

PROBABILITY & STATISTICAL DATA ANALYSIS SECI2143

Project 2

Lecturer:

Rozilawati Dollah @ Md Zain

Group Members:

No	Name	Matric No
1	AIMAN HAIKAL BIN ZAINUDDIN	A21EC0154
2	ARSYAD WIRATAMA	A20EC0290
3	MUHAMAD AMSYAR BIN IBRAHIM	A21EC0058
4	MUHAMMAD DANIAL WAJDI BIN SAFIAY	A21EC0071

Table of Contents:

1.0	INTRODUC	CTION
2.0	DATASET.	
3.0	ANALYSIS	AND RESULT
	3.1	HYPOTHESIS TESTING 1 SAMPLE
	3.2	CORRELATION
	3.3	LINEAR REGRESSION
	3.4	CHI SQUARE TEST OF INDEPENDENCE
4.0	DISCUSSIO	ON AND CONCLUSION
5.0	APPENDIX	\mathbf{A}

INTRODUCTION

Education is very important in our life. Children have to come to school to learn many types of subjects such as Science, Mathematics, Physics, Biology, Chemistry and many more in order to build a country with civilized and educated citizens. To scale their understanding about the subjects, they have to undergo a test where they try to answer the question about the topics learned in the subjects and the results will give them a chance to enroll themselves into universities with more advanced education systems based on their desired course.

This report is to understand the influence of the parent's background of education and other factors on a student's performance. The reason why we choose this topic is because education is very important in our life. As a student, we want to know the reason whether parents' background in educational level and other factors will influence their child's performance in exams. We are hoping that with this data, we are able to identify the factors that affect students' performance in exams and also solve the significant factors on students' performance.

DATASET

This report uses the secondary data retrieved from a website Kaggle about Students Performance in Exams. This data was collected by Jakki Seshapanpu who is the owner of this data set. This data has many different types of variables such as Gender, students performance in exams such as Math score, Reading score and Writing score, Parental level of education, Test preparation course and many more.

At first, for the variable 'Parental level of education', there are a lot of parental levels of education, ranging from Masters' Degree, Bachelor's Degree, Associate's Degree, College, Some College, High School and Some High School. But in data pre-processing, we decided to combine the data that is similar such as combining College with Some College and High School with Some High School into one variable respectively which is College and High School. Therefore, there are only 5 levels of Parental level of education which are Masters' Degree, Bachelor's Degree, Associate's Degree, College and High School. The reason why we chose these variables is so that we can identify whether it is an independent variable or not with other variables such as Gender using the Chi Square Test of Independence.

ANALYSIS AND RESULT

2.1 HYPOTHESIS TESTING 1 SAMPLE

Test Hypothesis:

To test whether the hypothesis is true that the average score of students in math subjects is above 65.

- Null Hypothesis(H_0): $\mu_0 = 65$

- Alternative hypothesis(H_1): $\mu_1 > 65$

Test statistic:

α	0.05
Sample size, n	400
Sample mean, $\frac{-}{x}$	65.278
Sample standard deviation,σ	15.408

By using this formula:

$$z = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}}$$

Test statistic, z	0.361
Critical value, $z_{0.05}$	1.645

Since the test statistic value is less than the critical value (0.361 < 1.645), it falls outside the rejection region. Therefore, we fail to reject the null hypothesis. There is sufficient evidence that the average score of math subject is 65,

3

2.2 CORRELATION

Test Hypothesis:

-
$$(H_0)$$
: $p_1 = 0$ (no linear relationship)
 (H_1) : $p_1 \neq 0$ (linear relationship does exist)

Test Statistics:

Total score (y)	Hours of studying (x)	XY	y^2	x^2
218	10.9	2376.2	47524	118.81
247	12.35	3050.45	61009	152.52
278	13.9	3864.2	77284	193.21
148	7.4	1095.2	21904	54.76
229	11.45	2622.05	52441	131.10
232	11.6	2691.2	53824	134.56
275	13.75	3781.25	75625	189.06
122	6.1	744.2	14884	37.21
195	9.75	1901.25	38025	95.06
164	8.2	1344.8	26896	67,.24
= 2018	=105.4	=23470.8	=469416	= 1173.53

$$r = \frac{\sum xy - (\sum x \sum y)/n}{\sqrt{[(\sum x^2) - (\sum x)^2/n][(\sum y^2) - (\sum y)^2/n]}}$$

r = 1.115 -> relatively strong positive linear association between x and y

2.3 REGRESSION

Test Hypothesis:

- (H_0) : $\beta_1 = 0$ (no linear relationship)
- (H_1) : $\beta_1 \neq 0$ (linear relationship does exist)

Test Statistic:

Total score (y)	Hours of studying (x)
218	10.9
247	12.35
278	13.9
148	7.4
229	11.45
232	11.6
275	13.75
122	6.1
195	9.75
164	8.2

y	X	xy	x^2
218	10.9	2376.2	118.81
247	12.35	3050.45	152.52
278	13.9	3864.2	193.21
148	7.4	1095.2	54.76
229	11.45	2622.05	131.10
232	11.6	2691.2	134.56

