9UIM

UNIVERSITI TEKNOLOGI MALAYSIA

SECJ2203: Software Engineering

System Documentation (SD)
(STD)
Final Year Project (FYPI) Management System
<GradX>

Version 3.0

July 2023

Faculty of Computing

Prepared by: Assassins

Revision Page

a.

Overview

The "GradX" software system is designed to serve as an online platform for managing
and recording student Final Year Project (FYPi) projects in the Data Engineering program
at the Faculty of Computing, Universiti Teknologi Malaysia. The purpose of this system
is to streamline the workflow of FYPi projects, simplify the documentation process, and
establish a standardized evaluation system using rubric formats. This system aims to
provide students with the ability to track their progress, submit project proposals, design
documentation, and final reports. It also enables industry and university coaches to assess
and provide valuable feedback on students' work. The external interfaces, including user
interfaces, hardware interfaces, software interfaces, and communication interfaces, will
be detailed in the system documentation's particular needs section. It will also explain
system characteristics using use case diagrams, domain models, and state machine
diagrams. This part will also include project group members' discussions about
performance needs, design constraints, software system properties, and other project
requirements.

Target Audience

Target audience for this system are final year Data Engineering students, University Coaches,
Industry Coaches and Coordinator.

c. Project Team Members

List the team members in a table by stating their roles and the status for each assigned task e.g. by
sections for this SD version (complete, partially complete, incomplete). If the assigned tasks are
not done and have been assigned to other team members, state accordingly.

Member Name Role Task Status
Malleylene Pench Team Member | revision page, references, complete
(A21EC0052) use case: design project

proposal, assign UC and
examiner, calculate
student mark, software
system attributes

Farah Nabilah Binti | 1¢am Member | introduction, user complete
Najmudin characteristic,domain
(A21EC0023) model,use case: login,
checking project progress,
provide feedback
Puteri Nur Eleeya Team Member | system features, use case complete
Syafika Binti Mohd diagram, use case:
Zabidi evaluate student
(A21ECO0124) work,prepare necessary
form
Siti Nurkamilah Leader system features, use case complete
Binti Saiful Bahari diagram, use case: submit
(A21ECO0131) project proposal, submit

project solution, provide
rubrics, design

constraints, references

d. Version Control History

Version | Primary Author(s) Description of Version Date
Completed

1.0 Malleylene Pench Section 1 - 2 of SRS 22/5/2023

2.0 Section 3 - 5 of SDD 16/6/2023

Puteri Nur Eleeya Syafika Binti
Mohd Zabidi

3.0 Section 6 -7 of STD 2/7/2023

Siti Nurkamilah Binti Saiful
Bahari

Table of Contents

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviation

1.4 References

1.5 Overview

2.1 User characteristics
2.1.1 Final Year Student
2.1.2 University Coach
2.1.3 Industry Coach
2.1.4 Examiner
2.1.5 Coordinator

2.2 System Features

2.2.1 UCO001:
2.2.20C002:
2.2.3 UC003:
2.2.4UC004:
2.2.5UC005:
2.2.6 UC006:
2.2.7U0C007:
2.2.8 UCO008:
2.2.9 UC009:

Use Case <Login>

Use Case <Project Proposal Submission>
Use Case <Design Project Solution>

Use Case <Submit Project Solution>

Use Case <Checking Project Progress>
Use Case <Evaluate Student Work>

Use Case <Provide Feedback>

Use Case <Provide Necessary Form>
Use Case <Provide Rubrics>

2.2.10 UCO010: Use Case <Assign UC and Examiner>
2.2.11 UCO011: Use Case <Calculate Student Mark>

2.3 Software System Attributes, Performance and Other Requirements

2.4 Design Constraints

3.0 System Architectural Design

3.1 Architecture Pattern and Rationale

3.2 Component Model

W W W W W W

30

31

32

32

32

4.0 Detailed Description of the Component
4.1 Complete Package Diagram

4.2 Detailed Description

4.2.1. POO1: <User> Subsystem

4.2.2. P002: <Student> Subsystem

4.2.3. P003: <Assessment and Progress Tracking> Subsystem
4.2.4. P004: <Coordinator> Subsystem> Subsystem

5.0 Data Design
6.0 Requirements Traceability Matrix

7.0 Test Cases

34

35

36

38
40
46
53

61

65

1. Introduction

1.1 Purpose

The purpose of this System Documentation (SD) is to offer a detailed overview of the system
development process. It encompasses the System Requirements Specification (SRS), System
Design Document (SDD), and System Testing Document (STD). The SD acts as a reference
document for individuals involved in the system development process, such as coordinators,
students, university coaches, and industry coaches. It aims to provide a clear understanding of
the system requirements and design processes, ensuring all users are aligned and working
towards the same objectives. Through structured and comprehensive documentation, the SD
facilitates the success of the system development process by minimizing errors, enhancing

efficiency, and improving overall outcomes for the 4th year final project.

1.2 Scope

One software that can assist in a fourth-year final project is "GradX." GradX is a
comprehensive project management software that provides tools and features to help you
plan, organize, and execute your final project effectively. It allows you to create project
timelines, set milestones, assign tasks to team members, track progress, and manage
resources. Additionally, it offers collaboration features to facilitate communication and
coordination among project team members. With GradX, you can streamline your project

management processes and enhance the overall efficiency of your final year project.

The scope of the software product includes the following:
e C(Create submission for project proposal and design solution.
e To track the student progress and feedback from the university coach and industry
coach
e To organize the milestones and student progress breakdown into tasks and subtasks.
e Allow the coordinator to release the official form for marking and feedback.
e Allow to monitor the progress of students and the status of each task and ensure that

everything is on track.

1.3 Definitions, Acronyms and Abbreviation

Definitions of all terms, acronyms and abbreviations used are to be defined here.

Term Definition
GradX The software product being developed to manage the student’s 4th year
final project and determining the great flow of project progress during
internship.
SRS System Requirements Specification - a document that outlines the

requirements and objectives of the software product being developed.

SDD System Design Document - a document that describes the system
architecture, components, and interfaces in detail.

ucC University Coach - a faculty member who will ensure that the student is
meeting the necessary academic requirements and will also oversee the
student’s progress in completing the project proposal.

IC Industrial Coach - a professional from the relevant field of study in their
organization and will guide the student through the project.

1.4 References

1.

4,

Bowers, M. (2020). Design Constraints Are Not Restraints — They Stoke Creativity.

Toptal Design Blog. https://www.toptal.com/designers/ui/design-constraints

Editor. (2019, December 9). Technical Documentation in Software Development:
Types, Best Practices, and Tools. AltexSoft.

https://www.altexsoft.com/blog/business/technical-documentation-in-software-develo

pment-types-best-practices-and-tools/
Lutkevich, B. (2022). software documentation. Software Quality.

https://www.techtarget.com/searchsoftwarequality/definition/documentation

Admin. (2023, February 22). The Basics of Software Quality Attributes. Codoid.
https://codoid.com/software-testing/the-basics-of-software-quality-attributes/

1.5 Overview

The

System Documentation (SD) provides a comprehensive description of the GradX

software product being developed. This comprises three main sections: System Requirements
Specification (SRS) and System Design Document (SDD)

https://www.toptal.com/designers/ui/design-constraints
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://www.techtarget.com/searchsoftwarequality/definition/documentation
https://codoid.com/software-testing/the-basics-of-software-quality-attributes/

2. Specific Requirements

2.1 User characteristics
In this section, we will provide a brief introduction to the different user characteristics
mentioned in the requirements. Each user plays a specific role within the GradX system
and has distinct needs and responsibilities. These user characteristics illustrate the GradX
system's many roles and responsibilities. Each user interacts with the system in a unique
way, with varied levels of technical competence and various work needs.

2.1.1 Final Year Student
o The Final Year student will use the system to submit their project proposals online.
e They should have basic computer skills and familiarity with web-based applications

e They may have varying levels of technical expertise.

e They will require a medium to submit their projects online.

2.1.2 University Coach
e The University Coach will use the system to check the progress of students.
e They will use the system to evaluate students.
e They will generate reports based on student progress.

e They may require technical training on how to use the system.

2.1.3 Industry Coach
e The Industry Coach will use the system to check the progress of students.
o They will use the system to evaluate students.
e They will generate reports based on student progress.

e They may require technical training on how to use the system.

2.1.4 Examiner
e The examiner will use the system to evaluate final year projects.

e They will provide feedback

2.1.5 Coordinator
e The coordinator will prepare rubrics for evaluation.

e They will prepare evaluation forms for coaches and examiners to use.

2.2 System Features

The GradX is a software system that operates on desktop computers including windows and
10S operating systems. The system provides a means for UTM students in their 4th year to

manage their Final Project. The system also implemented a real-time cloud-database for

better user experiences.

The system features are illustrated in Figure 2.2.1 below. The detailed description of each

module and functions is tabulated in Table 2.2.

GradX System

User Module

UC001 Login <

StudentModule |

Student UC002 Submit project
proposal

UC003 Design project
solution

UC004 Submit project
solution

iversity Coach

Assement and Progress Trackjgg-mle |

UC005 Checking
project progress

C006 Evaluate
student work

Industry Coach

UCO007 Provide feedback

A

examiner

Coordinator Module

UCO008 Prepare
necesarry form

UCO009 Provide rubrics

% CO010 Assign university UCOD11 Calculate

coach and examiner student marks

Coordinator

Figure 2.2.1 Use case diagram for <GradX>

Table 2.2: Description of Module and Functions for <GradX>

Module Function Description

User Module UCO001 - Login This use case allows students to login as a user for the
system

Student Module UC0002 - Project This use case allows student to submit project

Proposal Submission

proposal through the system

UC0003 -Design
Project Solution

This use case includes the students designing the
project solution.

UC004 - Project
Solution Submission

This use case allows student to submit project solution
through the system

Assessment and
Progress Tracking
Module

UCO005 - Checking
Project Progress

This use case allows UC, IC and Coordinator to track
the progress of students’ work progress.

UCO006 - Evaluate
Student Work

This use case allows UC, IC and examiners to
evaluate the students' work.

UCO007 - Provide
Feedback

This use case is to allow the examiners to review and
give feedback to student work

Coordinator Module

UCO008 - Prepare
Necessary Form

This use case for coordinator to provide the necessary
form for the UC, IC and examiners.

UCO009 - Provide
Rubrics

This use case describes the activity of providing
project rubrics to students and examiners involved.

UCO010 - Assign UC
and Examiner

This use case allows the coordinator to assign UC and
examiners for the students.

