
SECJ2203: Software Engineering

System Documentation (SD)

(STD)

Final Year Project (FYPi) Management System

<GradX>

Version 3.0

July 2023

Faculty of Computing

Prepared by: Assassins



Revision Page

a. Overview

The "GradX" software system is designed to serve as an online platform for managing
and recording student Final Year Project (FYPi) projects in the Data Engineering program
at the Faculty of Computing, Universiti Teknologi Malaysia. The purpose of this system
is to streamline the workflow of FYPi projects, simplify the documentation process, and
establish a standardized evaluation system using rubric formats. This system aims to
provide students with the ability to track their progress, submit project proposals, design
documentation, and final reports. It also enables industry and university coaches to assess
and provide valuable feedback on students' work. The external interfaces, including user
interfaces, hardware interfaces, software interfaces, and communication interfaces, will
be detailed in the system documentation's particular needs section. It will also explain
system characteristics using use case diagrams, domain models, and state machine
diagrams. This part will also include project group members' discussions about
performance needs, design constraints, software system properties, and other project
requirements.

b. Target Audience

Target audience for this system are final year Data Engineering students, University Coaches,
Industry Coaches and Coordinator.



c. Project Team Members

List the team members in a table by stating their roles and the status for each assigned task e.g. by
sections for this SD version (complete, partially complete, incomplete). If the assigned tasks are
not done and have been assigned to other team members, state accordingly.

Member Name Role Task Status

Malleylene Peneh
(A21EC0052)

Team Member revision page, references,
use case: design project
proposal, assign UC and
examiner, calculate
student mark, software
system attributes

complete

Farah Nabilah Binti
Najmudin
(A21EC0023)

Team Member introduction, user
characteristic,domain
model,use case: login,
checking project progress,
provide feedback

complete

Puteri Nur Eleeya
Syafika Binti Mohd
Zabidi
(A21EC0124)

Team Member system features, use case
diagram, use case:
evaluate student
work,prepare necessary
form

complete

Siti Nurkamilah
Binti Saiful Bahari
(A21EC0131)

Leader system features, use case
diagram, use case: submit
project proposal, submit
project solution, provide
rubrics, design
constraints, references

complete

d. Version Control History

Version Primary Author(s) Description of Version Date
Completed

1.0 Malleylene Peneh Section 1 - 2 of SRS 22/5/2023

2.0 Puteri Nur Eleeya Syafika Binti
Mohd Zabidi

Section 3 - 5 of SDD 16/6/2023

3.0 Siti Nurkamilah Binti Saiful
Bahari

Section 6 -7 of STD 2/7/2023

2



Table of Contents

1.1 Purpose 1

1.2 Scope 1

1.3 Definitions, Acronyms and Abbreviation 2

1.4 References 2

1.5 Overview 2

2.1 User characteristics 3
2.1.1 Final Year Student 3
2.1.2 University Coach 3
2.1.3 Industry Coach 3
2.1.4 Examiner 3
2.1.5 Coordinator 3

2.2 System Features 4
2.2.1 UC001: Use Case <Login> 7
2.2.2 UC002: Use Case <Project Proposal Submission> 9
2.2.3 UC003: Use Case <Design Project Solution> 11
2.2.4 UC004: Use Case <Submit Project Solution> 13
2.2.5 UC005: Use Case <Checking Project Progress> 15
2.2.6 UC006: Use Case <Evaluate Student Work> 17
2.2.7 UC007: Use Case <Provide Feedback> 19
2.2.8 UC008: Use Case <Provide Necessary Form> 21
2.2.9 UC009: Use Case <Provide Rubrics> 23
2.2.10 UC010: Use Case <Assign UC and Examiner> 25
2.2.11 UC011: Use Case <Calculate Student Mark> 29

2.3 Software System Attributes, Performance and Other Requirements 30

2.4 Design Constraints 31

3.0 System Architectural Design 32

3.1 Architecture Pattern and Rationale 32

3.2 Component Model 32

3



4.0 Detailed Description of the Component 34

4.1 Complete Package Diagram 35

4.2 Detailed Description 36

4.2.1. P001: <User> Subsystem 38

4.2.2. P002: <Student> Subsystem 40

4.2.3. P003: <Assessment and Progress Tracking> Subsystem 46

4.2.4. P004: <Coordinator> Subsystem> Subsystem 53

5.0 Data Design 61

6.0 Requirements Traceability Matrix 65

7.0 Test Cases

4



1. Introduction

1.1 Purpose

The purpose of this System Documentation (SD) is to offer a detailed overview of the system

development process. It encompasses the System Requirements Specification (SRS), System

Design Document (SDD), and System Testing Document (STD). The SD acts as a reference

document for individuals involved in the system development process, such as coordinators,

students, university coaches, and industry coaches. It aims to provide a clear understanding of

the system requirements and design processes, ensuring all users are aligned and working

towards the same objectives. Through structured and comprehensive documentation, the SD

facilitates the success of the system development process by minimizing errors, enhancing

efficiency, and improving overall outcomes for the 4th year final project.

1.2 Scope

One software that can assist in a fourth-year final project is "GradX." GradX is a

comprehensive project management software that provides tools and features to help you

plan, organize, and execute your final project effectively. It allows you to create project

timelines, set milestones, assign tasks to team members, track progress, and manage

resources. Additionally, it offers collaboration features to facilitate communication and

coordination among project team members. With GradX, you can streamline your project

management processes and enhance the overall efficiency of your final year project.

The scope of the software product includes the following:

● Create submission for project proposal and design solution.

● To track the student progress and feedback from the university coach and industry

coach

● To organize the milestones and student progress breakdown into tasks and subtasks.

● Allow the coordinator to release the official form for marking and feedback.

● Allow to monitor the progress of students and the status of each task and ensure that

everything is on track.

1



1.3 Definitions, Acronyms and Abbreviation
Definitions of all terms, acronyms and abbreviations used are to be defined here.

