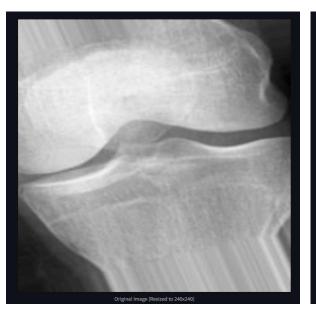


Before

After

 Pre-process Avg filter and CLAHE





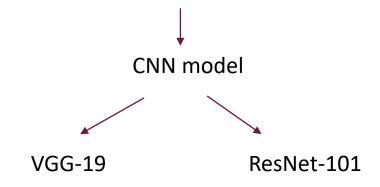
Before

After

Architecture Diagram



Network Features



CNN (VGG-19)

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 224, 224, 64)	1,792
conv2d_1 (Conv2D)	(None, 224, 224, 64)	36,928
max_pooling2d (MaxPooling2D)	(None, 112, 112, 64)	а
conv2d_2 (Conv2D)	(None, 112, 112, 128)	73,856
conv2d_3 (Conv2D)	(None, 112, 112, 128)	147,584
max_pooling2d_1 (MaxPooling2D)	(None, 56, 56, 128)	а
conv2d_4 (Conv2D)	(None, 56, 56, 256)	295,168
conv2d_5 (Conv2D)	(None, 56, 56, 256)	598,888
conv2d_6 (Conv2D)	(None, 56, 56, 256)	590,090
conv2d_7 (Conv2D)	(None, 56, 56, 256)	598,888
max_pooling2d_2 (MaxPooling2D)	(None, 28, 28, 256)	а
conv2d_8 (Conv2D)	(None, 28, 28, 512)	1,188,168
conv2d_9 (Conv2D)	(None, 28, 28, 512)	2,359,888
conv2d_18 (Conv2D)	(None, 28, 28, 512)	2,359,888
conv2d_11 (Conv2D)	(None, 28, 28, 512)	2,359,888
max_pooling2d_3 (MaxPooling2D)	(None, 14, 14, 512)	а
conv2d_12 (Conv2D)	(None, 14, 14, 512)	2,359,888
conv2d_13 (Conv2D)	(None, 14, 14, 512)	2,359,888
conv2d_14 (Conv2D)	(None, 14, 14, 512)	2,359,888
conv2d_15 (Conv2D)	(None, 14, 14, 512)	2,359,888
max_pooling2d_4 (MaxPooling2D)	(None, 7, 7, 512)	а
flatten (Flatten)	(None, 25888)	а
dense (Dense)	(None, 4896)	182,764,544
dense_1 (Dense)	(None, 4895)	16,781,312
dense_2 (Dense)	(None, 1898)	4,097,000

C:\UTM Degree\y3s2\PSM_Dr Nies\KOA>

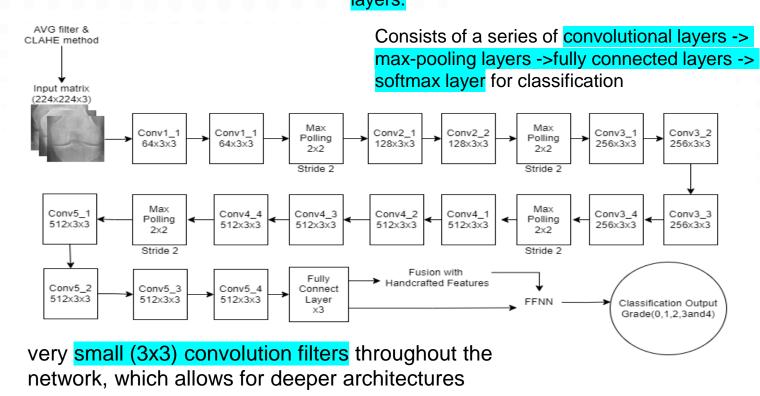


image processing. ietwork > ♥ VGG19_model.py > ♥ create_vgg19_model• import cv2 import numpy as np import streamlit as st from PIL import Image import tensorflow as tf from tensorflow.keras import layers, modnetworks import matplotlib.pyplot as plt