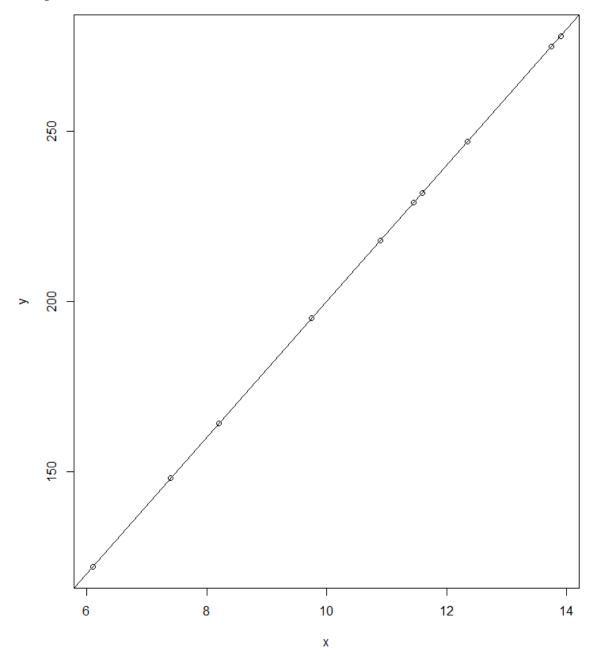
275	13.75	3781.25	189.06
122	6.1	744.2	37.21
195	9.75	1901.25	95.06
164	8.2	1344.8	67.24
$\Sigma y = 2108$	$\Sigma x = 105.4$	$\Sigma xy = 23470.8$	$\Sigma x^2 = 1173.53$

$$b_{1} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^{2}}$$

$$= \frac{\sum xy - \frac{\sum x\Sigma y}{n}}{\sum x^{2} - \frac{(\Sigma x)^{2}}{n}}$$

$$= \frac{23470.8 - \frac{(105.4)(2108)}{10}}{1173.53 - \frac{(105.4)^{2}}{10}}$$

$$= \frac{1252.48}{62.61}$$


$$= 20.00$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

$$= 210.8 - 20.00(10.54)$$

$$= 0$$

Graphical Presentation

Regression equation : $\hat{y} = 20.00x$

$$R^2 = + 1$$

 \therefore perfect linear relationship between x and y means 100% of the variation in y is explained by variation in x. Hence, reject H_0 as there is sufficient evidence that hours of study affects total marks

2.4 CHI SQUARE TEST OF INDEPENDENCE

Test Hypothesis:

Null Hypothesis(H_0) = The variables are independent

Alternate Hypothesis(H_1) = Variables are related (Dependent)

Test Statistic:

Gender		Total				
	Associate's Degree					
Female	42	26	50	63	15	196
Male	52	21	43	79	9	204
Total	94	47	93	142	24	400

Gender	Parental Level of Education								Total				
	Associate's Degree		Associa		Bac	helor's Degree		College	Н	igh School	Mas	ter's Degree	
	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.			
Female	42	$= \frac{(196 \times 94)^2}{400}$ $= 46.06$	26	$=\frac{(196 \times 47)^2}{400}$ $=23.03$	50	$= \frac{(196 \times 93)^2}{400}$ $= 45.57$	63	$=\frac{(196 \times 142)^2}{400}$ $=69.58$	15	$=\frac{(196 \times 24)^2}{400}$ $=11.76$	196		
Male	52	$= \frac{(204 \times 94)^2}{400}$ $= 47.94$	21	$= \frac{(204 \times 47)^2}{400}$ $= 23.97$	43	$= \frac{(204 \times 93)^2}{400}$ $= 47.43$	79	$= \frac{(204 \times 142)^2}{400}$ $= 72.42$	9	$= \frac{(204 \times 24)^2}{400}$ $= 12.24$	204		
Total	94	94	47	47	93	93	142	142	24	24	400		

Obs. = Observed Frequency

Exp. = Expected Frequency

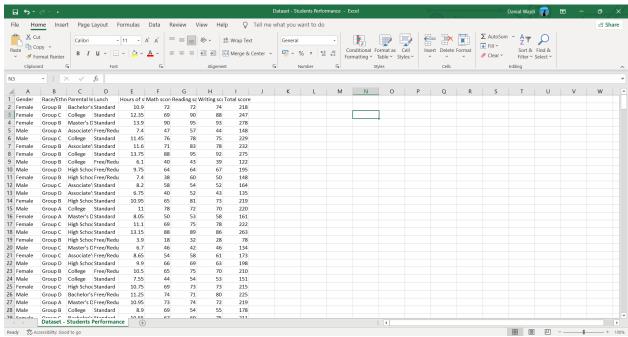
Cell (i,j)	Observed Count, o _{ij}	Expected Count, e	$\frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$
1,1	42	$= \frac{196 \times 94}{400}$ $= 46.06$	0.36
1,2	26	$= \frac{196 \times 47}{400}$ $= 23.03$	0.38
1,3	50	$= \frac{196 \times 142}{400}$ $= 45.57$	0.43
1,4	63	$= \frac{196 \times 24}{400}$ $= 69.58$	0.62
1,5	15	$= \frac{196 \times 24}{400}$ $= 11.76$	0.89
2,1	52	$= \frac{204 \times 94}{400}$ $= 47.94$	0.34
2,2	21	$= \frac{204 \times 47}{400}$ $= 23.97$	0.37
2,3	43	$= \frac{204 \times 93}{400}$ $= 47.93$	0.41
2,4	79	$= \frac{204 \times 142}{400}$ $= 72.42$	0.60
2,5	9	$= \frac{204 \times 24}{400}$ $= 12.24$	0.86
		$\chi^2 =$	5.26

Degree of freedom: (2-1)(4-1) = 4

Confidence interval, $\alpha = 0.05$

From the chi square table: $x_{4,0.05}^2 = 9.488$

Since the statistic value is less than the critical value (5.26 < 9.488), we fail to reject the null hypothesis. Therefore, there is sufficient evidence that the variable is related (dependent)


Discussion and Result

Appendix A

Link to the dataset:

https://www.kaggle.com/datasets/spscientist/students-performance-in-exams/metadata

Data before data cleaning(Raw data)