Term Definition

GradX The software product being developed to manage the student’s 4th year
final project and determining the great flow of project progress during
internship.

SRS System Requirements Specification - a document that outlines the
requirements and objectives of the software product being developed.

SDD System Design Document - a document that describes the system
architecture, components, and interfaces in detail.

UC University Coach - a faculty member who will ensure that the student is
meeting the necessary academic requirements and will also oversee the
student’s progress in completing the project proposal.

IC Industrial Coach - a professional from the relevant field of study in their
organization and will guide the student through the project.

1.4 References

1. Bowers, M. (2020). Design Constraints Are Not Restraints – They Stoke Creativity.

Toptal Design Blog. https://www.toptal.com/designers/ui/design-constraints

2. Editor. (2019, December 9). Technical Documentation in Software Development:

Types, Best Practices, and Tools. AltexSoft.

https://www.altexsoft.com/blog/business/technical-documentation-in-software-develo

pment-types-best-practices-and-tools/

3. Lutkevich, B. (2022). software documentation. Software Quality.

https://www.techtarget.com/searchsoftwarequality/definition/documentation

4. Admin. (2023, February 22). The Basics of Software Quality Attributes. Codoid.

https://codoid.com/software-testing/the-basics-of-software-quality-attributes/

1.5 Overview

The System Documentation (SD) provides a comprehensive description of the GradX
software product being developed. This comprises three main sections: System Requirements
Specification (SRS) and System Design Document (SDD)

2

https://www.toptal.com/designers/ui/design-constraints
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://www.techtarget.com/searchsoftwarequality/definition/documentation
https://codoid.com/software-testing/the-basics-of-software-quality-attributes/


2. Specific Requirements

2.1 User characteristics

In this section, we will provide a brief introduction to the different user characteristics
mentioned in the requirements. Each user plays a specific role within the GradX system
and has distinct needs and responsibilities. These user characteristics illustrate the GradX
system's many roles and responsibilities. Each user interacts with the system in a unique
way, with varied levels of technical competence and various work needs.

2.1.1 Final Year Student

● The Final Year student will use the system to submit their project proposals online.

● They should have basic computer skills and familiarity with web-based applications

● They may have varying levels of technical expertise.

● They will require a medium to submit their projects online.

2.1.2 University Coach

● The University Coach will use the system to check the progress of students.

● They will use the system to evaluate students.

● They will generate reports based on student progress.

● They may require technical training on how to use the system.

2.1.3 Industry Coach

● The Industry Coach will use the system to check the progress of students.

● They will use the system to evaluate students.

● They will generate reports based on student progress.

● They may require technical training on how to use the system.

2.1.4 Examiner

● The examiner will use the system to evaluate final year projects.

● They will provide feedback

2.1.5 Coordinator

● The coordinator will prepare rubrics for evaluation.

● They will prepare evaluation forms for coaches and examiners to use.

3



2.2 System Features

The GradX is a software system that operates on desktop computers including windows and

iOS operating systems. The system provides a means for UTM students in their 4th year to

manage their Final Project. The system also implemented a real-time cloud-database for

better user experiences.

The system features are illustrated in Figure 2.2.1 below. The detailed description of each

module and functions is tabulated in Table 2.2.

Figure 2.2.1 Use case diagram for <GradX>

4



Table 2.2: Description of Module and Functions for <GradX>

Module Function Description

User Module UC001 - Login This use case allows students to login as a user for the
system

Student Module UC0002 - Project
Proposal Submission

This use case allows student to submit project
proposal through the system

UC0003 -Design
Project Solution

This use case includes the students designing the
project solution.

UC004 - Project
Solution Submission

This use case allows student to submit project solution
through the system

Assessment and
Progress Tracking
Module

UC005 - Checking
Project Progress

This use case allows UC, IC and Coordinator to track
the progress of students’ work progress.

UC006 - Evaluate
Student Work

This use case allows UC, IC and examiners to
evaluate the students' work.

UC007 - Provide
Feedback

This use case is to allow the examiners to review and
give feedback to student work

Coordinator Module UC008 - Prepare
Necessary Form

This use case for coordinator to provide the necessary
form for the UC, IC and examiners.

UC009 - Provide
Rubrics

This use case describes the activity of providing
project rubrics to students and examiners involved.

UC010 - Assign UC
and Examiner

This use case allows the coordinator to assign UC and
examiners for the students.

UC0011 - Calculate
Student Mark

This use case involves the calculation of student
marks by the coordinator.

5



Figure 2.2.2: Domain Model for <GradX>

6



2.2.1 UC001: Use Case <Login>

Table 2.2.1: Use Case Description for <Login>

Use case: <Login>
ID: UC001
Actors: Student, UC,IC, Examiner,Coordinator
Preconditions:

1. Has an internet connection to access the login page.
2. Got their own login name with their password.

Flow of events:
1. Users will enter their login name and password.
2. The system will check and validate the user entered name and

password.
3. System will direct the user to the homepage.
4. Login use case ends.

Postconditions:
1. Users can proceed to do their tasks in the system once

directed to the homepage.

Exception flow (if any):
1. Invalid name or password.

1.1. System will display an error message.

7



Figure 2.2.1.1 Sequence Diagram for <Login>

Figure 2.2.1.2: Activity Diagram for <Login>

8



2.2.2 UC002: Use Case <Project Proposal Submission>

Table 2.2.2: Use Case Description for <Project Proposal Submission>

Use case: <Project Proposal Submission>
ID: UC002
Actors: Student
Preconditions: A valid student is logged on to the system.

Flow of events:
1. Students click on the project submission menu.
2. Students upload the project proposal.
3. Students click “Submit Button”.
4. Message “Successfully submitted” will appear along with the

Student details, supervisor name, submission date and time.

