Example: An execution of program 1 produces a process tree, an output, and process identifier
assignment as shown in Figure 1. The parent process identifier is assumed to have been assigned
with an integer 21, while the child is assigned with the next available identifier i.e 22.

$# include <stdio.h> id=21
include <unistd.h>

main () padl = 22
int pidil:
printf (™ ‘n Hello World\n®}; Hello World
pidl=fork();: Please Come in

if (pidl < 0)
printf(™\n Error in forking \n%)
else if (pidl == 0}

printf ("\n Knock! Knock! Knock!'\n*):

gelse (pidl > O)printf(“\n Please coms in ‘\n");

pidl = 0

Knock! Knock! Kaaock!

Program 1 Figure 1: Process tree of program 1

Q1 : Firstly, understand the coding and rewrite back using UNIX program. Then, draw a process tree
(as in Figure 1) to illustrate the parent-child relationship for the C code given in program 2. For each
node on the tree, write the following information:

i. The process identifier (assumed that the parent process identifier is assigned, id=21).
ii. The return value of the fork() statement

iii. Generated output

l‘E[I‘L'_TrtITl j_’ { ;L']“]L‘Efl[‘ll}n 1}[- C]]Ild]']'HH:L‘FH

Question 1 and 2

YL‘\M n
value 3

Pyl =23
Oforw{inj S‘J-“\Uﬂ

e
g den hhier

Pld 3:25%

bui in fmrf\'zS

Pidizo |
bui iﬁhﬁs}{ny

Question 3

fedora@fedora:~/class/fork

[fedor
[fedorag

Hello World
PID=15654

Operating

difficult

ss,
but interesting!!

but inte g
[fedorag@ ora fork]s
[fedora@fedora fork]s
[fedor edora fork]$ I