Innovating Solutions

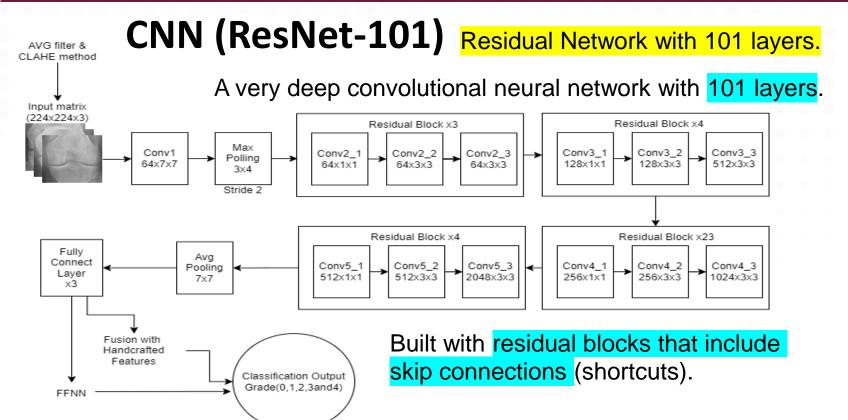
numerical operations creating a web interface handling pictures

building and running neural

use to create static, animated, and interactive visualizations

return model


```
Defines the model as
        ----t- ...--10 -----1/:----t -b----=(224, 224, 3)):
       model = models.Sequential()
                                                        a sequence of layers.
                                                                                                120
                                                                                                121
                                                                                                                # Expand the grayscale image to 3 channels
        # RTOCK I
                                                                                                                                                                                                       Converts the grayscale image to a 3-
       model.add(layers.Conv2D(64, (3, 3), padding='same', input_shape=input_shape)
                                                                                                122
                                                                                                                preprocessed_image_3ch = np.stack((preprocessed_image,)*3, axis=-1)
        model.add(layers.ReLU()) # ReLU activation
                                                                                                                                                                                                       channel image
                                                                                                123
34
        model.add(layers.Conv2D(64, (3, 3), padding='same'))
35
        model.add(layers.ReLU()) # ReLU activation
                                                                                                124
                                                                                                                # Normalize the image
       model.add(layers.MaxPooling2D((2, 2), strides=(2, 2)))
                                                                                                                                                                                                       Normalizes the pixel values to [0, 1]
                                                                                                125
                                                                                                                preprocessed_image_3ch = preprocessed_image_3ch / 255.0
37
38
                                                                                                126
39
       model.add(layers.Conv2D(128, (3, 3), padding='same'))
                                                                                                127
                                                                                                                # Add batch dimension
       model.add(layers.ReLU()) # ReLU activation
        model.add(layers.Conv2D(128, (3, 3), padding='same'))
                                                                                                128
                                                                                                                preprocessed image 3ch = np.expand dims(preprocessed image 3ch, axis=0)
                                                                                                                                                                                                          Adds a batch dimension, making it
        model.add(layers.ReLU()) # ReLU activation
                                                                                                129
43
        model.add(layers.MaxPooling2D((2, 2), strides=(2, 2)))
                                                                    Consists of
44
                                                                                                                                                                                                          suitable for model input.
                                                                                               130
                                                                                                                # Load and compile the VGG19 model
       # Block 3
                                                                    convolutional layers 131
                                                                                                                model = create_vgg19_model(input_shape=(224, 224, 3))
       model.add(layers.Conv2D(256, (3, 3), padding='same'))
        model.add(layers.ReLU()) # ReLU activation
                                                                    followed by ReLU
                                                                                               132
48
        model.add(layers.Conv2D(256, (3, 3), padding='same'))
                                                                    activations and max 133
                                                                                                                # Here you should load the pre-trained weights
49
       model.add(layers.ReLU()) # ReLU activation
50
       model.add(layers.Conv2D(256, (3, 3), padding='same'))
                                                                                                134
                                                                                                                # model.load_weights('path to vgg19 weights.h5')
                                                                    pooling layers.
        model.add(layers.ReLU()) # ReLU activation
                                                                                               135
52
       model.add(layers.Conv2D(256, (3, 3), padding='same'))
53
       model.add(layers.ReLU()) # ReLU activation
                                                                                                                # For the purpose of this example, we'll skip loading weights
                                                                                               136
54
       model.add(layers.MaxPooling2D((2, 2), strides=(2, 2)))
                                                                                                137
                                                                                                                st.write("Predicting using VGG19 model...")
55
                                                                                                138
       model.add(layers.Conv2D(512, (3, 3), padding='same'))
       model.add(layers.ReLU()) # ReLU activation
                                                                                                                # Perform the prediction
                                                                                                139
        model.add(layers.Conv2D(512, (3, 3), padding='same'))
                                                                                                140
                                                                                                                predictions = model.predict(preprocessed_image_3ch)
                                                                                                                                                                                                            Uses the model to extract features
        model.add(layers.ReLU()) # ReLU activation
       model.add(layers.Conv2D(512, (3, 3), padding='same'))
61
                                                                                                141
                                                                                                                                                                                                            from the preprocessed image
       model.add(layers.ReLU()) # ReLU activation
                                                                                                                # Since we're not doing classification, just display the 2048 features
                                                                                                142
       model.add(layers.Conv2D(512, (3, 3), padding='same'))
        model.add(layers.ReLU()) # ReLU activation
                                                                                                143
                                                                                                                st.write("Extracted features:")
        model.add(layers.MaxPooling2D((2, 2), strides=(2, 2)))
                                                                                                144
                                                                                                                st.write(predictions[0])
67
       # Block 5
                                                                                                145
        model.add(layers.Conv2D(512, (3, 3), padding='same'))
                                                                                               146
                                                                                                                # Calculate total number of features extracted
69
        model.add(layers.ReLU()) # ReLU activation
70
       model.add(layers.Conv2D(512, (3, 3), padding='same'))
                                                                                                                                                                                                           Shows the extracted features and the
                                                                                                147
                                                                                                                total features = predictions.shape[1]
       model.add(layers.ReLU()) # ReLU activation
                                                                                                148
                                                                                                                st.write(f lotal features extracted: {total features} ;
       model.add(layers.Conv2D(512, (3, 3), padding='same'))
                                                                                                                                                                                                           total number of features extracted
73
       model.add(layers.ReLU()) # ReLU activation
                                                                                                149
        model.add(layers.Conv2D(512, (3, 3), padding='same'))
                                                                                                150
                                                                                                       if __name__ == "__main__":
       model.add(layers.ReLU()) # ReLU activation
        model.add(layers.MaxPooling2D((2, 2), strides=(2, 2)))
                                                                                                151
                                                                                                           main()
77
                                                                                                152
78
       # Fully Connected Layers
       model.add(layers.Flatten())
       model.add(layers.Dense(4096))
                                                                                Flattens the output from the convolutional layers and passes it through two dense (fully
        model.add(layers.ReLU()) # ReLU activation
        model.add(layers.Dense(4096))
                                                                                connected) layers with ReLU activations, and then a final dense layer with softmax
       model.add(layers.ReLU()) # ReLU activation
       model.add(layers.Dense(1000, activation='softmax')) # Output layer
                                                                                activation for classification
```