Postconditions:
1. Project proposal successfully submitted.
2. Students continue with design solutions.
3. The UC and IC has received and acknowledged the submitted

project solutions. Evaluation and feedback on the project
solutions will be provided, allowing for further actions or
decisions in the project.

Alternative flow n:
1. Resubmission: Students are allowed to resubmit their project

solution based on the feedback received, they follow the same
submission.

9



Figure 2.2.2.1: Sequence Diagram for <Submit Project Proposal>

Figure 2.2.2.2: Activity Diagram for <Submit Project Proposal>

10



2.2.3 UC003: Use Case <Design Project Solution>

Table 2.2.3: Use Case Description for <Design Project Solution>

Use case: <Design Project Solution>
ID: UC003
Actors: Student, UC
Preconditions:

1. Student has logged into the system.
2. The project proposal has been approved.

Flow of events:
1. Students select the "Design Project Solution" option from the

system menu.
2. Students fill in the details and specifications about their

project solution design.
3. Students save the project solution form using the “Save”

button.
4. Students can continue working on the saved project solution

form.
5. Once the project solution is finalized the student can proceed

to the "Submit Project Solution" use case to formally submit
the solution.

Postconditions:
1. The project solution is designed and approved.
2. The student has the choice to go on working on the project

solution form that has been saved.
3. The completed project solution may be formally submitted

and evaluated using the "Submit Project Solution" use case.

Alternative flow n:
1. If the UC or IC finds problems or concerns with the suggested

project solution, they provide the student comments for
changes.

Exception flow (if any):
1. Reports: If there are technical problems or system faults when

storing or viewing the project solution form, the student can
contact the system administrator for help.

11



Figure 2.2.3.1: Sequence Diagram for <Design Project Solution>

Figure 2.2.3.2: Activity Diagram for <Design Project Solution>

12



2.2.4 UC004: Use Case <Project Solution Submission>

Table 2.2.4: Use Case Description for <Submit Project Solution>

Use case: <Project Solution Submission>
ID: UC004
Actors: Student
Preconditions:

1. A valid student is logged on to the system.
2. Students have submitted project proposals.

Flow of events:
1. Students click on the project submission menu.
2. Student upload project solution.
3. Students click on the “Submit” button.
4. Message “Successfully Submitted” will appear along with the

Student details, supervisor name, submission date and time.

Postconditions:
1. Project solution successfully submitted.
2. The UC and IC has received and acknowledged the submitted

project solutions. Evaluation and feedback on the project
solutions will be provided, allowing for further actions or
decisions in the project.

13



Figure 2.2.4.1: Sequence Diagram for <Submit Project Solution>

Figure 2.2.4.2: Activity Diagram for <Submit Project Solution>

14



2.2.5 UC005: Use Case <Checking Project Progress>

Table 2.2.5: Use Case Description for <Checking Project Progress>

Use case: <Checking Project Progress>
ID: UC005
Actors: UC, IC
Preconditions:

1. Student must have submitted their progress in the system to
do checking

Flow of events:
1. UC and IC selected and clicked the submitted subtask of the

project
2. The system will display the task chosen.
3. UC and IC do the checking progress.

Postconditions:
1. UC and IC had done checking the progress of project from

student

15



Figure 2.2.5.1 Sequence Diagram for <Checking Project Progress>

Figure 2.2.5.2: Activity Diagram for <Checking Project Progress>

16



2.2.6 UC006: Use Case <Evaluate Student Work>

Table 2.2.6: Use Case Description for <Evaluate Student Work>

Use case: <Evaluate Student Work>
ID: UC0006
Actors: UC, IC, Examiners
Preconditions:

1. Students have submitted their work through the system.
2. Students submitted their work using the right type of file.
3. Users can access and download the rubric and evaluation form

that has been provided by the coordinator.

Flow of events:
1. The user receives the student's work that has been submitted

through the system.
2. The user needs to download the student submission.
3. The user downloads all the rubrics and evaluation forms.
4. Key in the marks in the evaluation forms based on the rubrics.
5. The user uploads the evaluation forms.
6. Message “Successfully Uploaded” will appear.
7. The system will notify the student.

Postconditions:
1. Evaluation successfully uploaded.
2. Students can access the evaluation that has been uploaded.

Alternative flow n:
1. Reuploaded: The user can reupload their evaluation form if

any error occurs.

17



Figure 2.2.6.1: Sequence Diagram for <Evaluate Student Work>

Figure 2.2.6.2: Activity Diagram for <Evaluate Student Work>

18



2.2.7 UC007: Use Case <Provide Feedback>

Table 2.2.7: Use Case Description for <Provide Feedback>

Use case: <Provide Feedback>
Description: This use case is for
ID: UC007
Actors: UC,IC
Preconditions:

1. User must download the feedback form provided by
coordinator

Flow of events:
1. Fill in the feedback form that has been downloaded
2. User must upload the feedback form in the system after

complete it

Postconditions:
1. User has provided feedback or guidance in form.
2. Students will be notified and view the feedback given.

19



Figure 2.2.7.1 Sequence Diagram for <Provide Feedback>

Figure 2.2.7.2: Activity Diagram for <Provide feedback>

2.2.8 UC008: Use Case <Provide Necessary Form>

20



Table 2.2.8: Use Case Description for <Provide Necessary Form>

Use case: <Provide Necessary Form>
ID: UC008
Actors: Coordinator
Preconditions:

1. Coordinator successfully logged on to the systems
Flow of events:

1. Coordinator uploads all the necessary form into the system
2. Coordinator select to share with UC, IC and examiners.
3. UC, IC and examiners will get notified of the shared rubrics.