UCO0011 - Calculate
Student Mark

This use case involves the calculation of student
marks by the coordinator.

User

+ UserlD: siring

has i
+ Password:sfring < =
has ssign.
assign
h 4 ¢
University Coach Industry Coach Examiner Coordinator
+ UCoachlD: string + ICoachiD: string + ExaminerD: siring + CoordinatorlD: string
+ email: string + email: string + name: string 1
- siri + name: strin 1o- int
+ name: siring g + PhoneMo: int ke
+ PhoneNo: int + PhoneNo: int 1 :
Student 1 Forms
1
+ StudentlD: string RubricsID: String
manage .
—_— provide
+name: string 1 manage MecessaryFormlD:string
+ Email: string k A)
1.* o
1 Fesponze
) J ¥
Project FeedbacklD: string
do has
»| proposalliD: string EvaluatelD: string
progressiD: string FeedbacMsg:string
TotalMiarks: int 1= 1=
Y
access
access
view
dccess

Figure 2.2.2: Domain Model for <GradX>

2.2.1 UCO001: Use Case <Login>

Table 2.2.1: Use Case Description for <Login>

Use case: <Login>

ID: UCO001

Actors: Student, UC,IC, Examiner,Coordinator

Preconditions:

1. Has an internet connection to access the login page.
2. Got their own login name with their password.

Flow of events:
1. Users will enter their login name and password.
2. The system will check and validate the user entered name and
password.
3. System will direct the user to the homepage.
4. Login use case ends.

Postconditions:

1. Users can proceed to do their tasks in the system once
directed to the homepage.

Exception flow (if any):
1. Invalid name or password.
1.1. System will display an error message.

Use Case 000

Login()}

FillLoginMame()
p——————

FillLoginPassword(

X @,

User Login Page Home Page User

O 0O

alt

[ValidLbginName
=+ true]

I T T - e

DisplayErmoriiessage(]

= false]

[ValiE:)ginF‘assword

DisplayHomePage
30

R OE RS BB S S S B S SRS EEE NSNS ESEEEW

Figure 2.2.1.1 Sequence Diagram for <Login>

UTM Student Grad¥
(Tap on 'Logi’ button } ‘—“(Dizplay login paze)

(Validate lozin name and passorord)

End

Figure 2.2.1.2:

Activity Diagram for <Login>

2.2.2 UC002: Use Case <Project Proposal Submission>

Table 2.2.2: Use Case Description for <Project Proposal Submission>

Use case: <Project Proposal Submission>

ID: UC002

Actors: Student

Preconditions: A valid student is logged on to the system.

2.
3.
4. Message “Successfully submitted” will appear along with the

Flow of events:
1.

Students click on the project submission menu.
Students upload the project proposal.
Students click “Submit Button”.

Student details, supervisor name, submission date and time.

Postconditions:
1. Project proposal successfully submitted.
2. Students continue with design solutions.
3. The UC and IC has received and acknowledged the submitted

project solutions. Evaluation and feedback on the project
solutions will be provided, allowing for further actions or
decisions in the project.

Alternative flow n:
1.

Resubmission: Students are allowed to resubmit their project
solution based on the feedback received, they follow the same
submission.

Student

% “Submission Page

SubmitProjecProposal)

A

Display "Successful Message"

Figure 2.2.2.1: Sequence Diagram for <Submit Project Proposal>

P
[Click Project Proposal |
\ Submission Menu

e =

'8
|/ \I
| Uplead Project Proposal |
\)

P

R
Submit Project Proposal

|

W

£ B
(Prompt "Successiully '|
Submitted” message)

—

Figure 2.2.2.2: Activity Diagram for <Submit Project Proposal>

10

2.2.3 UC003: Use Case <Design Project Solution>

Table 2.2.3: Use Case Description for <Design Project Solution>

Use case: <Design Project Solution>

ID: UC003

Actors: Student, UC

Preconditions:

1. Student has logged into the system.
2. The project proposal has been approved.

Flow of events:

1. Students select the "Design Project Solution" option from the
system menu.

2. Students fill in the details and specifications about their
project solution design.

3. Students save the project solution form using the “Save”
button.

4. Students can continue working on the saved project solution
form.

5. Once the project solution is finalized the student can proceed
to the "Submit Project Solution" use case to formally submit
the solution.

Postconditions:
1. The project solution is designed and approved.
2. The student has the choice to go on working on the project
solution form that has been saved.
3. The completed project solution may be formally submitted
and evaluated using the "Submit Project Solution" use case.

Alternative flow n:
1. If the UC or IC finds problems or concerns with the suggested
project solution, they provide the student comments for
changes.

Exception flow (if any):
1. Reports: If there are technical problems or system faults when
storing or viewing the project solution form, the student can
contact the system administrator for help.

11

7N Design Project Solution ‘ | Submit Project Solution

Student
Selects "Design Project Solution” -
Fills in project details -
Saves project solution form >

Continues working on saved project

Y

Finalizes project solution design

Proceeds to "Submit Project Solution”

T
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|

!

r

Studgnt Design Project Solution ‘ | Submit Project Solution

T

A,

b s

Figure 2.2.3.1: Sequence Diagram for <Design Project Solution>

b

i~ "'\-\

| Select "Design Project Solution” |

e &

v

- ~
[Fill in project details |

¢)

| Save project solution form |

. _d

Mo ¢

Continue working on saved project?

l‘fes

-
| Continue working on saved project |
- | A

¢ \
| Finalize project solution design |

e, A
1|

-
| Proceed to "Submit Project Solution" |

e, v

®

Figure 2.2.3.2: Activity Diagram for <Design Project Solution>

2.2.4 UC004: Use Case <Project Solution Submission>

Table 2.2.4: Use Case Description for <Submit Project Solution>

Use case: <Project Solution Submission>

ID: UC004

Actors: Student

Preconditions:

1. A valid student is logged on to the system.
2. Students have submitted project proposals.

Flow of events:
1. Students click on the project submission menu.
2. Student upload project solution.
3. Students click on the “Submit” button.
4. Message “Successfully Submitted” will appear along with the
Student details, supervisor name, submission date and time.

Postconditions:

1. Project solution successfully submitted.

2. The UC and IC has received and acknowledged the submitted
project solutions. Evaluation and feedback on the project
solutions will be provided, allowing for further actions or
decisions in the project.

Student

% “Submission Page

SubmitProjectSolution()

h J

Display "Successful Message"

Figure 2.2.4.1: Sequence Diagram for <Submit Project Solution>

Ve
|' Click Project Solution 'l
Submission Menu -/.

W

N

|' Upload Project Solution |

-

‘\‘f

Submit Project Solution |
i ‘

W

i N
(Prompt "Successiully |
Submitted” message |

b 4
@

Figure 2.2.4.2: Activity Diagram for <Submit Project Solution>

14

2.2.5 UCO005: Use Case <Checking Project Progress>

Table 2.2.5: Use Case Description for <Checking Project Progress>

Use case: <Checking Project Progress>

ID: UC005

Actors: UC, IC

Preconditions:

1. Student must have submitted their progress in the system to
do checking

Flow of events:

1. UC and IC selected and clicked the submitted subtask of the
project

2. The system will display the task chosen.

3. UC and IC do the checking progress.

Postconditions:
1. UC and IC had done checking the progress of project from
student

15

Use Case 004

A KO O

ucgic Project Submission Page Student
1

'
Al

Select the subtask
from the project

Display the task chosen

A

Checking progress

Done checking leave page

Figure 2.2.5.1 Sequence Diagram for <Checking Project Progress>

fs&'m 3 subtask from pmjen:“'l
% submizsion page J

I: Do the progresz checking :I

{RE‘I.‘I.EI‘.I'.‘I. o project submmissicn pﬁga

Figure 2.2.5.2: Activity Diagram for <Checking Project Progress>

16

2.2.6 UC006: Use Case <Evaluate Student Work>

Table 2.2.6: Use Case Description for <Evaluate Student Work>

Use case: <Evaluate Student Work>

ID: UC0006

Actors: UC, IC, Examiners

Preconditions:

1. Students have submitted their work through the system.

2. Students submitted their work using the right type of file.

3. Users can access and download the rubric and evaluation form
that has been provided by the coordinator.

Flow of events:

1. The user receives the student's work that has been submitted
through the system.
The user needs to download the student submission.
The user downloads all the rubrics and evaluation forms.
Key in the marks in the evaluation forms based on the rubrics.
The user uploads the evaluation forms.

Message “Successfully Uploaded” will appear.

A A

The system will notify the student.

Postconditions:

1. Evaluation successfully uploaded.
2. Students can access the evaluation that has been uploaded.

Alternative flow n:
1. Reuploaded: The user can reupload their evaluation form if
any error occurs.

17

uCoos

Project Submission Page List Submission Page Evaluation and Rubrie Evaluation O
O Form
stugent
H !

UC, IC, Examiner

©Clck the submission page

Display Submission

Choose and download
student's submission

Display "Successful
Downloaded
N

Display List Submission Page

Open and Fill In Form

Display "Succesful Upioaded”

Upioad evaluation

|
|
I
|
|
|
1
I
I
|
1
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Send notification

Figure 2.2.6.1: Sequence Diagram for <Evaluate Student Work>

|/ Click Project \l
\ Submission ,/

|’/ Choose task to \l

o evaluate J

e ™
| Evaluate the task |

4 ™
|Upload the evaluation|
/!

|‘6rom pt "Successﬁﬂl}\l
_ Uploaded' J

Figure 2.2.6.2: Activity Diagram for <Evaluate Student Work>

2.2.7 UCO007: Use Case <Provide Feedback>

Table 2.2.7: Use Case Description for <Provide Feedback>

Use case: <Provide Feedback>

Description: This use case is for

ID: UC007

Actors: UC,IC

Preconditions:

1. User must download the feedback form provided by
coordinator

Flow of events:
1. Fill in the feedback form that has been downloaded
2. User must upload the feedback form in the system after
complete it

Postconditions:

1. User has provided feedback or guidance in form.
2. Students will be notified and view the feedback given.

19

Use case 006

FeedbackDownloadButton FeedbackForm O
N g Student
: . :

UC&IC

> DownloadFeedbackForm{) . *

| OpenFeedbackForm() _*

Build a feedback

message
Feedback
T

A

Upload feedback

Receive feedback notification

A

e View feedback

Figure 2.2.7.1 Sequence Diagram for <Provide Feedback>

rf Open the dowrloaded “‘l
feedha-:kfmm y

Fill mthe details smd
feedback mﬂ:ua form

] 4
[Upload the feedback form __,-I
™

[Give notification to student _,,-I

é

Figure 2.2.7.2: Activity Diagram for <Provide feedback>

2.2.8 UC008: Use Case <Provide Necessary Form>

20

Table 2.2.8: Use Case Description for <Provide Necessary Form>

Use case: <Provide Necessary Form>

ID: UCO008

Actors: Coordinator

Preconditions:
1. Coordinator successfully logged on to the systems

Flow of events:

1. Coordinator uploads all the necessary form into the system
2. Coordinator select to share with UC, IC and examiners.
3. UC, IC and examiners will get notified of the shared rubrics.