skip connections help to mitigate the vanishing gradient problem, allowing for very deep networks

- Resnet101_model.py > Create_resnet101_model import streamlit as st import numpy as np import cv2 from PIL import Image import tensorflow as tf
- from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormaldeep learning framework for building and training models.era
 - from tensorflow.keras.models import Model
- import matplotlib.pyplot as plt

- creating a web interface
- numerical operations
- image processing.
- handling pictures
- building and running neural networks
- use to create static, animated, and interactive visualizations

Layer (type)	Output Shape	Param #
image (Irputi.syer)	(Mores, 224, 224, 3)	a
conv1 (Conv20)	(Norm, 112, 112, 64)	
mex_pooling1 (MexPooling2D)	(Norm, 50, 50, 64)	
batch_norm! (DatchHormalization)	(Norm, 50, 50, 64)	
com/2_1 (Corw/2D)	(Norm, 50, 50, 64)	
batch_norm2_1 (DetchMormalization)		250
relu2 1 (Activation)	(Norm, 50, 50, 64)	
corv2_2 (Corv2D)	(Norm, 50, 50, 64)	36,928
batch norm2 2 (BatchHormalization)		250
relu2 2 (Activation)	(Norm, 50, 50, 61)	-
conv2 3 (Conv20)	(Norw, 50, 50, 250)	10,049
batch_norm2_3 (BatchHormalization)		1,624
		32,896
batch_norm3_1 (BatchHormalization)	(Norm, 20, 20, 120)	512
relui 1 (Activation)	(Morse, 20, 20, 120)	
conv3_2 (Conv20)	(Norse, 21, 21, 121)	
batch_norm3_2 (NatchHormalization)		
relui_2 (Activation)	(Norm, 21, 21, 121)	
conv3_3 (Conv20)	(Marus, 20, 20, 512)	
batch norm3 3 (SatchHormalization)	(Norm, 26, 26, 512)	
convi 1 (Conv20)	(Norm, 14, 14, 256)	131,338
batch_norm1_1 (DatchHormalization)	(Norm, 14, 14, 254)	1,624
relut_1 (Activation)	(Norm, 14, 14, 256)	a
conv1_2 (Conv20)	(Norm, 14, 14, 250)	
batch_norm4_2 (BatchHormalization)	(Norm, 14, 14, 256)	1,434
relut 2 (Activation)	(Norm, 14, 14, 256)	a
convi 3 (Conv20)	(Norm, 14, 14, 1824)	261,168
batch norm! 3 (BatchHormalization)	(Norm, 14, 14, 1924)	4,696
conv5 1 (Conv30)	(Norm, 7, 7, 512)	524,888
batch_norm5_1 (BatchHormalization)		2,048
relu5_1 (Activation)	(Norm, 7, 7, 512)	a
com/5_2 (Conv20)	(Mores, 7, 7, 512)	2,359,888
batch norm5 2 (BatchHormalization)		2,040
relu5_2 (Activation)	(Norm, 7, 7, 512)	
com/S_3 (Com/20)	(Norm, 7, 7, 2041)	
batch normS_3 (BatchHormalization)		
global_avg_pool sePooling2D)	(Narw, 20/11)	
•>	(Hors., 1824)	2,098,176
cl (NatchNormalization	(Marm., 1824)	4,895
•3	(Norm, 512)	524,888
c2 (DetchNormalization		2,040
mouth)	(Norm, 512)	a
(Decree)	(Morse, 1000)	513,000
Pooling2D (32.04 MB)		