Postconditions:
1. UC, IC and examiners can see all the necessary forms through

the system.
2. UC, IC and examiners are able to download all the necessary

forms.
Alternative flow n:

1. Forms modification: If any form is updated and uploaded,
UC, IC and the examiner will receive an alert notification.

21



Figure 2.2.8.1: Sequence Diagram for <Provide Necessary Form>

Figure 2.2.8.2: Activity Diagram for <Provide Necessary Form>

22



2.2.9 UC009: Use Case <Provide Rubrics>

Table 2.2.9: Use Case Description for <Provide Rubrics>

Use case: <Provide Rubrics>
ID: UC009
Actors: Coordinator, Students, Examiner
Preconditions: Coordinator successfully logged on to the systems

Flow of events:
1. Coordinator uploads the rubric into the system
2. Coordinator select to share with students and examiner
3. Student and examiner will get notified of the shared rubrics

Alternative flow n:
1. Rubrics modification: If the rubrics are updated and uploaded,

both the student and the examiner will receive an alert
notification.

Postconditions:
1. Evaluation can be done based on the rubrics
2. Student and Examiner can see the rubrics through the system

23



Figure 2.2.9.1: Sequence Diagram for <Provide Rubrics>

Figure 2.2.9.2: Activity Diagram for <Provide Rubrics>

24



2.2.10 UC010: Use Case <Assign UC and Examiner>

Table 2.2.10: Use Case Description for <Assign UC and Examiner>

Use case: <Assign UC and Examiner>
ID: UC010
Actors: Coordinator
Preconditions:

1. Coordinator has logged into the system.
2. Students have submitted their project proposal.
3. The project proposal has been reviewed and approved.

Flow of events:
1. Coordinator selects the "Assign University Coach and

Examiner" option from the system menu.
2. The system displays a list of available UC and examiners.
3. Coordinator selects a university coach from the list.
4. Coordinator selects an examiner from the list.
5. The system assigns the selected UC and examiner to the

respective student's project.

Postconditions:
1. UC and examiner are assigned to the student's project.
2. Assigned UC and examiners receive notifications and access

to the project details.
3. Evaluation and assessment of the project can proceed under

the assigned UC and examiner.

Alternative flow n:
1. If the originally assigned UC or examiner becomes

unavailable or unable to fulfill their responsibilities, the
coordinator can reassign a new UC or examiner to the
student's project.

Exception flow (if any):
1. Report: If there are any technical difficulties or system errors

while assigning the UCand examiner, the coordinator can
report the issue to the system administrator for resolution.

2. Consultation: If there are disagreements or conflicts regarding
the assignment of the UC or examiner, the coordinator can
initiate discussions and consultations with relevant
stakeholders to resolve the issue.

25



Figure 2.2.10.1: Sequence Diagram for <Assign UC and Examiner>

Figure 2.2.10.2: Activity Diagram for <Assign UC and Examiner>

26



2.2.11 UC011: Use Case <Calculate Student Marks>

Table 2.2.11: Use Case Description for <Calculate Student Marks>

Use case: <Calculate Student Marks>
ID: UC011
Actors: Examiner, Coordinator
Preconditions:

1. The assigned examiner has completed the evaluation of the
student's project.

2. The project marks calculation process is initiated.

Flow of events:
1. Examiner selects the "Calculate Student Mark" option from the

system menu.
2. The system displays a list of students who have submitted their

project solutions.
3. Examiner selects the student for whom the mark needs to be

calculated.
4. The system retrieves the evaluation results and relevant assessment

criteria for the selected student's project.
5. Examiner reviews the evaluation results, assesses each criterion,

and assigns marks accordingly.
6. Examiner enters the calculated marks for each criterion into the

system.
7. The system calculates the total mark based on the allocated marks

for each criterion.
8. Examiner reviews and verifies the calculated total mark.
9. Examiner submits the calculated marks for the selected student.
10. The system updates the student's record with the calculated marks.

Postconditions:
1. The student's project marks are calculated and recorded in the

system.
2. The student can view their final marks for the project.
3. The recorded marks are used for final grading and assessment

purposes.

Alternative flow n:
1. Revision: If there are any errors or inconsistencies in the submitted

marks, the system prompts the examiner to review and correct the
marks before resubmitting.

2. Re-evaluate: If the coordinator notices any problems or
inconsistencies in the computed marks, they can ask the examiner to
re-evaluate or alter the marks.

27



Figure 2.2.11.1: Sequence Diagram for <Calculate Student Marks>

28



Figure 2.2.11.2: Activity Diagram for <Calculate Student Mark>

29



2.3 Software System Attributes, Performance and Other Requirements

Software System Attributes:

Usability: The system should be user-friendly and intuitive, with a clear and easy-to-navigate
interface.

Maintainability: The system should be designed with modular and easily maintainable code,
with clear documentation to aid in future maintenance and updates.

Compatibility: The system should be compatible with various web browsers and operating
systems commonly used by students and faculty.

Performance:

Response Time: The system should be able to respond to user requests within a reasonable
time frame, ideally less than 3 seconds.

Throughput: The system should be able to handle a large number of concurrent users and
requests during peak usage times, without compromising performance.

Capacity: The system should be able to handle large amounts of data and user activity,
without experiencing slow-downs or crashes.

Other Requirements:

Security: The system should incorporate appropriate security measures to protect user data
and prevent unauthorized access, such as encryption, secure authentication, and regular
backups.

Legal and Regulatory: The system should comply with relevant laws, regulations, and
standards, such as data privacy laws and accessibility guidelines.

Environmental: The system should be designed with energy efficiency in mind, with
features such as automatic power-saving modes and optimized server configurations to
reduce energy consumption.

30



2.4 Design Constraints

Usability constraints: In order for the system to be easily accessible and understood by
users, it needs to follow a basic knowledge of other websites.

System constraints: Additions to the system must require minimal or no modifications to the
existing system.

Security constraints: An integrated secure authentication system shall be provided to
prevent unauthorized access. Access to the system is restricted to coordinators, university
coaches, industry coaches, examiners, and fourth-year Data Engineering students.

Compatibility constraints: The system should be designed so that it can be accessed both
via desktop and mobile devices.

Performance constraints: With a response time of less than 3 seconds, the system must be
able to handle 500 simultaneous users.