Postconditions:
1. UC, IC and examiners can see all the necessary forms through
the system.
2. UC, IC and examiners are able to download all the necessary
forms.

Alternative flow n:

1. Forms modification: If any form is updated and uploaded,
UC, IC and the examiner will receive an alert notification.

21

ucoo7

UploadFormButten List Form Page
')

: | UG, IC, Examiners
Cuorc‘mamr : |

UploadFurJn

Displgy "Successful Uploaded™

Display List Form

DownloadForm

Display List Form Page

Figure 2.2.8.1: Sequence Diagram for <Provide Necessary Form>

|’/ Frepare the \‘l
\%necessaryfcurm/

' ™
| Upload that form |
h y

|’/Share to UC, IC S'\I
_ Examiners o

Figure 2.2.8.2: Activity Diagram for <Provide Necessary Form>

2.2.9 UCO009: Use Case <Provide Rubrics>

Table 2.2.9: Use Case Description for <Provide Rubrics>

Use case: <Provide Rubrics>

ID: UC009

Actors: Coordinator, Students, Examiner

Preconditions: Coordinator successfully logged on to the systems

Flow of events:
1. Coordinator uploads the rubric into the system
2. Coordinator select to share with students and examiner
3. Student and examiner will get notified of the shared rubrics

Alternative flow n:

1. Rubrics modification: If the rubrics are updated and uploaded,
both the student and the examiner will receive an alert
notification.

Postconditions:

1. Evaluation can be done based on the rubrics
2. Student and Examiner can see the rubrics through the system

23

Coordinator

‘Student

‘Examiner

% ‘System

UploadRubric()

¥

SendNotifications()

SendNotifications()

View Rubrics

Figure 2.2.9.1: Sequence Diagram for <Provide Rubrics>

il N
| Go to Rubric Menu Page |
=

'

|' Upload Rubric |

F
A%

¥

(Select to Share with x\'
Students and Examiner/

~

W

5
/

| Click Upload Button |

b 4
®

Figure 2.2.9.2: Activity Diagram for <Provide Rubrics>

2.2.10 UCO010: Use Case <Assign UC and Examiner>

Table 2.2.10: Use Case Description for <Assign UC and Examiner>

Use case: <Assign UC and Examiner>

ID: UCO010

Actors: Coordinator

Preconditions:
1.
2.
3.

Coordinator has logged into the system.
Students have submitted their project proposal.
The project proposal has been reviewed and approved.

Flow of events:

1. Coordinator selects the "Assign University Coach and
Examiner" option from the system menu.

2. The system displays a list of available UC and examiners.

3. Coordinator selects a university coach from the list.

4. Coordinator selects an examiner from the list.

5. The system assigns the selected UC and examiner to the
respective student's project.

Postconditions:

1. UC and examiner are assigned to the student's project.

2. Assigned UC and examiners receive notifications and access
to the project details.

3. Evaluation and assessment of the project can proceed under

the assigned UC and examiner.

Alternative flow n:
1.

If the originally assigned UC or examiner becomes
unavailable or unable to fulfill their responsibilities, the
coordinator can reassign a new UC or examiner to the
student's project.

Exception flow (if any):
1.

Report: If there are any technical difficulties or system errors
while assigning the UCand examiner, the coordinator can
report the issue to the system administrator for resolution.
Consultation: If there are disagreements or conflicts regarding
the assignment of the UC or examiner, the coordinator can
initiate discussions and consultations with relevant
stakeholders to resolve the issue.

25

N

PN . . .
Coordinator System UC and Examiner List ‘ ‘ Selected UC ‘ ‘ Selected Examiner

| Selects "Assign University Coach and Examiner" ‘:

>

Retrieve UC and Examiner list

Selects UC from list -
Selects Examiner from list -

Assign UC to Student's Project

Assign Examiner to Student's Project -
Notify UC about assignment | -
. >
Notify Examiner about assignment -
! Access project details !
Coordlnlator System | ‘ UC and Examiner List | ‘ Selected UC | ‘ Selected Examiner

A

Figure 2.2.10.1: Sequence Diagram for <Assign UC and Examiner>

?

|f Coordinator selects "Assign University Coach and Examiner"

-

./I

3
¢ ¥es UC and examiners available? fio ¢
g . N ‘g)) ™y
| Coordinator selects UC from list | | Display error message “No UC or Examiner available" |
e A h v

v

g
| Coordinator selects Examiner from list |
\ J

. v

(™
| System assigns UC and Examiner to Student's Project |

—

$ - A

| system nofifies UC and Examiner :I

) v '

|r LC and Examiner gain access to project details '|
. /

®

¥

UC and Examiner not available

®

Figure 2.2.10.2: Activity Diagram for <Assign UC and Examiner>

26

2.2.11 UCO011: Use Case <Calculate Student Marks>

Table 2.2.11: Use Case Description for <Calculate Student Marks>

Use case: <Calculate Student Marks>

ID: UCO11

Actors: Examiner, Coordinator

2.

Preconditions:
1.

The assigned examiner has completed the evaluation of the
student's project.
The project marks calculation process is initiated.

9

2.

7.

8.

Flow of events:
1.

Examiner selects the "Calculate Student Mark" option from the
system menu.

The system displays a list of students who have submitted their
project solutions.

Examiner selects the student for whom the mark needs to be
calculated.

The system retrieves the evaluation results and relevant assessment
criteria for the selected student's project.

Examiner reviews the evaluation results, assesses each criterion,
and assigns marks accordingly.

Examiner enters the calculated marks for each criterion into the
system.

The system calculates the total mark based on the allocated marks
for each criterion.

Examiner reviews and verifies the calculated total mark.

Examiner submits the calculated marks for the selected student.

10. The system updates the student's record with the calculated marks.

Postconditions:
1. The student's project marks are calculated and recorded in the
system.
2. The student can view their final marks for the project.
3. The recorded marks are used for final grading and assessment

purposes.

Alternative flow n:
1.

Revision: If there are any errors or inconsistencies in the submitted
marks, the system prompts the examiner to review and correct the
marks before resubmitting.

Re-evaluate: If the coordinator notices any problems or
inconsistencies in the computed marks, they can ask the examiner to
re-evaluate or alter the marks.

27

Calculate Student Marks

Examiner ‘ =il StudentRecord

Select "Calculate Student Mark"

Y

< Display list of students

Select student for mark calculation

L

Retrieve evaluation results and assessment criteria

v

Display evaluation results and criteria
<

loop / [for each criterion]

Assess criterion and assign marks

<]

Enter calculated marks

Yy e Y | Y

Calculate total mark

i

_, Display calculated total mark

Submit calculated marks

Y

Update student's marks -
Y -
Exar/ql\ner System StudentRecord

Figure 2.2.11.1: Sequence Diagram for <Calculate Student Marks>

28

?

r" ™y

| Examiner selects "Calculate Student Mark" |

. A

- ™

Display list of students |
F.]] T
| Examiner selects student for mark calculation]

. A

~
[Retrieve evaluation results and assessment criteria |
-

re ™
| Display evaluation results and criteria]

., -

 a—

-
| Assess criterion and assign marks] A

more criteria

[Enter calculated marks

¥

| calculate total mark]
- ™
[Display calculated total mark |

, ¥ !

~
[Submit calculated marks |

"

-
| Update student's marks |

Figure 2.2.11.2: Activity Diagram for <Calculate Student Mark>

- al

a
r

29

2.3 Software System Attributes, Performance and Other Requirements

Software System Attributes:

Usability: The system should be user-friendly and intuitive, with a clear and easy-to-navigate
interface.

Maintainability: The system should be designed with modular and easily maintainable code,
with clear documentation to aid in future maintenance and updates.

Compatibility: The system should be compatible with various web browsers and operating
systems commonly used by students and faculty.

Performance:

Response Time: The system should be able to respond to user requests within a reasonable
time frame, ideally less than 3 seconds.

Throughput: The system should be able to handle a large number of concurrent users and
requests during peak usage times, without compromising performance.

Capacity: The system should be able to handle large amounts of data and user activity,
without experiencing slow-downs or crashes.

Other Requirements:
Security: The system should incorporate appropriate security measures to protect user data
and prevent unauthorized access, such as encryption, secure authentication, and regular

backups.

Legal and Regulatory: The system should comply with relevant laws, regulations, and
standards, such as data privacy laws and accessibility guidelines.

Environmental: The system should be designed with energy efficiency in mind, with

features such as automatic power-saving modes and optimized server configurations to
reduce energy consumption.

30

2.4 Design Constraints

Usability constraints: In order for the system to be easily accessible and understood by
users, it needs to follow a basic knowledge of other websites.

System constraints: Additions to the system must require minimal or no modifications to the
existing system.

Security constraints: An integrated secure authentication system shall be provided to
prevent unauthorized access. Access to the system is restricted to coordinators, university

coaches, industry coaches, examiners, and fourth-year Data Engineering students.

Compatibility constraints: The system should be designed so that it can be accessed both
via desktop and mobile devices.

Performance constraints: With a response time of less than 3 seconds, the system must be
able to handle 500 simultaneous users.

31

3. System Architectural Design

3.1 Architecture Pattern and Rationale

For this project, we have decided to use the Model View Controller (MVC) architectural
pattern. MVC Distinguishes presentation and interaction from system data. The system is divided into
three logical components that communicate with one another.The Model component maintains the
system data and the actions that are performed on that data. The View component specifies and
maintains how data is displayed to the user. The Controller component organizes user interaction (key

presses, mouse clicks, and so forth) and delivers it to the View and the Model.

MVC is normally used when there are multiple ways to view and interact with data. Also used when

the future requirements for interaction and presentation of data are unknown.

MVC encourages a modular, structured approach to programme development, which improves
maintainability. If updates or new features are to be added to the programme, they can be done
without affecting the others. This decreases the possibility of unwanted side effects and makes the

codebase easier to understand and alter.