RESULT – Preliminary Result

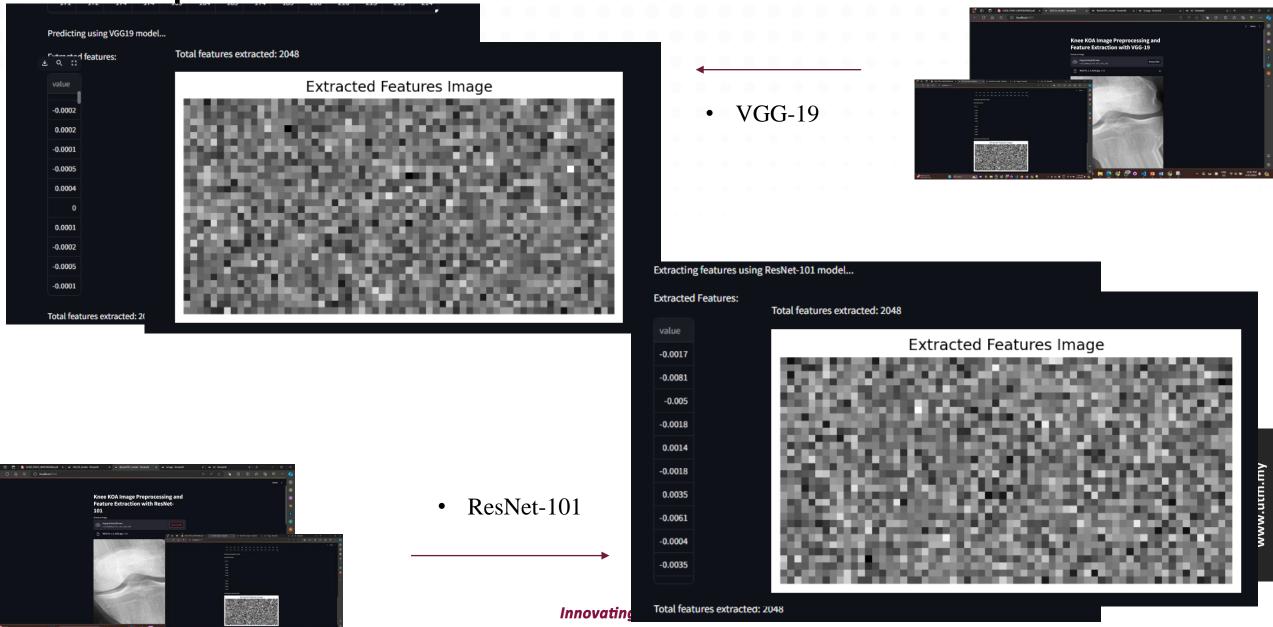
```
ef create_resnet101_model(input_shape=(224, 224, 3)):
  inputs = Input(shape=input_shape, name="image")
   # Initial Conv Layer
   x = Conv2D(64, (7, 7), strides=2, padding='same', name='conv1')(inputs)
   x = MaxPooling2D((3, 3), strides=2, padding='same', name='max_pooling1') x)
   x = BatchNormalization(name='batch norm1')(x)
   # Example Block 1
   x = Conv2D(64, (1, 1), strides=1, padding='same', name='conv2_1')(x)
  x = BatchNormalization(name='batch_norm2_1')(x)
  x = Activation('relu', name='relu2_1')(x)
   x = Conv2D(64, (3, 3), strides=1, padding='same', name='conv2_2')(x)
   x = BatchNormalization(name='batch norm2 2')(x)
  x = Activation('relu', name='relu2_2')(x)
   x = Conv2D(256, (1, 1), strides=1, padding='same', name='conv2_3')(x)
  x = BatchNormalization(name='batch_norm2_3')(x)
  # Example Block 2
   x = Conv2D(128, (1, 1), strides=2, padding='same', name='conv3_1')(x)
   x = BatchNormalization(name='batch_norm3_1')(x)
  x = Activation('relu', name='relu3_1')(x)
   x = Conv2D(128, (3, 3), strides=1, padding='same', name='conv3_2')(x)
   x = BatchNormalization(name='batch_norm3_2')(x)
   x = Activation('relu', name='relu3 2')(x)
   x = Conv2D(512, (1, 1), strides=1, padding='same', name='conv3_3')(x)
   x = BatchNormalization(name='batch_norm3_3')(x)
  # Example Block 3
  x = Conv2D(256, (1, 1), strides=2, padding='same', name='conv4_1')(x)
   x = BatchNormalization(name='batch_norm4_1')(x)
  x = Activation('relu', name='relu4_1')(x)
  x = Conv2D(256, (3, 3), strides=1, padding='same', name='conv4_2')(x)
   x = BatchNormalization(name='batch_norm4_2')(x)
   x = Activation('relu', name='relu4 2')(x)
   x = Conv2D(1024, (1, 1), strides=1, padding='same', name='conv4_3')(x)
  x = BatchNormalization(name='batch_norm4_3')(x)
  # Example Block 4
   x = Conv2D(512, (1, 1), strides=2, padding='same', name='conv5_1')(x)
   x = BatchNormalization(name='batch_norm5_1')(x)
   x = Activation('relu', name='relu5_1')(x)
   x = Conv2D(512, (3, 3), strides=1, padding='same', name='conv5_2')(x)
   x = BatchNormalization(name='batch_norm5_2')(x)
   x = Activation('relu', name='relu5_2')(x)
   x = Conv2D(2048, (1, 1), strides=1, padding='same', name='conv5_3')(x)
   x = BatchNormalization(name='batch_norm5_3')(x)
   # Average Pooling
   x = AveragePooling2D(pool size=(7, 7), name='average pool')(x)
   x = Reshape((2048,))(x) # Flatten the output to a 1D tensor
  # Fully Connected Layers
   x = Dense(1024, activation='relu', name='dense1')(x)
  x = BatchNormalization(name='batch_norm_fc1')(x)
  x = Dense(512, activation='relu', name='dense2')(x)
  x = BatchNormalization(name='batch norm fc2')(x)
   # Dropout Layer
   dropout_rate = 0.5
   x = Dropout(dropout_rate, name='dropout')(x)
   outputs - Dense(1000, activation-'softmax', name-'predictions')(x)
   model = Model(inputs-inputs, outputs-outputs)
   return model
```