31



3. System Architectural Design

3.1 Architecture Pattern and Rationale

For this project, we have decided to use the Model View Controller (MVC) architectural

pattern. MVC Distinguishes presentation and interaction from system data. The system is divided into

three logical components that communicate with one another.The Model component maintains the

system data and the actions that are performed on that data. The View component specifies and

maintains how data is displayed to the user. The Controller component organizes user interaction (key

presses, mouse clicks, and so forth) and delivers it to the View and the Model.

MVC is normally used when there are multiple ways to view and interact with data. Also used when

the future requirements for interaction and presentation of data are unknown.

MVC encourages a modular, structured approach to programme development, which improves

maintainability. If updates or new features are to be added to the programme, they can be done

without affecting the others. This decreases the possibility of unwanted side effects and makes the

codebase easier to understand and alter.

32



Figure 3.1: Architecture Diagram for <GradX>

33



3.2 Component Model

Figure 3.2: Component Diagram of <GradX>

34



4. Detailed Description of Components

4.1. Complete Package Diagram

Figure 4.1: Package Diagram for <GradX System>

The complete package diagram comprises four distinct modules: the User module, the Student

module, the Assessment and Progress Tracking module, and the Coordinator module. The User

module facilitates the login process for all users. The Student module oversees all activities pertaining

to students within the system. The Coordinator module is responsible for managing system activities

specifically associated with the coordinator role. Lastly, the Assessment and Progress Tracking

modules handle the activities of other system users. Before performing their respective functions, the

Student module, Coordinator module, and Assessment and Progress Tracking module import data

from the User module.

The Coordinator module relies on data from both the Student module and the Assessment and

Progress Tracking modules to ensure seamless functionality. Similarly, the Assessment and Progress

Tracking modules access data from the Student module to effectively carry out their designated tasks.

35



4.2. Detailed Description

4.2.1. P001: <User> Subsystem

Figure 4.2: Package Diagram for <User> Subsystem

36



4.2.1.1. Class Diagram

Figure 4.3: Class Diagram for <Login> Subsystem

37



Entity Name User
Method Name Login()
Input 1. username (string)

2. Password (string)
Output 1. Success message (string)

2. Error message (string)
Algorithm 1. Start

2. Receive the username and password from the user
3. Verify the username and password are correct and not empty
4. Retrieve and store within the database.
5. If the password matches, a success message will be generated otherwise

the incorrect message will be generated.
6. If no matching username is found, an error message is generated to

indicate invalid username.
7. Return the success or error message based on the login result.
8. End

4.2.1.2. Sequence Diagram

a) SD001: Sequence diagram for Student Login

38



b) SD002: Sequence diagram for University Coach Login

c) SD003: Sequence diagram for Industry Coach Login

39



d) SD004: Sequence diagram for Examiner Login

e) SD005: Sequence diagram for Coordinator Login

40



4.2.2. P002: <Student> Subsystem

Figure 4.3: Package Diagram for <Student> Subsystem

41



4.2.2.1. Class Diagram

Entity Name SubmitProjectProposal
Method Name addSubmission()
Input ● Project proposal title

● Project proposal file
Output ● Project proposal ID

● Successful message
● Project proposal status

Algorithm 1. Start
2. Navigate to the submit project proposal window
3. Key in project proposal title and details (optional)
4. Upload proposal file
5. Select proposal file from local or cloud storage
6. Submit the proposal by clicking on the “submit” button

42



7. Prompt “Successful Submission” message, proposal id and proposal
status upon successful file submission.

8. Stop

Entity Name ProjectSolutionForm
Method Name designProjSol()
Input ● Design project information
Output ● User interface of the system for accessing the design software.

● Design solution ID
● Exported or downloaded design files in the desired format.
● Confirmation messages to save design

Algorithm 1. Start
2. Navigate to the submit design project solution window
3. Create new design project
4. Key in design project information
5. Choose and use the design tools to complete the design
6. Save design the progress and confirm the action by clicking the

confirm button
7. Export and download the file in desired format
8. If want to modify existing design, click on the saved designs
9. Stop

Entity Name SubmitProjectSolution
Method Name addSubmission()
Input ● Project solution title

● Project solution file
Output ● Project solution ID

● Successful message
● Project solution status

Algorithm 1. Start
2. Navigate to the submit project solution window
3. Key in project solution title and details (optional)
4. Upload project solution file
5. Select project solution file from local or cloud storage
6. Submit the proposal by clicking on the “submit” button
7. Prompt “Successful Submission” message, solution id and project

solution status upon successful file submission.
8. Stop

43



4.2.2.2. Sequence Diagram

a) SD006: Sequence diagram for Submit Project Proposal

b) SD007: Sequence Diagram for Design project solution

44



c) SD008: Sequence diagram for Submit Project Solution

45



4.3. P003: <Assessment and Progress Tracking> Subsystem

Figure : Package Diagram for <Assessment and Progress Tracking> Subsystem

46



4.2.3.1. Class Diagram

Entity Name EvaluateStudentWork

47



Method Name addEvaluation()

Input ● Marks
● Evaluator

Output ● Marks
● EvaluationID
● EvaluationName
● EvaluationStatus

Algorithm 1. Start
2. Navigate to browse form page
3. Choose evaluate form
4. Key in evaluation based on student project and rubric
5. Submit the evaluation by clicking on the “submit” button
6. Prompt “Successful Submit” message, evaluation id and evaluation

status upon successful file submission.
7. The system will notify the student once evaluation successfully

uploads
8. Stop

Entity Name ProvideFeedback

Method Name addFeedback()

Input ● Comments

Output ● Comments
● FeedbackID
● FeedbackName
● FeedbackStatus

Algorithm 1. Start
2. Navigate to browse form page
3. Choose feedback form
4. Key in feedback based on student project
5. Submit the feedback by clicking on the “submit” button
6. Prompt “Successful Submit” message, feedback id and feedback

status upon successful file submission.
7. The system will notify the student once feedback successfully

uploads.
8. Stop

Entity Name CheckingProjectProgress

48



Method Name addProgressComment()