32

Browser

View

+ StudentWindow

+ UcWindow

+ lcWindow

+ ExaminerWindow

+ CoordinatorWindow

+ SubmitProjectProposalWindow
+ DesignProjectSolutionWindow
+ SubmitProjectSolutionWindow
+ StudentMainWindow

+ ProjectSolutionForm

+ LoginWindow

+ BrowseFormPage

+ SubmitEvaluation&Feedback
+ ListProjectPage

+ SubmissionPage

+ EvaluationStudentWork

+ ListProjectPage

+ CheckingProjectProgress

+ RubricMenuWindow

+ NecessaryFormPage

+ UCandExaminerListWindow

+ StudentMarkWindow

Application

 SemeP

h A

Controller

Page and form to display

F

F

Y

User events

Updates result

+ ValidStudLogin

+ ValidUCLogin

+ ValidiCLogin

+ ValidExaminerLogin

+ ValidCoordinatorLogin
+ SubmissionController

+ DesignProjectSolution
+ ListStudentProject

+ ProjectMarks

+ ListStudent

+ EvaluationFeedback

+ RubricHandler

+ NecessaryFormHandler
+ UCandExamineAssignation

+ StudentMarkEvaluation

b

Process request, query process,

Model

generate result in Model

+ StudentDetails

+ UcDetails

+ lcDetails

+ ExaminerDetails

+ CoordinatorDetails

+ SubmissionDetailsDA

+ DesignProjectDA

+ SubmissionControfler

+ DisplayTheProject

+ DownloadForm

+ MotifySystemController

+ RubricDataAccess

+ MecessaryFormDataAccess
+ AssignationUCExaminerDatafAccess
+ StudentMarkDataAccess

Figure 3.1: Architecture Diagram for <GradX>

33

3.2 Component Model

ProjectProposal

DesignProject

ProjectSolution
o—L

-

<<Student>> Subsystem
o -Project Proposal .
o) :Design Project A EI—(
0-og Solution E H
:Submit Project
ol Solution E H-—C

Al

addProgressComment

addEvaluation

addFeedback

UC.IC. Exami

LoginPage

2]

coordinatorLogin

Progress Tracking=> Sub

:Checking Project
Progres

<=Assessment and

:ﬁf &)

i [1
=
B

L]

Q

system

2 | 5o

‘Evaluate Student s
. =]_C

:Provide Feedback E

>

‘Prepare Necessary
Form

-Assign UC and
Examiner

alculate Student
ar|

<<Coordinator>> Subsystem

s
=
=

2]
%]

HO-O-O<

-Provide Rubrics E o[-0~

e i o< NS

O

addMec:

addRubrics

essaryForm

assignUCExaminer

Figure 3.2: Component Diagram of <GradX>

34

4. Detailed Description of Components

4.1. Complete Package Diagram

1 1
==|mport==
User Module [— Student Module
L
A .. A
==|mport==,
/ -~ s.__ =<Import== v
i =<ACcess=xz- [o=<Access==
==ACcess==
Assessmeptand Progress] Coordinator Module
Tracking Module

Figure 4.1: Package Diagram for <GradX System>

The complete package diagram comprises four distinct modules: the User module, the Student
module, the Assessment and Progress Tracking module, and the Coordinator module. The User
module facilitates the login process for all users. The Student module oversees all activities pertaining
to students within the system. The Coordinator module is responsible for managing system activities
specifically associated with the coordinator role. Lastly, the Assessment and Progress Tracking
modules handle the activities of other system users. Before performing their respective functions, the
Student module, Coordinator module, and Assessment and Progress Tracking module import data

from the User module.

The Coordinator module relies on data from both the Student module and the Assessment and
Progress Tracking modules to ensure seamless functionality. Similarly, the Assessment and Progress

Tracking modules access data from the Student module to effectively carry out their designated tasks.

35

4.2. Detailed Description

4.2.1. P001: <User> Subsystem

User Subsystem

View Layer

StudentWindow

UcWindow

ExaminerWindow

IcWindow

CoordinatorWindow

i

Data Access Layer

Domain Layer |

ValidStudLogin
ValidUCLogin

| ValidExaminerlLogin ‘

i _ | ValidCoordinatorLogin \
ValidiCLogin

Database

il [!

StudentDetails)
: : ,Tetrieve
ExaminerDetails <
UcDetails =
) | store
- CoordinatorDetails
IcDetails

StudentDetails

ExaminerDetails
UcDetails

CoordinatorDetails

IcDetails

Figure 4.2: Package Diagram for <User> Subsystem

36

4.2.1.1. Class Diagram

Student

-studID: string
-studMame: string

-studEmail: sfring

getStudid():string
getStudNamel)-string
getStudEmail():string

Industry Coach

University Coach

-UCoachiD: string
-UCoachName: string

-UCoachEmail: string

getUCoachld():string
getUCoachMame():string
getUCoachEmail(}:string

Y Y
LoginWindow
» + login()
+ logout()

-ICoachlD: string
-ICoachMame: string

-ICoachEmail: string

getlCoachld():string
getlCoachMame().string
getlCoachEmail().string

Examiner

-ExaminerlD: siring
-ExaminerMame: siring

-ExaminerEmail: string

getExmEmail():string
getExmMame().string
getExmEmail():string

Y

Coordinator

-CoordinatorlD: string
-CoordinatorMame: string

-CoordinatorEmail: string

getCdtEmail():string
getCdiName():string
getCdtEmail()-string

Figure 4.3: Class Diagram for <Login> Subsystem

37

MEER S

Entity Name User
Method Name Login()
Input 1. username (string)
2. Password (string)
Output 1. Success message (string)
2. Error message (string)
Algorithm Start

Receive the username and password from the user
Verify the username and password are correct and not empty
Retrieve and store within the database.

the incorrect message will be generated.

If the password matches, a success message will be generated otherwise

6. If no matching username is found, an error message is generated to
indicate invalid username.

7. Return the success or error message based on the login result.

8. End

4.2.1.2. Sequence Diagram

a) SDO001: Sequence diagram for Student Login

Student StudentWindow

A O

click login |
;

=
S S 2

Password matches with|
username, SUccess
message generated

Werify the usermname
and password

ValidStudLogin

@ StudentDetails

Enter usemame
and password

:

|

i

]

store details i

! in database i

e EEE—
|

| refrieve details i

| in database |

1 T OO e O 4

Password not matches
with username, error
message generated

38

b) SD002: Sequence diagram for University Coach Login

Kty UcWindow ValidUCLogin
Coach
@ @ UcDetails
: ; ; !
I i]
%i Enter usemame i !
|
E : and pesswors] " store details i
! ! ! in database N
1 1 | e
: | | retrieve details i
] " i &
! ! Venfy the usemame | in database |
y H and password ! !
P EE-e————m—m——mmmm oo 3 |
[]] i
P P]]
s 1 | |
1Password matches with | | i
| usemame, suCCeSs | | '
P P]]
| message generated ! ! '
P]]]
alt : : i
]] i
T]]]
" " !]
& :r i =
! Password not matches | ! i
! with usemame, emor | ! |
| message genersted | i !
H H i
i i | |
c) SDO003: Sequence diagram for Industry Coach Login
ity IcWindow ValidiCLogin
Coach
@ @ IcDetails
: g , i
: chck login Enter usemame i [
E ekl i " store details i
! in database '
| —_—
i retrieve details i
! Verify the usemame L in database _‘:
i and password !
: e !
BEoroaTiinsoiane N

j
:
| usermname, success
i
|
i
1

|
h
|
:
message generated i
|
!
h
h
|
h
|

with usemame, error
message genersted

39

d) SDO004: Sequence diagram for Examiner Login

Examiner ExaminerWindow ValidExaminerLogin
i @ @ ExaminerDetails
| - .]
E&. Enter usemame i

and peissword store details

! in database
e EE—
i
| retrieve details
| :
i in database

Verify the usermname E‘E ___________________ a

i

and password

|
|

i usemame, SUCCEss
| messageg enerated
i

Password not matches
with usemname, emor |
message generated |

'
'
'
0

e) SDO005: Sequence diagram for Coordinator Login

Coordinator Coordinatorwindow ValidCoordinatorLogin

i @ O ICoordinatorDetailg

click login

Enter usemame
and password

store details
L ! { in database

refrieve details

Verify the usemame ‘._:____i_“_‘f'?tﬁb_a_s_'? _____ a
! ! and password i

, e

Password maiches with !
| USemname, SUCCEess
'

| message generated
'

with username, emor
message generated

T

4.2.2. P002: <Student> Subsystem

Student Subsystem ‘

Wiew Layer

Domain Layer

SubmitProjectProposalWindow

StudentMainWindow

DesignProjectSolutionWindow

ProjectSolutionForm

SubmissionController

DesignProjectSolution

SubmitProjectSolutionWindow

Data Access Layer

SubmissionDetailsDA

DesignSolutionDA

Figure 4.3: Package Diagram for <Student> Subsystem

41

4.2.2.1. Class Diagram

==Controllers=
Submission

+ submitProjectProposal()
+ submitProjectSolution()
+ subltems()

¥ ¥ £

SubmitProjectProposal

»| - proposallD: int

- proposalTitle: siring

SubmitProjectProposalWindow - proposalStatus: string l

StudentMainWindow

+ addSubmission()-void

+ displayProposalDetails(): void + getProposallD(): int

+ displayStudDetails(): void

+ getProposalTitle(): Siring

+ getProposalStatus(): String

SubmissionDetailsDA

- submissionlD: int —l ii

- submissionTitle: siring SubmitDesign Solution

Student

- submissionStatus: string

- solution|D: int

- studMame: string

- solutionTitle: string - studlD: string

»| - solutionStatus: string - studEmail: string

+ getSolutionlD: int

DesignProjectSolutionWindow getStudID(): string

+ getSolutionTitle: sfring

getStudName(): string

+ getSolutionStatus: string getStudEmail(): string
+ displayDesignSolution(): void T ’

addMewSubmission(): void

| beginDesignl(): void
ProjectSolutionForm ¢
- sollD: int
SubmitProjectSolutionWindow - solDetails: string
- ==Controiler==
- solStatus: string DesignProjectSolution
+ displaySolutionDetails(): void + designProjSol{=ollD,solDetails): void
+ zaveDesign: void + submitProjectProposal()
+ submitProjectSolution()
+ saveDesign()
Entity Name SubmitProjectProposal
Method Name addSubmission()
Input e Project proposal title
e Project proposal file
Output Project proposal ID
Successful message
Project proposal status
Algorithm Start

