Q1. What is the event for each ti for 2 concurrent processes wishing to enter their Critical Sections (CSi) using Paterson's algorithm? [10 marks]

	Time
	flag[0]
	flag[1]
	turn
	Events

	t0
	FALSE
	FALSE
	1
	-

	t1
	FALSE
	TRUE
	0
	P1 request to enter CS1

	t2
	TRUE
	TRUE
	1
	P0 request to enter CSO

	t3
	TRUE
	TRUE
	1
	P1 enter CS1

	t4
	TRUE
	TRUE
	1
	P0 busy waiting in loop

	t5
	TRUE
	FALSE
	1
	P1 execute RS1

	t6
	TRUE
	FALSE
	1
	P0 enter CS0

	t7
	TRUE
	FALSE
	1
	P1 execute RS1

	t8
	FALSE
	FALSE
	1
	P0 execute RS0

	t9
	FALSE
	TRUE
	0
	P1 request to enter CS1

	t10
	FALSE
	TRUE
	0
	P1 enter CS1

Q2. The following codes in Figure 1 consists of THREE semaphores being used by THREE concurrent processes. Assume that these processes run for a sufficiently long time under a preemptive scheduler with the following conditions:
· always select the process with smallest value of semaphore
· If two processes have equal value of semaphore, then select the other one left.
	Struct semaphore empty, full, mutex;
empty = 0;
full = 0;
mutex = 2;

	// Process P1

while(true){
 wait(empty);
 printf(“One \n”);
 signal(mutex);
 signal(full);
}
	// Process P2

while(true){
 wait(mutex);
 printf(“Two ”);
 signal(empty);
 signal(mutex);
}
	// Process P3

while(true){
 wait(full);
 //wait(empty);
 printf(“Three ”);
 signal(empty);
}

Figure 1

(i) Fill the Table 1, and determine a possible output from the printf statement. [4 marks]
Table 1
	Process
	empty
	full
	mutex
	Output

	
	0
	0
	2
	-

	P2
	1
	0
	2
	Two

	P1
	0
	1
	3
	Two One

	P3
	1
	0
	3
	Two One Three

	P1
	0
	1
	4
	Two One Three One

	P3
	1
	0
	4
	Two One Three One Three

	P1
	0
	1
	5
	Two One Three One Three One

	P3
	1
	0
	5
	Two One Three One Three One Three

	P1
	0
	1
	6
	Two One Three One Three One Three One

Q3. Table 1 below shows the implementation of Producer-Consumer using Semaphores. Supposed the initial values of the buffer size, N=9, mutex=2, empty=7 and full=2.
Table 1
	Producer
	Consumer

	do {
 produce an item
 …
 wait(empty);
 wait(mutex);
 …
 add item to buffer
 …
 signal(mutex);
 signal(full);

} while (TRUE);
	do {
 …
 wait(full); 	
 wait(mutex);
 …
 remove an item from buffer
 …
 signal(mutex);
 signal(empty);

} while (TRUE);

Complete the value of the appropriate mutex variables in Table 2 if the following sequence of order is executed: consumer, producer, consumer.
Wait(full=2)
	Full = 0
Wait(mutex=2)
	Mutex = 1
Wait(empty=8)
	Empty=7
Wait(mutex=2)
	Mutex = 1

Wait(full=2)
	Full = 1
Wait(mutex=2)
	Mutex = 1

signal(mutex=1)
	mutex = 2
signal(empty=7)
	empty=8
signal(mutex=1)
	mutex=2
signal(full=1)
	full =2
signal(mutex=1)
	mutex = 2
signal(empty=7)
	empty=8

Table 2
	Process
	Wait(full)
	Wait(mutex)
	Signal (mutex)
	Signal (empty)

	Initially
	2
	2
	
	7

	consumer
	1
	1
	2
	8

	Process
	Wait(empty)
	Wait(mutex)
	Signal (mutex)
	Signal (full)

	producer
	7
	1
	2
	2

	Process
	Wait(full)
	Wait(mutex)
	Signal (mutex)
	Signal (empty)

	consumer
	0
	1
	2
	8

Q4. Table 6 below shows the implementation of Producer-Consumer using Semaphores. Supposed the initial values of the buffer size, N=10, mutex=1, empty=8 and full=2.
Table 6
	Producer
	Consumer

	do {
 produce an item
 …
 wait(empty);
 wait(mutex);
 …
 add item to buffer
 …
 signal(mutex);
 signal(full);

} while (TRUE);
	do {
 …
 wait(full); 	
 wait(mutex);
 …
 remove an item from buffer
 …
 signal(mutex);
 signal(empty);

} while (TRUE);

Fill in or complete the value of the appropriate mutex variables in Table 7 if the following sequence of order is executed: producer, producer, consumer. [2 Marks]
Table 6
	Process
	Wait(empty)
	Wait(mutex)
	Signal (mutex)
	Signal (full)

	Initial
	8
	1
	
	2

	Producer
	7
	0
	1
	3

	Producer
	6
	0
	2
	4

	Process
	Wait(full)
	Wait(mutex)
	Signal (mutex)
	Signal (empty)

	Consumer
	3
	1
	2
	7

Q5. Three processes run concurrently in a Unix system. Based on the following statements of process execution, write out the possible output and the process sequence for Table 8 and 9. Assume that all the flags, A, B, and C are initially initialized to 0. [5 marks]

Table 8

	P0
	P1
	P2

	wait(C)
	wait(A)
	signal(C)

	wait(B)
	print(“C “)
	print(“A “)

	print(B)
	signal(B)
	signal(B)

	Process Sequence
	A
	B
	C
	Output

	Initial
	0
	0
	0
	-

	P2
	0
	1
	1
	A

	P0
	0
	0
	0
	A B

		Process Sequence: P2 → P0
		Output: A B
Table 9

	P0
	P1
	P2

	wait(B)
print(“B “);
signal(C)
	signal(C)
print(“A “)
signal(B)
	wait(C)
print(“C “)

	Process Sequence
	A
	B
	C
	Output

	Initial
	0
	0
	0
	-

	P1
	0
	1
	1
	A

	P0
	0
	0
	2
	A B

	P2
	0
	0
	2
	A B C

		Process Sequence: P1 → P0 → P2
		Output: A B C