Input ● progressComment
● Evaluator

Output ● Comments
● Marks
● Evaluation
● Feedback

Algorithm 1. Start
2. Navigate to list project page
3. Choose the project form the list of student project
4. The system will display the project
5. The user can start checking the progress of the project
6. Stop

49



4.2.3.2. Sequence Diagram

SD009: Sequence diagram for Evaluate Student Work

50



SD010: Sequence diagram for Provide Feedback

51



SD011: Sequence diagram for Checking Project Progress

52



4.4. P004: <Coordinator> Subsystem

Figure 4.4: Package Diagram for <Coordinator> Subsystem

53



4.2.4.1. Class Diagram

Entity Name ProvideNecessaryForm

Method Name addNecessaryForm()

Input ● Form title
● Form file

Output ● Form ID
● Form status

Algorithm 1. Start
2. Navigate to the browse Necessary Form page.
3. Choose the necessary form to be provided.
4. Collect the form title and form file from the coordinator.
5. Store the form file in the system's database.
6. Associate the form title and file with a unique form identifier.
7. Save the form details in the system.

54



8. Notify UC, IC, examiners about the availability of the new
form.

9. Prompt a "Successful Submit" message, form ID, and form
status upon successful file submission.

10. The system will notify the students and examiners once the
form has been successfully uploaded.

11. Stop

Entity Name ProvideRubrics

Method Name addRubrics()

Input ● Rubric title
● Rubric file

Output ● Rubric ID

Algorithm 1. Start
2. Navigate to the browse rubrics page.
3. Choose the rubric to be provided.
4. Submit the rubric by clicking on the "Submit" button.
5. Prompt a "Successful Submit" message, rubric ID, and rubric

status upon successful submission.
6. Save the rubric details in the system.
7. Notify students, examiners about the new rubric availability.
8. The system will notify the students and examiners once the

rubric has been successfully uploaded.
9. Stop

Entity Name AssignUCExaminer

Method Name assignUCExaminer()

Input ● ProjectID
● List of available UCs and examiners
● Selected UC
● Selected examiner

Output ● Updated project record
● Notification to the assigned UC and examiner

55



Algorithm 1. Start
2. Navigate to the Assignation UC Examiner page.
3. Display the student's project details and the list of available

UCs and examiners.
4. Coordinator select a UC and an examiner for the student's

project.
5. Update the project record with the assigned UC and examiner.
6. Save the updated project details in the system.
7. Notify the assigned UC and examiner about the project

assignment.
8. Prompt a confirmation message to the coordinator upon

successful assignation.
9. Stop

Entity Name CalculateStudentMarks

Method Name calculateMarks()

Input ● Student ID
● Project evaluation results

Output ● Calculated total marks
● Updated marks for the student's project
● Notification to the student regarding final marks
● Confirmation message to the coordinator

Algorithm 1. Start
2. Navigate to the mark calculation page.
3. Obtain the student's project evaluation results based on the

Student ID.
4. Calculate the total marks based on the assigned scores for each

criterion.
5. Store the calculated marks in the system's database.
6. Save the updated marks for the student's project.
7. Notify the student about their final marks for the project.
8. Prompt a confirmation message to the coordinator upon

successful mark calculation.
9. Stop

56



4.2.4.2. Sequence Diagram

SD012: Sequence diagram for Provide Necessary Form

57



SD013: Sequence diagram for Provide Rubrics

58



SD014: Sequence diagram for Assign UC Examiner

59



SD015: Sequence diagram for Calculate Student Marks

60



5. Data Design

5.1. Data Description

The major data or systems entities are stored into a relational database named as…, processed and

organized into n entities as listed in Table 5.1.

Table 5.1: Description of Entities in the Database

No. Entity Name Description
1 Student Represents the final year students who will be using the system to

submit their project proposals online.
2 University Coach Represents the university coaches who will use the system to check

the progress of students, evaluate them, and generate reports based
on student progress.

3 Industry Coach Represents the industry coaches who will use the system to check the
progress of students, evaluate them, and generate reports based on
student progress.

4 Examiner Represents the examiners who will use the system to evaluate the
final year projects and provide feedback.

5 Coordinator Represents the coordinator who will prepare rubrics for evaluation
and evaluation forms for coaches and examiners to use.

61



5.2. Data Dictionary

5.2.1. Entity: <User>

Attribute Name Type Description

StudID VARCHAR2 This attribute serves as a unique identifier for the
Final Year Student entity. It is used to uniquely
identify each student in the database. A primary
key for students.

UCoachID VARCHAR2 This attribute serves as a unique identifier for the
University Coach entity. It is used to uniquely
identify each university coach in the database.

ICoachID VARCHAR2 This attribute serves as a unique identifier for the
Industry Coach entity. It is used to uniquely
identify each industry coach in the database.

ExaminerID VARCHAR2 This attribute serves as a unique identifier for the
Examiner entity. It is used to uniquely identify
each examiner in the database.

CoordinatorID VARCHAR2 This attribute serves as a unique identifier for the
Coordinator entity. It is used to uniquely identify
the coordinator in the database.

StudName VARCHAR2 This attribute stores the name of the Final Year
Student.

UCoachName VARCHAR2 This attribute stores the name of the University
Coach.

ICoachName VARCHAR2 This attribute stores the name of the Industry
Coach.

ExaminerName VARCHAR2 This attribute stores the name of the Examiner.
CoordinatorName VARCHAR2 This attribute stores the name of the Coordinator.
StudEmail VARCHAR2 This attribute stores the email address of the Final

Year Student.
UCoachEmail VARCHAR2 This attribute stores the email address of the

University Coach.
ICoachEmail VARCHAR2 This attribute stores the email address of the

Industry Coach.
ExaminerEmail VARCHAR2 This attribute stores the email address of the

Examiner.
CoordinatorEmail VARCHAR2 This attribute stores the email address of the

Coordinator.