Navigate to the submit project proposal window

Key in project proposal title and details (optional)
Upload proposal file

Select proposal file from local or cloud storage

Submit the proposal by clicking on the “submit” button

cunbkbwdb—le oo

42

7. Prompt “Successful Submission” message, proposal id and proposal
status upon successful file submission.
8. Stop
Entity Name ProjectSolutionForm
Method Name designProjSol()
Input e Design project information
Output e User interface of the system for accessing the design software.
e Design solution ID
e Exported or downloaded design files in the desired format.
e Confirmation messages to save design
Algorithm 1. Start
2. Navigate to the submit design project solution window
3. Create new design project
4. Key in design project information
5. Choose and use the design tools to complete the design
6. Save design the progress and confirm the action by clicking the
confirm button
7. Export and download the file in desired format
8. If want to modify existing design, click on the saved designs
9. Stop
Entity Name SubmitProjectSolution
Method Name addSubmission()
Input e Project solution title
e Project solution file
Output e Project solution ID
e Successful message
e Project solution status
Algorithm 1. Start
2. Navigate to the submit project solution window
3. Key in project solution title and details (optional)
4. Upload project solution file
5. Select project solution file from local or cloud storage
6. Submit the proposal by clicking on the “submit” button
7. Prompt “Successful Submission” message, solution id and project
solution status upon successful file submission.
8. Stop

43

4.2.2.2. Sequence Diagram

Student

A

StudentWindow

a) SDO006: Sequence diagram for Submit Project Proposal

O

addNewSubmission() |

Student

A

displayProposal

Details()

SubmitProject
ProposalWindow

beginDesign()

addSubmission()

Submission
Controller

proposallD, propesalTitle
proposalStatus

IC

Q

subltems()

subltems()

uc

:SubmissionDetailsDA

@,

getSubmissionDetails{)

getProposallD{)

proposallD{)

getProposalTitle()

proposalTitle()

getProposalStatus()

proposalStatus()

.

e prompt successful submission

b) SDO007: Sequence Diagram for Design project solution

StudentWindow

O

designProjSol(sollD, solDetails)

displaySolutionDetails{)

DesignProject
ProposalWindow

Project

SolutionForm

designProjSol(sollD, solDetails)

Solution

saveDesign()

DesignProject

‘DesignSolutionDA

designProjSol(sollD, solDetails) 1

saveDesign(}

o

44

Student StudentWindow

LS

addMewSubmission()

c) SDO008: Sequence diagram for Submit Project Solution

SubmitDesign Submission
SolutionWindow Controller

displaySclution
Details()

b m e e]

addSubmission()

subltems() subliems()

P

geiSubmis sion[i&tails:j}
T

IC uc
Q Q “SubmissionDetailsDA

getSolutionlDy)

solutionlD()

solufionID, solufionTitls, :

Status solutien|D, solutienTitle, solutionStatus

45

4.3. P003: <Assessment and Progress Tracking> Subsystem

Assessment and Progress
Tracking Subsystem

User Interface

Data Access

‘ LoginWindow ‘ ‘ ListProjectPage ‘ ProvideFeedback
‘ BrowseFormPage ‘ ‘ SubmissionPage ‘ CheckingProjeciProgress

‘ SubmitEvaluation&Feedback ‘ ‘ EvaluateStudentWork

‘ ListStudentProject

‘ ProjectMarks ‘

‘ ListStudent ‘

Evaluation&Feedback

SubmissionDetail

Domain Layer

| SubmissionController | DisplayTheProject

| DownloadForm | ‘ MotifySystemController

Figure : Package Diagram for <Assessment and Progress Tracking> Subsystem

46

4.2.3.1. Class Diagram

University Coach

- UCoachiD: Strin
- UCoachEmail: String

+ getUCoachEmail(): §

+ getUCoachid(): String
tring

- ExamineriD: String
String

Examiner

- CoordinatorlD: String
- CoordinatorEmail: String

+ getCoordinatorld(): String
+ getCoordinatorCEmail(): String

+ getExaminerld(): String
+ gelExaminerEmail(): String

Industry Coach

- ICoachiD: String
- ICoachEmail: String

LoginWindow

ListProjectPage

+ displayPage(): void

ListStudentProject

- projectName(): String
- taskName(): String

+ getProjectName() String
+ getTaskName(): Sting

DisplayProject

- displayPage() void

CheckingProjectProgress

- progressComment: String
- marks: float

+ addProgressComment() void
+ getProgressComment(): String
+ caleulatelarke () float

+ login()
+ logout)

+ getICoachld(): Sting
+ getlCoachEmail(): String

BrowseF ormPage
- rubric: Rubric.

- evaluationForm: EvaluationForm
- fesdbackForm: FeedbackForm

+ browse(): void

DownloadForm

- rubricName() String
- evaluationFormName): Sting
- feedbackFormName(): String

+ getRubricName(): String
+ gefEvaluationFormName(): String
+ getFeedbackFormName(): String

Evaluation&Feedback

- marks: float
- comments: String
- evaluator: String

+ gethlarks():float
+ getComment(): Comment

- FeedbackiD: int

ProvideFeedback

String
String

SubmissionPage

+ displayPage(): void

SubmitEvaluation&Feedback

~+addFeedbacki): void
+ getFeedbackiD():int
+ getFeedbackName(): Siring
+ getFeedbackStatus(): String

- evaluationName: String
- feedbackiame: Sting

- EvaluationID: int
- EvaluationName:

EvaluateStudentWork

String
string

+addEvaluation()

void

+getEvaluationlD(): int
+getEvaluationName(): String
+ getEvaluationStatus(): String

ProjectMark
- marks: float

+ calculateMarks () float

+ addSubmission(): void
+ gelEvaluationName(): String
+ getFeedoackNamel): Siring

Controller>>
Submission

‘SubmissionDetail

- submissioniD: int
- submissionName: String
- submissionStatus: String

ListStudent

- ListStudentiD: String
- ListStudentiD: String

+getListStudentld(): String
+ getListStudentName(): String

submission: void
submitEvaluation()
+ submitFeedback()

==Controlier=>
NotifySystem

* noty(): void

Entity Name

EvaluateStudentWork

47

Method Name addEvaluation()
Input e Marks
e Evaluator
Output e Marks
e EvaluationID
e EvaluationName
e EvaluationStatus
Algorithm 1. Start
2. Navigate to browse form page
3. Choose evaluate form
4. Key in evaluation based on student project and rubric
5. Submit the evaluation by clicking on the “submit” button
6. Prompt “Successful Submit” message, evaluation id and evaluation
status upon successful file submission.
7. The system will notify the student once evaluation successfully
uploads
8. Stop
Entity Name ProvideFeedback
Method Name addFeedback()
Input e Comments
Output e Comments
e FeedbackID
e FeedbackName
e FeedbackStatus
Algorithm 1. Start
2. Navigate to browse form page
3. Choose feedback form
4. Key in feedback based on student project
5. Submit the feedback by clicking on the “submit” button
6. Prompt “Successful Submit” message, feedback id and feedback
status upon successful file submission.
7. The system will notify the student once feedback successfully
uploads.
8. Stop
Entity Name CheckingProjectProgress

48

Method Name addProgressComment()
Input e progressComment
e Evaluator
Output e (Comments
e Marks
e Evaluation
e Feedback
Algorithm 1. Start
2. Navigate to list project page
3. Choose the project form the list of student project
4. The system will display the project
5. The user can start checking the progress of the project
6. Stop

49

4.2.3.2. Sequence Diagram

UC,IC Examiner LoginWindow

login()

SubmitEvaluation
&Feedback

addEvaluation()

L O ORN®

o m]

h J

addSubmission()

h j

SubmissionController

(O

Student

SubmissionDetail

EvaluationlD,
EvaluationMName,
EvaluationSiatus

submission()
-
geiEvaluation|D{)
L EvaluationlD
T T T T T
]
| getEvaluationMame{) N
EvaluationMame
T{ """"""""""""""
]
| getEvaluationStatus()
EvaluationStatus
B Sttty
getSubmissionDetail() !
\
EvaluationlD,
EvaluationMame,
EvaluationStatus

SDO009: Sequence diagram for Evaluate Student Work

50

SubmitEvaluation

N g " o
Examiner LoginWindow &Fsadback SubmissionController Student
SubmissionDetail

] T
' lagin) | i | | |
; i i i i
i i i i i
]]))]
]] i i]
]]]]]
i i i i i
i i i i i
: addFesdback() ‘ I | |
: 7 bt , | :
]]]]]
i i i i i
]]))]
]] i i]
]]]]]
i i i i i
' ' addSubmission() o i '
| | dlm | |
]]]]
i i i i
i i i i
]])]
i i submission() | i
i i > i
]]]
]]]
: : :
E E getFeedbackiD() E
: :
: :
: : L FeedbackiD
i i L e
| | o
H H i geiFeedbackMame()
]] L
i i
]]
i i FeedbackMame
i i T T TTTT T m e
H H | getFeedbackStatus()
1 1 >
| |
' ' FeedbackStalus
i i T
! ! getSubmissionDetail() L
| | >
]]
]]
i i FeedbacklD FeedbacklD
! ! FeedbackName, FeedbackMame,
! ! FeedbackStatus < FeedbackStatus
]] s sssssssssmmsmmm e e T R T T E s smsm s —_
]]
i i
| i_ prompt succesfully submit

SDO010: Sequence diagram for Provide Feedback

51

Evaluation&Feedback

ListProjectProject ListStudentProject

LoginWindow

UC,IC, Examiner

Student

comments()
marks{)

ProjectMarks()

progressComment()

projectName()

)

@-- ..

SDO11: Sequence diagram for Checking Project Progress

52

4.4. P004: <Coordinator> Subsystem

Coordinator Subsystem

Wiew Layer

RubricMenuWindow

Diomain Layer

MecessaryFormPage

UCandExaminerListWindow

StudentMarkWindow

RubricHandler MecessaryFormHandler

UCandExaminerAssignation

StudentMarkEvaluation

Data Access Layer

RubricDataAccess

MecessaryFormDataAccess

AssignationUCExaminerDatafccess

StudentMarksDataAccess

Figure 4.4: Package Diagram for <Coordinator> Subsystem

53

4.2.4.1. Class Diagram

NecessaryFormPage

+displayNecessaryForm().void

!