Defines a ResNet-101 model architecture using Keras Functional API

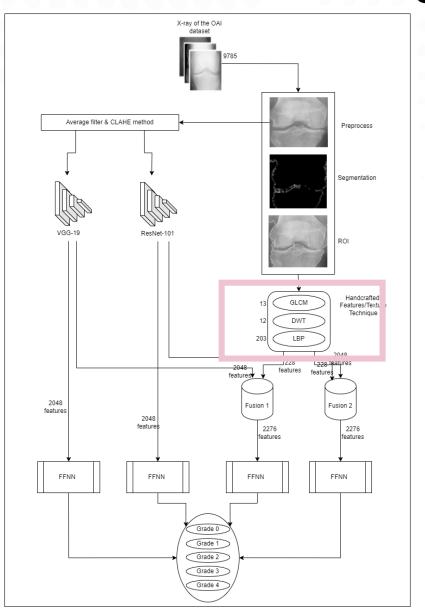

```
# Convert the preprocessed image to a format that can be displayed in Streamlit
preprocessed_pil_image = Image.fromarray(preprocessed_image)
# Display the preprocessed image
st.image(preprocessed_pil_image, caption="Preprocessed Image with Filtering and CLAHE", use_column_width=True)
# Expand the grayscale image to 3 channels
preprocessed_image_3ch = np.stack((preprocessed_image,)*3, axis=-1)
# Normalize the image
preprocessed image 3ch = preprocessed image 3ch / 255.0
# Add batch dimension
preprocessed image 3ch = np.expand dims(preprocessed image 3ch, axis=0)
# Load and compile the ResNet-101 model
model = create_resnet101_model(input_shape=(224, 224, 3))
# Here you should load the pre-trained weights
# model.load_weights('path_to_resnet101_weights.h5')
# For the purpose of this example, we'll skip loading weights
st.write("Extracting features using ResNet-101 model...")
# Extract features from the layer before the final dense layer
feature extraction model = Model(inputs=model.input, outputs=model.get layer('global avg pool').output)
# Perform feature extraction
features - feature_extraction_model.predict(preprocessed_image_3ch)
# Display the features
st.write("Extracted Features:")
st.write(features)
# Calculate total number of features extracted
total features - features.size
st.write(f"Total features extracted: {total_features}")
```

Same function as in VGG

Proposed Model Result After Extract VGG-19 and ResNet-101



Architecture Diagram



refer to manually designed features used in traditional machine learning and image processing tasks