62



5.2.2. Entity: <SubmitProjectProposal>

Attribute Name Type Description
proposalID int Uniquely identifies a member of Submit

Project Proposal
proposalTitle string Title of the member of submit project

proposal
proposalStatus string Status of the submitted project proposal

5.2.3. Entity: <DesignProjectSolution>

Attribute Name Type Description
designSolID int Uniquely identifies a member of Design

Project Solution
designInfo string Information related to design solution

5.2.4. Entity: <SubmitDesignSolution>

Attribute Name Type Description
solutionID int Uniquely identifies a member of Submit

Project Proposal
solutionTitle string Title of the member of submit project

solution
solutionStatus string Status of the submitted project solution

5.2.5. Entity: <EvaluateStudentWork>

Attribute Name Type Description
evaluationID int Uniquely identifies a member of Submit

Evaluation
evaluationName string Name of the member of evaluation
evaluationStatus string Status of the submitted evaluation

5.2.6. Entity: <ProvideFeedback>

Attribute Name Type Description
feedbackID int Uniquely identifies a member of Submit

Feedback
feedbackName string Name of the member of feedback
feedbackStatus string Status of the submitted

63



5.2.7. Entity: <CheckingProjectProgress>

Attribute Name Type Description
progressComment String Update of the project progress
marksID float Uniquely identifies a member of Student

Marks

5.2.8. Entity: <ProvideNecessaryForm>

Attribute Name Type Description
formID int Uniquely identifies a member of

Necessary Form
formTitle String Title of the member of necessary form
formStatus String Status of the submitted necessary form

5.2.9. Entity: <ProvideRubrics>

Attribute Name Type Description
rubricID int Uniquely identifies a member of Rubrics
rubricFile String Status of the submitted rubric form

5.2.10. Entity: <AssignUCExaminer>

Attribute Name Type Description
UCExaminerAssign String Assignation of the member of UC and

Examiner Assignation
updateUCExaminerAssign String Update of the assignation of the member

of UC and Examiner Assignation

5.2.11. Entity: <CalculateStudentMarks>

Attribute Name Type Description
marksID int Uniquely identifies a member of Student

Marks
evaluationID int Uniquely identifies a member of Student

Evaluation

64



6. Requirements Traceability Matrix

In software development, a requirement traceability matrix is for the stakeholders to easily trace
and track the progress of requirements through the identification of associated use cases,
sequence diagrams, and test cases, ensuring that all requirements are properly implemented and
tested in the software development process.

The table below shows how each package item (subsystem) relates to the use cases within that
package. The use cases are further connected to their corresponding sequence diagrams, which
depict the interaction between system components. Additionally, the test case IDs are provided,
indicating which test cases are associated with each use case.

Table 6.1: Example of RTM for <GradX>

Package
Item

Use
Case
ID

Use Case
Description

Sequence
Diagram ID

Sequence
Diagram

Description

Test Case
ID

Package 1:
User

Subsystem

UC001 Login SD-001 until
SD-005

Login TC-001

Package 2:
Student

Subsystem

UC0002 Project Proposal
Submission

SD-006 Submit
proposal

TC-002

UC0003 Design Project
Solution

SD-007 Design a
project solution

TC-003

UC004 Project Solution
Submission

SD-008 Submit project
solution

TC-004

Package 3:
Assessment
and Progress
Tracking
Subsystem

UC005 Checking
Project Progress

SD-009 Checking
project
progress

TC-005

UC006 Evaluate Student
Work

SD-010 Evaluate
student work

TC-006

UC007 Provide
Feedback

SD-011 Provide
feedback

TC-007

UC008 Prepare
Necessary Form

SD-012 Provide
necessary form

TC-008

65



Package 4:
Coordinator
Subsystem

UC009 Provide Rubrics SD-013 Provide rubrics TC-009

UC010 Assign UC and
Examiner

SD-014 Assign UC and
Examiner

TC-010

UC0011 Calculate
Student Mark

SD-015 Calculate
student marks

TC-011

66



7. Test Cases

Based on this section, it appears to be a test execution report for testing the login functionality of
the GradX site. Here's an explanation of the different sections in the report:

Tester's Name: Specifies the names of the testers involved in executing the test cases. In this
case, the testers are Kamilah, Puteri, and Malley.

Date Tested: Indicates the date when the testing was performed. In this case, it is mentioned as
28-June-23 and forwarding date.

Test Case (Fail/Pass/Not): This column indicates the outcome of each test case execution. The
possible values are "Fail" if the test case fails, "Pass" if it passes, "Not executed" if the test case
was not executed, and "Suspended" if the test case execution was halted or suspended.

S#: This column represents the serial number or index of the test scenario or test case.

Prerequisites: This column lists the prerequisites or conditions that need to be fulfilled before
executing the corresponding test case. In this case, it mentions prerequisites related to the
availability of an internet connection and having valid login credentials for different roles (User,
UCoach, ICoach, Examiner, and Coordinator).

Test Data: This column provides the test data or inputs used for the corresponding test case
execution. It includes sample data such as StudID, stud2001 for test case #1, UCoachID,
unicoach_31 for test case #2, ICoachID, comcoach_7 for test case #3, ExaminerID, exm99 for
test case #4, and CoordinatorID, coord23 for test case #5.

Test Scenario: This section describes the specific test scenario being executed. In this case, the
scenario is to verify whether a user can successfully log in by entering a valid username and
password.

Step #: This column denotes the step number of the test case execution.

Step Details: This column provides the details of each step to be performed during the test case
execution. It includes actions such as navigating to the GradX site, entering the username and
password, and clicking the submit button.

Expected Results: This column describes the expected results or outcomes of each step. For
example, the expected result of step #3 is that the user should be successfully logged in.