==Controller=>
NecessaryForm

+ uploadForm(formFile)
+ shareFormWithUC()

+ shareFormWithiC()

Coordinator

NegessargromDa - CoordinatorlD: string
~ FormiD: int - CoordinatorName: string
- CoordinatorEmail: string

- FormName: string

+ getFormBylD(formiD)

+getCdtlD(): string
+getCdtName(): string
+ getCdtEmail(): string

- notifyCoordinator(): void

- nofify(): void

T

RubricMenuWindow

+ displayRubricDetails(}:void

+ shareF ormWithExaminers() - updateForm()
+ notify().void - deleteForm(}
<= Controller >> RubricDA
RubricHandler
~rubriciD: int
string
{)void

+ getRubricByD(rubriciD)
+ updateRubric()

+ deleteRubric{)

UCExaminerListWindow

+ displayUCExaminerList():void

Project

- ProjectiD: int

- ProjectName: string

AssignationUCExaminerDA

UCExaminerAssignation

- ExaminerName: string

* JCE D, UC, Examiner)

+ getlUCExaminerAssign(project!D)
+ saveUCExaminerAssign()

+ updateU CExaminerAssign()

Examiner
- ExamineriD: string
- ExaminerName: string

- ExaminerEmail: string

+ getExmiD(): string
+ getExmName(): string

+ getExmEmail()y: string

Student

- StudentlD: int

- StudentName: string

+ displayUCExaminerList() void

MarkCalculation

StudentMarkWindow

+ cal D)

+ updateMarks(student|D, marks)

EvaluationResult

- evaluation|D: int

- marks: float

+displayStudentMark(): void

Entity Name

ProvideNecessaryForm

Method Name

addNecessaryForm()

Input e Form title
e Form file
Output e Form ID
e Form status

Algorithm

NoUnAEBLD =

Start

Navigate to the browse Necessary Form page.
Choose the necessary form to be provided.

Collect the form title and form file from the coordinator.
Store the form file in the system's database.
Associate the form title and file with a unique form identifier.
Save the form details in the system.

54

8. Notify UC, IC, examiners about the availability of the new
form.

9. Prompt a "Successful Submit" message, form ID, and form
status upon successful file submission.

10. The system will notify the students and examiners once the
form has been successfully uploaded.

11. Stop
Entity Name ProvideRubrics
Method Name addRubrics()
Input e Rubric title
e Rubric file
Output e Rubric ID
Algorithm 1. Start
2. Navigate to the browse rubrics page.
3. Choose the rubric to be provided.
4. Submit the rubric by clicking on the "Submit" button.
5. Prompt a "Successful Submit" message, rubric ID, and rubric
status upon successful submission.
6. Save the rubric details in the system.
7. Notify students, examiners about the new rubric availability.
8. The system will notify the students and examiners once the
rubric has been successfully uploaded.
9. Stop
Entity Name AssignUCExaminer
Method Name assignUCExaminer()
Input e ProjectID
e List of available UCs and examiners
e Selected UC
e Selected examiner
Output e Updated project record

e Notification to the assigned UC and examiner

55

Algorithm

[

Start

. Navigate to the Assignation UC Examiner page.

Display the student's project details and the list of available
UCs and examiners.

4. Coordinator select a UC and an examiner for the student's
project.
5. Update the project record with the assigned UC and examiner.
6. Save the updated project details in the system.
7. Notify the assigned UC and examiner about the project
assignment.
8. Prompt a confirmation message to the coordinator upon
successful assignation.
9. Stop
Entity Name CalculateStudentMarks
Method Name calculateMarks()
Input e Student ID
e Project evaluation results
Output e (alculated total marks
e Updated marks for the student's project
e Notification to the student regarding final marks
e Confirmation message to the coordinator
Algorithm 1. Start
2. Navigate to the mark calculation page.
3. Obtain the student's project evaluation results based on the
Student ID.
4. Calculate the total marks based on the assigned scores for each
criterion.
5. Store the calculated marks in the system's database.
6. Save the updated marks for the student's project.
7. Notify the student about their final marks for the project.
8. Prompt a confirmation message to the coordinator upon
successful mark calculation.
9. Stop

56

4.2.4.2. Sequence Diagram

Provide Necessary Form Sequence Diagram

%
i Syst uc | | ic | | Exami
Coordinator ystem ‘ ‘ ‘j ‘ Xaminers

|
| Browse Necessary Form

' Choose MNecessary Form ‘_:
' Collect Form Details ‘:
Upload Form X

<]

| Generate Unique Form ID

' Notify New Form

Store Form in Database |

: : Save Form Details

; Notify New Form >
; Notify New Form : : ..
__ Successful Submit Message | E E E
:J Form ID and Status : E E E
: : Notify Students ‘_: : :
: Notify Examiners : : ‘_:
Cooriator System ‘ ‘E ‘E ‘ Examiners

AN

SDO012: Sequence diagram for Provide Necessary Form

CDDrJdinétDr Stuzdeﬁts Exaxmir:ler

-
=]
[Le}
5

! Upload rubric

I

Select recipients

I

Share rubrics

I

Motify shared rubrics -

Motify shared rubrics

2

alt [Rubrics modification] i
I Update rubrics i I

" Alert rubrics update ! :

" Alert rubrics update ! !

. P , -

i i _}{15—:1'_.!1:_ rubrics
| : e
Coordinator Students Examiner
1 1 |]
P P A

SDO013: Sequence diagram for Provide Rubrics

58

A ;
Coordinator System ‘ UC‘ ‘ Exammer‘
| Login

<~ |

' Select "Assign UC and Examiner”

I Display available UCs and examiners

Select UC

' Select Examiner

Y

I Assign UC and Examiner

Notify successful assignment

&
=

Notify assignment

Y

I 1

| I

| I

| I

I 1

| I

| I

| I

| [}

| I

| I

| I

| | [}
| | I
}I | I
| | I
| | I
I 1

| I

| I

| I

I 1

| I

| I

| I

| [}

| I

| I

| I

| [}

Notify assignment

Y

alt / [Reassignment]

' Reassign UC or Examiner

| . .
< Notify successful reassignment

|
|
|
i
|
’I
|
i

Coard#amr ‘ System ‘ uc ‘ ‘ Examiner‘

.'/ I\I\I\I'\.

SDO014: Sequence diagram for Assign UC Examiner

T T

'/ \\ f/ \\
Examiner Coordinator
1]
| .
I Log in

-]

I Select "Calculate Student Marks"

System Student

Select student

Review evaluation results

I

| Assess criteria and assign marks

I

Enter calculated marks

Review calculated marks

I Submit calculated marks

I Display list of students
1
>
' Retrieve evaluation results and criteria
1
1
1

Calculate total marks

ke

Motify successful submission

-

I Update student's record with marks

-
-

Motify final marks

Y

alt [Revision]
| Review and correct marks

| Notify successful correction

-
-

alt [Re-evaluate]
. Request re-evaluation

(B

" Re-evaluate or alter marks

Examiner Coordinator System | Student |

SDO015: Sequence diagram for Calculate Student Marks

60

5. Data Design

5.1. Data Description

The major data or systems entities are stored into a relational database named as..., processed and

organized into # entities as listed in Table 5.1.

Table 5.1: Description of Entities in the Database

No. | Entity Name Description

1 Student Represents the final year students who will be using the system to
submit their project proposals online.

2 University Coach Represents the university coaches who will use the system to check
the progress of students, evaluate them, and generate reports based
on student progress.

3 Industry Coach Represents the industry coaches who will use the system to check the
progress of students, evaluate them, and generate reports based on
student progress.

4 Examiner Represents the examiners who will use the system to evaluate the
final year projects and provide feedback.

5 Coordinator Represents the coordinator who will prepare rubrics for evaluation

and evaluation forms for coaches and examiners to use.

61

5.2. Data Dictionary

5.2.1. Entity: <User>

Attribute Name Type Description

StudID VARCHAR2 This attribute serves as a unique identifier for the
Final Year Student entity. It is used to uniquely
identify each student in the database. A primary
key for students.

UCoachID VARCHAR2 This attribute serves as a unique identifier for the
University Coach entity. It is used to uniquely
identify each university coach in the database.

ICoachID VARCHAR?2 This attribute serves as a unique identifier for the
Industry Coach entity. It is used to uniquely
identify each industry coach in the database.

ExaminerID VARCHAR2 This attribute serves as a unique identifier for the
Examiner entity. It is used to uniquely identify
each examiner in the database.

CoordinatorID VARCHAR?2 This attribute serves as a unique identifier for the
Coordinator entity. It is used to uniquely identify
the coordinator in the database.

StudName VARCHAR?2 This attribute stores the name of the Final Year
Student.

UCoachName VARCHAR2 This attribute stores the name of the University
Coach.

[CoachName VARCHAR2 This attribute stores the name of the Industry
Coach.

ExaminerName VARCHAR2 This attribute stores the name of the Examiner.

CoordinatorName VARCHAR?2 This attribute stores the name of the Coordinator.

StudEmail VARCHAR2 This attribute stores the email address of the Final
Year Student.

UCoachEmail VARCHAR?2 This attribute stores the email address of the
University Coach.

ICoachEmail VARCHAR?2 This attribute stores the email address of the
Industry Coach.

ExaminerEmail VARCHAR?2 This attribute stores the email address of the
Examiner.

CoordinatorEmail VARCHAR?2 This attribute stores the email address of the

Coordinator.

62

5.2.2. Entity: <SubmitProjectProposal>

Attribute Name Type Description

proposallD int Uniquely identifies a member of Submit
Project Proposal

proposalTitle string Title of the member of submit project
proposal

proposalStatus string Status of the submitted project proposal

5.2.3. Entity: <DesignProjectSolution>

Attribute Name Type Description

designSollD int Uniquely identifies a member of Design
Project Solution

designlnfo string Information related to design solution

5.2.4. Entity: <SubmitDesignSolution>

Attribute Name Type Description

solutionID int Uniquely identifies a member of Submit
Project Proposal

solutionTitle string Title of the member of submit project
solution

solutionStatus string Status of the submitted project solution

5.2.5. Entity: <EvaluateStudentWork>

Attribute Name Type Description

evaluationID int Uniquely identifies a member of Submit
Evaluation

evaluationName string Name of the member of evaluation

evaluationStatus string Status of the submitted evaluation

5.2.6. Entity: <ProvideFeedback>

Attribute Name Type Description

feedbackID int Uniquely identifies a member of Submit
Feedback

feedbackName string Name of the member of feedback

feedbackStatus string Status of the submitted

63

5.2.7. Entity: <CheckingProjectProgress>

Attribute Name Type Description

progressComment String Update of the project progress

marksID float Uniquely identifies a member of Student
Marks

5.2.8. Entity: <ProvideNecessaryForm>

Attribute Name Type Description

formID int Uniquely identifies a member of
Necessary Form

formTitle String Title of the member of necessary form

formStatus String Status of the submitted necessary form

5.2.9. Entity: <ProvideRubrics>

Attribute Name Type Description
rubricID int Uniquely identifies a member of Rubrics
rubricFile String Status of the submitted rubric form

5.2.10. Entity: <AssignUCExaminer>

Attribute Name Type Description

UCExaminerAssign String Assignation of the member of UC and
Examiner Assignation

updateUCExaminerAssign String Update of the assignation of the member

of UC and Examiner Assignation

5.2.11. Entity: <CalculateStudentMarks>

Attribute Name Type Description

marksID int Uniquely identifies a member of Student
Marks

evaluationID int Uniquely identifies a member of Student

Evaluation

64

6. Requirements Traceability Matrix

In software development, a requirement traceability matrix is for the stakeholders to easily trace
and track the progress of requirements through the identification of associated use cases,
sequence diagrams, and test cases, ensuring that all requirements are properly implemented and

tested in the software development process.