Handcrafted Features

Discrete Wavelet Transform (DWT)
Gray-Level Co-occurrence Matrix (GLCM)
Local Binary Pattern (LBP)

return features

Proposed Model – Handcrafted (DWT)


```
handcrafted > • dwt.py > © main
                                                                                                              Discrete Wavelet
                                     performing discrete wavelet transforms (DWT)
        import pywt
                                                                                                                 Transform

    numerical computations

        import numpy as np

    openCV library for computer vision tasks.

        import cv2
                                                                                                           decomposes a signal or
                                                                                                           an image into different
                                                                                                           frequency components
    def extract dwt features(image):
       # Convert the image to grayscale if it's not already
       if len(image.shape) -- 3:
           image = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
       # Perform DWT on the image
       coeffs = pywt.dwt2(image, 'haar') # Using Haar wavelet, you can choose others as needed
       cA, (cH, cV, cD) - coeffs # cA: Approximation, cH: Horizontal detail, cV: Vertical detail, cD: Diagonal detail
                                                                             performs a 2D discrete wavelet transform
       # Select a fixed number of features from each coefficient
       features - np.concatenate(
                                                                             (DWT) using the Haar wavelet ('haar')
           cA.flatten()[:3],
           cH.flatten()[:3],
           cV.flatten()[:3],
           cD.flatten()[:3]
                                   extracts a fixed number of features (first 3 values) from
                                   each of the resulting coefficients (cA,cH,cV,cD)
```

Handcrafted Features (GLCM)


```
randcrafted > • glcm.py > ...

✓ import cv2.

      import numpy as np
      from skimage.feature import graycomatrix, graycoprops
```

- openCV library for computer vision tasks
- numerical computations
- calculating Gray-Level Co-occurrence Matrix (GLCM) and its properties.

```
def extract glcm features(image):
    # Convert the image to grayscale if it's not already
   if len(image.shape) == 3:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Calculate GLCM with enecified management
   distances - [1] # Using only one distance to simplify feature count
    angles = [0, np.pi/4, np.pi/2, 3*np.pi/4] # Specify angles for GLCM
    glcm = graycomatrix(image, distances=distances, angles=angles, symmetric=True, normed=True)
```

Extracting some properties from GLCM

contrast = graycoprops(gicm, contrast).ravei()

energy = graycoprops(glcm, 'energy').ravel()

dissimilarity = graycoprops(glcm, 'dissimilarity').ravel()

homogeneity = graycoprops(glcm, 'homogeneity').ravel()

correlation = graycoprops(glcm, 'correlation').ravel()

extracts a fixed number of features (first 3 values) from each of the resulting coefficients

> Computes GLCM using graycomatrix function with specified distances

Compute properties

Concatenate all features into a single feature vector features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation]) # Pad or truncate features to ensure size 13 if features.shape[0] < 13: features = np.pad(features, (0, 13 - features.shape[0]), 'constant') else: features = features[:13] return features ு Solutions

Concatenates all these properties into a single feature vector

Gray-Level Cooccurrence Matrix captures the spatial relationship between pixels by calculating

how often pairs of

pixel intensities occur

together

/ww.utm.m

Handcrafted Features (LBP)


```
1 import numpy as np
2 import cv2
3 from skimage.feature import local_binary_pattern
```

- numerical computations
- openCV library for computer vision tasks
- compute Local Binary Patterns (LBP)

```
# Convert the image to grayscale if it's not already
if len(image.shape) == 3:
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
```

Checks if the input image is grayscale

```
# Parameters for LBP
radius = 3
n_points = 8 * radius
```

Sets parameters for LBP calculation

```
# Calculate LBP
lbp = local_binary_pattern(image, n_points, radius, method='uniform')
```

Computes LBP

```
# Calculate histogram of LBP and normalize it
hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2), density=True) •
```

Computes the histogram of LBP value

```
# Pad or truncate histogram to ensure size 203
if hist.shape[0] < 203:
   hist = np.pad(hist, (0, 203 - hist.shape[0]), 'constant')
else:
   hist = hist[:203]
return hist</pre>
```