Actual Results: This column captures the actual results observed during the test case execution.

67



Pass/Fail/Not executed/Suspended: This column indicates the final outcome of each test step. It
mentions whether the step passed, failed, was not executed, or was suspended.

The report provides an overview of the test execution progress and outcomes for the specified
test cases. It helps track the success or failure of each test step and allows stakeholders to assess
the quality and stability of the login functionality in the GradX site.

68



69



1.1 TC001: Test <User> Subsystem: <Login (UC001)>
This test contains the following test cases:

(a) TC001_01: Test <Scenario of sequence diagram1 until diagram 5 (SD001 -SD005)>

1.1.1 TC001_01: Test <state scenario of sequence diagram1 (SD001)>
This test contains the following scenarios:

(a) TC001_01: Test <normal scenario of sequence diagram1 until diagram5
(SD001-SD005)>

(b) TC001_02: Test <alternate scenario of sequence diagram1 until diagram5
(SD001-SD005)>

Table 7.1: TC001_01_01 - <Normal Scenario of sequence diagram1 (SD001 until diagram5 (SD005))>

Table 7.2: TC001_01_02 - <Alternate Scenario of sequence diagram1 (SD001 until diagram5 (SD005))>

70



1.2 TC002: Test <Student> Subsystem: <Project Proposal Submission (UC002)>
This test contains the following test cases:

(a) TC002_01: Test <Scenario of sequence diagram1 (SD002)>

1.2.1 TC002_01: Test <Submit Project Proposal (SD002)>
This test contains the following scenarios:

(a) TC002_01_01: Test <normal scenario of sequence diagram1 (SD002)>

Table 7.3: TC002_01_01 - <Normal Scenario of sequence diagram1 (SD002)>

71



1.3 TC003: Test <Student> Subsystem: <Design Project Solution (UC003)>
This test contains the following test cases:

(a) TC003_01: Test <Scenario of sequence diagram1 (SD003)>

1.3.1 TC003_01: Test <Design a Project Solution (SD003)>
This test contains the following scenarios:

(c) TC003_01_01: Test <normal scenario of sequence diagram1 (SD003)>

Table 7.4: TC003_01_01 - <Normal Scenario of sequence diagram3 (SD003)>

72



1.4 TC004: Test <Student> Subsystem: <Project Solution Submission (UC004)>
This test contains the following test cases:

(b) TC004_01: Test <Scenario of sequence diagram1 (SD004)>

1.4.1 TC004_01: Test < Submit Project Solution (SD001)>
This test contains the following scenarios:

(d) TC004_01_01: Test <normal scenario of sequence diagram1 (SD004)>

Table 7.5: TC004_01_01 - <Normal Scenario of sequence diagram1 (SD004)>

73



1.5 TC005: Test <Assessment and Progress Tracking> Subsystem: <Checking
Project Progress (UC005)>

This test contains the following test cases:

(c) TC005_01: Test <Scenario of sequence diagram9 (SD009)>

1.5.1 TC001_01: Test <state scenario of sequence diagram9 (SD009)>
This test contains the following scenarios:

(e) TC005_01_01: Test <normal scenario of sequence diagram9 (SD009)>

Table 7.6: TC005_01_01 - <Normal Scenario of sequence diagram9 (SD009)>

74



1.6 TC006: Test <Assessment and Progress Tracking> Subsystem: <Evaluate
Student Work (UC006)>

This test contains the following test cases:

(d) TC006_01: Test <Scenario of sequence diagram10 (SD010)>

1.6.1 TC006_01: Test <state scenario of sequence diagram1 (SD001)>
This test contains the following scenarios:

(f) TC006_01_01: Test <normal scenario of sequence diagram10 (SD010)>

Table 7.7: TC006_01_01 - <Normal Scenario of sequence diagram10 (SD010)>

75



1.7 TC007: Test <Assessment and Progress Tracking> Subsystem: <Provide
Feedback (UC007)>

This test contains the following test cases:

(e) TC007_01: Test <Scenario of sequence diagram11 (SD011)>

1.7.1 TC007_01: Test <state scenario of sequence diagram1 (SD011)>
This test contains the following scenarios:

(g) TC007_01_01: Test <normal scenario of sequence diagram11 (SD011)>

Table 7.8: TC007_01_01 - <Normal Scenario of sequence diagram11 (SD011)>

76



1.8 TC009: Test <Coordinator> Subsystem: <Provide Rubrics (UC009)>
This test contains the following test cases:

(f) TC009_01: Test <Scenario of sequence diagram9 (SD013)>

1.8.1 TC009_01: Test <state scenario of sequence diagram9 (SD013)>
This test contains the following scenarios:

(h) TC009_01_01: Test <normal scenario of sequence diagram9 (SD013)>

Table 7.9: TC009_01_01 - <Normal Scenario of sequence diagram9 (SD013)>

77



1.9 TC010: Test <Coordinator> Subsystem: <Assign UC Examiner (UC010)>
This test contains the following test cases:

(g) TC010_01: Test <Scenario of sequence diagram14 (SD014)>

1.9.1 TC010_01: Test <state scenario of sequence diagram14 (SD014)>
This test contains the following scenarios:

(i) TC0010_01_01: Test <normal scenario of sequence diagram14 (SD014)>

Table 7.10: TC010_01_01 - <Normal Scenario of sequence diagram14 (SD014)>

78



1.10 TC011: Test <Coordinator> Subsystem: <Calculate Student Marks (UC011)>
This test contains the following test cases:

(h) TC011_01: Test <Scenario of sequence diagram15 (SD015)>

1.10.1 TC011_01: Test <state scenario of sequence diagram15 (SD015)>
This test contains the following scenarios:

(j) TC011_01_01: Test <normal scenario of sequence diagram15 (SD015)>

Table 7.11: TC011_01_01 - <Normal Scenario of sequence diagram15 (SD015)>

79