The table below shows how each package item (subsystem) relates to the use cases within that
package. The use cases are further connected to their corresponding sequence diagrams, which
depict the interaction between system components. Additionally, the test case IDs are provided,

indicating which test cases are associated with each use case.

Table 6.1: Example of RTM for <GradX>

Package Use Use Case Sequence Sequence Test Case
Item Case Description Diagram ID Diagram ID
ID Description
Package 1: | UCO001 Login SD-001 until Login TC-001
User SD-005
Subsystem

UC0002 | Project Proposal SD-006 Submit TC-002

Submission proposal
Package 2: UCO0003 | Design Project SD-007 Design a. TC-003

Student Solution project solution
Subsystem

UC004 | Project Solution SD-008 Submit project TC-004

Submission solution
UCo005 Checking SD-009 Checking TC-005

Project Progress project

progress

Package 3: UCO006 | Evaluate Student SD-010 Evaluate TC-006
Assessment Work Student WOI‘k
and Progress

GrekIng | yicgo7 | Provide SD-011 Provide TC-007

ubsystem Feedback feedback
UCoo08 Prepare SD-012 Provide TC-008

Necessary Form necessary form

65

Package 4:
Coordinator
Subsystem

UC009 | Provide Rubrics SD-013 Provide rubrics TC-009
UC010 | Assign UC and SD-014 Assign UC and TC-010
Examiner Examiner
UCo0011 Calculate SD-015 Calculate TC-011
Student Mark student marks

66

7. Test Cases

Based on this section, it appears to be a test execution report for testing the login functionality of
the GradX site. Here's an explanation of the different sections in the report:

Tester's Name: Specifies the names of the testers involved in executing the test cases. In this
case, the testers are Kamilah, Puteri, and Malley.

Date Tested: Indicates the date when the testing was performed. In this case, it is mentioned as
28-June-23 and forwarding date.

Test Case (Fail/Pass/Not): This column indicates the outcome of each test case execution. The
possible values are "Fail" if the test case fails, "Pass" if it passes, "Not executed" if the test case
was not executed, and "Suspended" if the test case execution was halted or suspended.

S#: This column represents the serial number or index of the test scenario or test case.

Prerequisites: This column lists the prerequisites or conditions that need to be fulfilled before
executing the corresponding test case. In this case, it mentions prerequisites related to the
availability of an internet connection and having valid login credentials for different roles (User,
UCoach, ICoach, Examiner, and Coordinator).

Test Data: This column provides the test data or inputs used for the corresponding test case
execution. It includes sample data such as StudID, stud2001 for test case #1, UCoachID,
unicoach 31 for test case #2, ICoachID, comcoach 7 for test case #3, ExaminerID, exm99 for
test case #4, and CoordinatorID, coord23 for test case #5.

Test Scenario: This section describes the specific test scenario being executed. In this case, the
scenario is to verify whether a user can successfully log in by entering a valid username and
password.

Step #: This column denotes the step number of the test case execution.

Step Details: This column provides the details of each step to be performed during the test case
execution. It includes actions such as navigating to the GradX site, entering the username and

password, and clicking the submit button.

Expected Results: This column describes the expected results or outcomes of each step. For
example, the expected result of step #3 is that the user should be successfully logged in.

Actual Results: This column captures the actual results observed during the test case execution.

67

Pass/Fail/Not executed/Suspended: This column indicates the final outcome of each test step. It
mentions whether the step passed, failed, was not executed, or was suspended.

The report provides an overview of the test execution progress and outcomes for the specified

test cases. It helps track the success or failure of each test step and allows stakeholders to assess
the quality and stability of the login functionality in the GradX site.

68

69

1.1 TCO001: Test <User> Subsystem: <Login (UC001)>

This test contains the following test cases:

(a) TCO001_01: Test <Scenario of sequence diagram1 until diagram 5 (SD001 -SD005)>

1.1.1 TCO001_01: Test <state scenario of sequence diagram1 (SD001)>

This test contains the following scenarios:

(a) TCO01_01: Test <normal
(SD001-SD005)>

scenario of

sequence diagram1 until diagram5

(b) TCO01_02: Test <alternate scenario of sequence diagram1 until diagram5
(SD001-SD005)>

Table 7.1: TC001_01_01 - <Normal Scenario of sequence diagram1 (SD001 until diagram5 (SD005))>

TestCase ID |TC-DDl |Test Case Description |Login into GradX system |
Created By |Farah |Reviewed By |Kam\|ah, Puteri, Malley |Version | 1 |
0A Tester's Log |Rewew comment from Kamilah, Puteri,Malleyincorprate in version 1
Tester's Name |Kami\ah, Puteri, Malley Date Tested 30-Jun-23 Test Case [Fa\lfPasstl

54 Prerequisites: 54 Test Data

1 User has an internet connection to access the login page 1 Studl D stud2023

2 Got their own login username and their password 2 UCoachld,unicoach_23

3 3 |CoachlD, expert_72023

4 4 ExaminerlD, exm5%

5 CoodinatorlD, coord2223

Test Scenarie [Login successfullyinto system

Step & Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 MNavigate to GradXsite site open
2 Enter username and password credential can be entered
3 Click submit

useris logged in

Table 7.2: TC001_01_02 - <Alternate Scenario of sequence diagram1 (SD001 until diagram5 (SD005))>

TestCase ID ‘TC-DDl |TestCase Description |Login into GradXsystem |
Created By ‘Farah |Rev1'ewed By |Kami|ah, Puteri, Malley |‘u’ersion ‘ 1 |
QA Tester's Log ‘Rewew comment frem Kamilah, Puteri,Malleyincorprate in version 1

Tester's Name ‘Kami\ah, Puteri, Malley Date Tested 30-Jun-23 TestCase [Fail,l’Pass,l’Nl

5% Prerequisites: 5 Test Data
1 User has an internet connection to access the login page 1 Studl| D,stud2023
2 Got their own login username and their password 2 UCoachld,unicoach_23
3 3 |CoachlD, expert_72023
4 4 Examinerl D, exm55
5 CoodinatorlD, coord2223
Test Scenario |Unsuccessful login into system
Step # Step Details Expected Results Actual Results Pass/Fail /Not executed/suspended
1 Navigate to Gradx site site open
2 Enterusername and passwaord credential can be entered
3 Click submit useris loggedin
4 User entered invalid username or password

an error message displayed
T

70

1.2 TC002: Test <Student> Subsystem: <Project Proposal Submission (UC002)>

This test contains the following test cases:

(a) TC002_01: Test <Scenario of sequence diagram1 (SD002)>

1.2.1 TC002_01: Test <Submit Project Proposal (SD002)>

This test contains the following scenarios:

(a) TC002_01_01: Test <normal scenario of sequence diagram1 (SD002)>

Table 7.3: TC002_01_01 - <Normal Scenario of sequence diagram1 (SD002)>

Test Case ID

TC_002

Test Case Description

Submitting a project proposal successfully

Created By

Kamilah

Reviewed By

Farah, Puteri, Malley

Version

QA Tester's Log

|Review comment from Farah, Malley, Puteri incorprate in version 1.0 |

Tester's Name ‘Farah, Puteri, Malley Date Tested 25-Jun-23 Test Case (Fail/Pass/Not) |
St Prerequisites: St Test Data
1 Login into the GradX system 1 Proposal Title = Focus on Analytics With Stack Overflow Data
2 2 Proposal Document = Focus_on_Analytics.pdf
3 3
4 4

Test Scenario

Submitting a Project Proposal with Valid Data

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the "Project Proposals” Site should open
section of the GradX system.
2 Click submit proposal button User is directed to project proposal form
3 Key in project proposal title Title can be entered
4 Leave Project details column blank Move to upload section
5 Upload document in pdf format The document name and file appear
6 Click submit button A successful message displayed

71

1.3 TCO003: Test <Student> Subsystem: <Design Project Solution (UC003)>

This test contains the following test cases:

(a) TCO03_01: Test <Scenario of sequence diagram1 (SD003)>

1.3.1 TC003_01: Test <Design a Project Solution (SD003)>

This test contains the following scenarios:

(c) TCO03_01_01: Test <normal scenario of sequence diagram1 (SD003)>

Table 7.4: TC003_01_01 - <Normal Scenario of sequence diagram3 (SD003)>

Test Case ID

[Tc_oo3

‘Test Case Description

|Designing a project solution successfully

Created By

|Kami|ah

‘Reviewed By

|Farah, Puteri, Malley

Version

QA Tester's Log

|Review comment from Farah, Malley, Puteri incorprate in version 1.0

Tester's Name |Farah, Puteri, Malley Date Tested 25-Jun-23 Test Case (Fail/Pass/Not) |
S# Prerequisites: S# Test Data
1 Login into the GradX system 1 Project Solution Title = Focus on Analytics With Stack Overflow Data
2 Submitted Project Proposal 2 Project Solution Document = Focus_on_Analytics.pdf
3 3
4 4

Test Scenario

Designing a Project Solution with Valid Data and Tools

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the "Project Solution” Site should open
section of the GradX system.
2 Click design project solution button User is directed to design project form
3 Click add new project User is directed to design project form
1 Key in project information and other Information can be entered
project details
5 Click project tools Tools are functioning well
6 Click save design button Confirmation message appeared
7 Click 'confirm’ button Save project appeared on design
project main page
8 Click 'export' button The file should start download
9 Click saved design to modify Previous version of design restored