Size less then 203

Innovating Solutions

describes the local texture pattern of an image by comparing

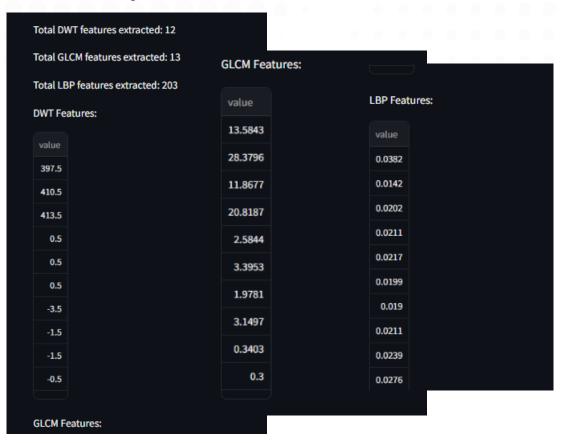
each pixel with its

neighboring pixels

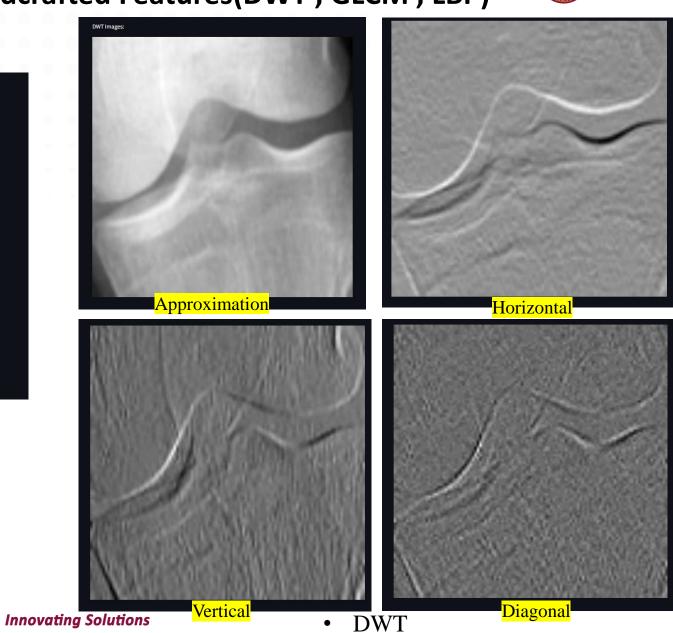
Local Binary Pattern

www.utm.my

Proposed Model Result after Handcrafted Features(DWT, GLCM, LBP)



• DWT, GLCM, LBP



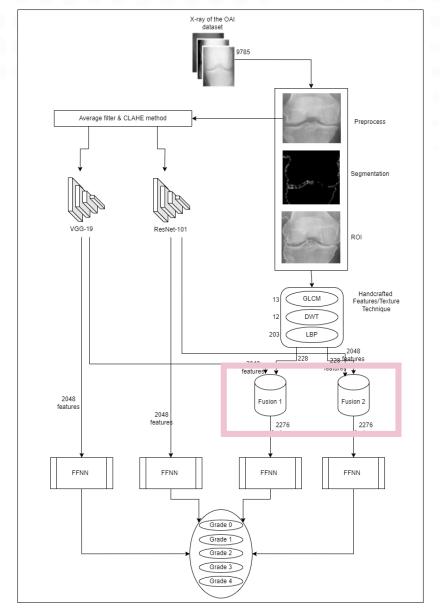
UTM UNIVERSITI TEKNOLOGI MALAYSIA

Proposed Model Result after Handcrafted Features(DWT, GLCM, LBP)

GLCM • LBP

UNIVERSITI TEKNOLOGI MALAYSIA

Architecture Diagram



refers to the process of combining multiple sets of features to create a more comprehensive

Fusion Features

Early Fusion (Feature-Level Fusion):

Features are combined at the initial stage before being fed into the model. This involves concatenating feature vectors or applying dimensionality reduction techniques like Principal Component Analysis (PCA)

Innovating Solutions

Models are trained separately on different feature sets, and their outputs are combined at the decision level.

Feature Level Fusion (VGG19 and Handcrafted)


```
    handcrafted > ♣ hcvgg.py > ...
    import cv2
    import numpy as np
    import streamlit as st
    from PIL import Image
    import matplotlib.pyplot as plt
    # Import functions directly from their respective modules
    from h2 import extract_dwt_features, extract_glcm_features, extract_lbp_features
    OpenCV library for image processing tasks.
    Library for building interactive web apps.
    Python Imaging Library for image processing tasks.
    Custom functions imported from respective modules
    from vgg import extract_dwt_features, extract_glcm_features, extract_lbp_features
```

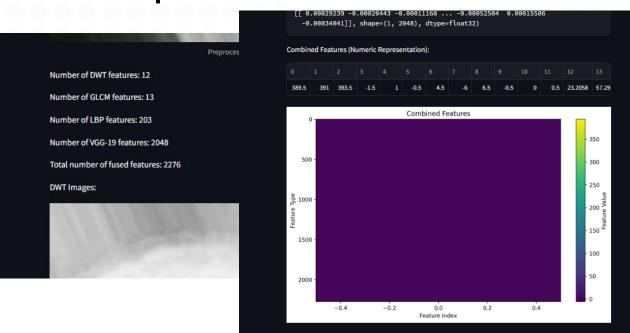
Concatenates all feature arrays

Displays the shape and contents

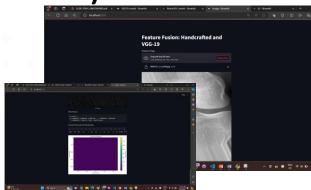
```
# Combined_features
combined_features = np.concatenate((dwt_features, glcm_features, lbp_features, vgg19_features), axis=1)

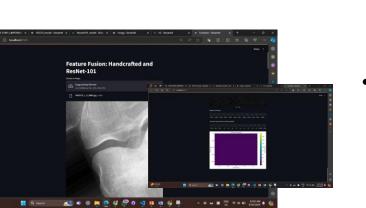
# Optionally, perform classification or further analysis with combined features
st.write("Combined Features Shape:", combined_features.shape)

# Display or use combined features as needed
st.write("Combined Features:")
st.write(combined_features)
```

VGG-19 and handcrafted





ResNet-101 and handcrafted

Number of GLCM features: 13

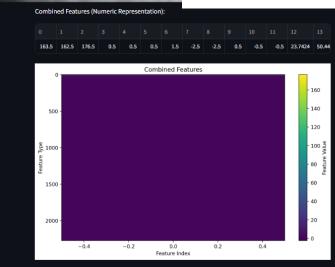
Number of LBP features: 203

Number of ResNet-101 features: 2048

Total number of fused features: 2276

DWT Images:

Number of DWT features: 12



Corresponding Hyperparameters definition and Ranges UTM

Element	Corresponding hyperparameters definition	Corresponding range
index		
1.	Training loss function	Categorical Crossentropy
2.	Training batch size	[8 – 256]
3.	Model dropout ratio	[0.1, 0.5]
4.	Transfer learning freezing ratio	[0,1]
5.	Weights(parameters) optimizer	SGD, Adam, RMSprop
6.	Dimension scaling technique	Resizing, Normalization
7.	Utilize data augmentation techniques or not	[YES, NO]
8.	The value of rotation (If YES)	0 ∘ →30∘
9.	The value of width shift (If YES)	[0-0.2]
10.	The value of height shift (If YES)	[0-0.2]
11.	The value of shear (If YES)	[0-0.2]
12.	The value of zoom (If YES)	[0-0.2]
13.	The value of horizontal flipping flag (If YES)	[Yes, No]
14.	The value of vertical flipping flag (If YES)	[Yes, No]

Table 4.4 Hyperparameters

Configuration

Configuration	Specifications		
Datasets	Table 3.2		
Apply data shuffling?	Yes		
Input images size	224x224x3		
Hyperparameters optimizer	Convolutional Neutral Network		
Train split ratio	80% to 20%(80% for training9and validation)		
	and 20% for testing)		
Activation function	SoftMax		
Pre-trained models	VGG-19, ResNet-101		
Pre-trained parameters initializers	Table 4.2		
Hyperparameters	Table		
Scripting language	Python		
Python major packages	Streamlit, Tensorflow, Keras, NumPy,		
	OpenCV, Matplotlib, Skimage and PIL		
Working environment	Visual Studio		

Table 4.5 Configuration

Achievement of Project Objective

- Two of the three goals of this study, which were to "Enhanced X-ray Analysis and Diagnosis of Knee Osteoarthritis Grade through Hybrid Technique Using Fusion of Network Features and Handcrafted Features," have been accomplished.
- The initial goal was to look into the characteristics and deep learning techniques already in use for KOA classification. A thorough analysis of the literature and the feature extraction process from the *VGG-19 and ResNet-101* models were used to achieve this.
- The second goal was to employ feature-level fusion to combine *manually created features with network features*. Combining handmade methods like DWT, GLCM, and LBP with features taken from CNN models allowed for the successful completion of this task.

www.utm.

Research Constraints

• The study was hampered by a number of factors, including the **high computing demands of feature-level fusion** and *deep learning model training*, which may be difficult for researchers with little funding.

www.utm.m

Suggestion for Improvement and Future Work

- Future improvements will focus on enhancing the fusion of handcrafted and CNN features.
- The implementation and optimization of FFNN for KOA classification using these fused features will be addressed in future work.

What I had done?

Activities	Done in PSM 1	Future Work
Phase 1 : Problem Formulation & Data Collection Literature Review		
Activity 1: Identification and justification of research problem	$\overline{\vee}$	
Activity 2: Identification and justification of research goal, objective and scopes	$\overline{\vee}$	
Activity 3 : Data Collection		
Activity 4 : Literature Review	$\overline{\vee}$	
Phase 2: Data Pre-process then Generate Features and Fused Features		
Activity 5 : X-ray images pre-process	$\overline{\vee}$	
Activity 6 : Improve X-ray images (Network features)		
Activity 7 : Generate handcrafted features (DWT , GLCM , LBP)	$\overline{\vee}$	
Activity 8: Generate network features (VGG-19 and ResNet-101)		È
Activity 9: Generate 2 fusion features (Network fuse with handcrafted features)		
Phase 3 : Develop FFNN model		>
Activity 10 :		

THANK YOU

QnA