72

1.4 TC004: Test <Student> Subsystem: <Project Solution Submission (UC004)>

This test contains the following test cases:

(b) TC004_01: Test <Scenario of sequence diagram1 (SD004)>

1.4.1 TCO004_01: Test < Submit Project Solution (SD001)>

This test contains the following scenarios:

(d) TC004_01_01: Test <normal scenario of sequence diagram1 (SD004)>

Table 7.5: TC004_01_01 - <Normal Scenario of sequence diagram1 (SD004)>

Test Case ID

[Tc_ooa

|Test Case Description

|Suhmitring a project solution successfully

Created By

|Kami|ah

|Reviewed By

|Farah, Puteri, Malley

|Version

QA Tester's Log

|Review comment from Farah, Malley, Puteri incorprate in version 1.0

Tester's Name |Farah, Puteri, Malley Date Tested 25-Jun-23 Test Case (Fail/Pass/Not) |
S# Prerequisites: S# Test Data
1 Login into the GradX system 1 Project Solution Title = Focus on Analytics With Stack Overflow Data|
2 2 Project Solution Document = Focus_on_Analytics.pdf
3 3
4 4

Test Scenario

Submitting a Project Solution with Valid Data

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the "Project Solution" Site should open
section of the GradX system.
2 Click submit project solution button User is directed to project solution form
3 Key in project solution title Title can be entered
4 Leave Project details column blank Move to upload section
5 Upload document in pdf format The document name and file appear
6 Click submit button A successful message displayed

73

1.5 TC005: Test <Assessment and Progress Tracking> Subsystem: <Checking
Project Progress (UC005)>

This test contains the following test cases:

(c) TCO05_01: Test <Scenario of sequence diagram9 (SD009)>

1.5.1 TCO001_01: Test <state scenario of sequence diagram9 (SD009)>

This test contains the following scenarios:

(e) TCO05_01_01: Test <normal scenario of sequence diagram9 (SD009)>

Table 7.6: TC005_01_01 - <Normal Scenario of sequence diagram9 (SD009)>

Test Case ID TC-005 Test Case Description Checking the student project progress
Created By Puteri Reviewed By Farah, Kamilah, Malley |Version 1
QA Tester's Log |Review comment from Farah, Kamilah, Malley incorprate in version 1.0
Tester's Name |Farah. Kamilah, Malley Date Tested 30-lun-23 |Test Case (Fail/Pass/Not) |
S# Prerequisites: S# Test Data
1 UC, IC and coordinator login into the GradX system 1 progressComment
2 2 marksID
3 3
4 4

Test Scenario

Succesfully checking the student project progress

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed,/suspended
1 UC, IC and coordinator login into the system Site should open
2 ListProject page appear Page of ListProject should be display
3 ListStudentProject page appear User is directed to list of student's task
4 Select the task of project User is choosing the student's task
5 Review the students's task The student's task appear
6 Give a comments based on the review The comment succesfully saved

74

1.6 TC006: Test <Assessment and Progress Tracking> Subsystem:
Student Work (UC006)>

This test contains the following test cases:

(d) TC006_01: Test <Scenario of sequence diagram10 (SD010)>

<Evaluate

1.6.1 TCO006_01: Test <state scenario of sequence diagram1 (SD001)>

This test contains the following scenarios:

(f) TCO06_01_01: Test <normal scenario of sequence diagram10 (SD010)>

Table 7.7: TC006_01_01 - <Normal Scenario of sequence diagram10 (SD010)>

Test Case ID

TC-006

Test Case Description

Evualating the student's works

Created By

Puteri

Reviewed By

Farah, Kamilah, Malley |Version

QA Tester's Log

|Rev'|ew comment from Farah, Kamilah, Malley incorprate in version 1

Tester's Name |Farah. Kamilah, Malley Date Tested 30-lun-23 Test Case (Fail/Pass/Not) |
SH# Prerequisites: S# Test Data
1 UC, IC and coordinator login into the GradX system 1 marks
2 2 comments
3 3 evaluator
4 4

Test Scenario

Submitting evaluation with Valid Data

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the "Form Page" Site should open
2 Browse the evaluation form List of form appear
3 Download the choosen form Downloaded is succesful
4 Key in the evaluation in the form Evaluation succesful key in
5 Upload the evaluation The evaluation succesfully uploaded
6 Click submit button A successful message displayed
7 Motify the student The student receive the notification

75

1.7 TCO007: Test <Assessment and Progress Tracking> Subsystem: <Provide

Feedback (UC007)>

This test contains the following test cases:

(e) TCO07_01: Test <Scenario of sequence diagram11 (SD011)>

1.7.1 TCO007_01: Test <state scenario of sequence diagram1 (SD011)>

This test contains the following scenarios:

(g) TCO07_01_01: Test <normal scenario of sequence diagram11 (SD011)>

Table 7.8: TC007_01_01 - <Normal Scenario of sequence diagram11 (SD011)>

Test Case ID

TC-007

Test Case Description

Provide feedback for the students

Created By

Puteri

Reviewed By

Farah, Kamilah, Mal Ievl‘u‘ers'lon

OA Tester's Log

o

|Rev'|ew comment from Farah, Kamilah, Malley incorprate in version 1

[Farah, kamilah, Maliey

Tester's Name Date Tested 30-Jun-23 Test Casze [Fail/Pass/Not) |
= Prerequisites: i Test Data
1 UC, IC and examiner login into the GradX system 1 FeedbackID
2 2 FeedbackName
3 3 FeedbackStatus
4 4

Test Scenario

Succesfully adding evaluation based on the student's work into the system

Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 MNavigate to to browse form Site should open
2 Choose the feedback form List of feedback form appear
3 Download the feedback form Download is succesful
4 Keyin feedback based on students's work Feedback succesful key in
5 Upload the feedback form The feedback succesfully uploaded
5] Click submit button A successful message displayed
7 MNotify the student The student receive the notofication

76

1.8 TC009: Test <Coordinator> Subsystem: <Provide Rubrics (UC009)>

This test contains the following test cases:

(f) TCO09_01: Test <Scenario of sequence diagram9 (SD013)>

1.8.1 TCO009_01: Test <state scenario of sequence diagram9 (SD013)>

This test contains the following scenarios:

(h) TCO09 _01_01: Test <normal scenario of sequence diagram9 (SD013)>

Table 7.9: TC009_01_01 - <Normal Scenario of sequence diagram9 (SD013)>

Test Case 1D TC_009 Test Case Description Provide rubrics into GradX system
Created By Malleylene Reviewed By Kamilah, Puteri, Farah |Ver5ion 1
0A Tester's Log |Review comment from Kamilah, Puteri, Farah incorprate in version 1
Tester's Name |Kami|ah, Puteri, Farah Date Tested 30-Jun-23 Test Case (Fail/Pass/Not) |

58 Prerequisites: 5# TestData

1 Coordinator successfully logged on 1o the system. 1 rubriclD

2 2 rubricFile

3 3

4 4

5
Test Scenario |Providing rubrics successfully into system
Step # Step Details Expected Results Actual Results Pass/Fail /Not executed/suspended

1 Coordinator uploads the rubricinto the system rubrics are uploaded into system

2 Coordinator select to share with students and examiner rubrics are shared to students and exam)

3 Studentand examiner will get notified of the shared rubrignotification sent

77

1.9 TC010: Test <Coordinator> Subsystem: <Assign UC Examiner (UC010)>

This test contains the following test cases:

(g) TCO010_01: Test <Scenario of sequence diagram14 (SD014)>

1.9.1 TCO010_01: Test <state scenario of sequence diagram14 (SD014)>

This test contains the following scenarios:

(i) TCO0010_01_01: Test <normal scenario of sequence diagram14 (SD014)>

Table 7.10: TC010_01_01 - <Normal Scenario of sequence diagram14 (SD014)>

Test Case ID TC_010 Test Case Description Assign UC and examiners for the students
Created By Malleylene Reviewed By Kamilah, Puteri, Farah |Vers'|0n | 1
0A Tester's Log |Rev'|ew comment from Kamilah, Puteri, Farah incorparate in version 1 |
Tester's Name |Kan'|'||ah, Puteri, Farah Date Tested 30-Jun-23 |Test Case (Fail/Pass/Not) |
Prerequisites: # Test Data
1 Coordinator successfully logged on to the system 1 UCExaminerAssign
2 2 updateUCExaminerAssign
3 3
4 4
Test Scenario Coordinator assigned UC and examiners for students
Step # Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the Assignation UC Examiner page Site open
2 Display the list of available UCs and examiners List of available UC and Examiner appear
3 Select a UC and an examiner for the student's project |UC and examiner selected saved
4 Update project with assigned UC and examiner Updated project records saved
5 Click the "Save' button for updated project details Updated project details saved in the system
& Notify the assigned UC and examiner Motifications sent
7 Click 'Submit' button Cenfirmation message shown

78

1.10 TCO011: Test <Coordinator> Subsystem: <Calculate Student Marks (UC011)>

This test contains the following test cases:

(h) TCO011_01: Test <Scenario of sequence diagram15 (SD015)>

1.10.1 TC011_01: Test <state scenario of sequence diagram15 (SD015)>

This test contains the following scenarios:

(j) TCO011_01_01: Test <normal scenario of sequence diagram15 (SD015)>

Table 7.11: TC011_01_01 - <Normal Scenario of sequence diagram15 (SD015)>

Test Case ID TC 011 Test Case Description (alculate student marks into GradX system
(reated By Malleylene Reviewed By Kamilah, Puteri, Farah |Vers'\on 1
QA Tester's Log ‘Rev'\ew comment from Kamilah, Puteri, Farah incorporate in version 1 |
Tester's Name ‘Kam'llah, Puteri, Farah Date Tested 30-Jun-23 |Test (ase [Fail/Pass/Not) |
@ Prerequisites: & Test Data
1 The assigned examiner has completed the evaluation of the student's project. 1 marksiD
2 The project marks calculation process is initiated.] evaluationID
3 3
4 4
Test Scenario [Student's marks calculated into system
Step# Step Details Expected Results Actual Results Pass/Fail/Not executed/suspended
1 Navigate to the mark calculation page Site open
2 Obtain in the student's project evaluation results based on the Student ID Results obtained
3 Calculate the total marks based on the assigned scores for each criterion Total marks calculated
4 Store the calculated marks in the system's database Marks stored into system's database
5 Click the 'Save' button for updated student's marks Updated marks saved in the system
] Notify the student about their final marks for the project Student's been naotified
i Prompt a confirmation message to the coordinator Sent successful message to coordinator

79

