UM

UNIVERSITI TEKNOLOGI MALAYSIA

SECJ2203: Software Engineering

System Documentation (SD)

2u2i Final Year Project with Industry (FYP-I)

Management System

Version 2.0

16 June 2022

School of Computing, Faculty of Engineering

Prepared by: Inferno

Name of Members:
Amir Iskandar Bin Norkhairulazaddin
Iman Ehsan Bin Hassan
Muhammad Aiman Bin Abdul Razak
Shahril Bin Saiful Bahri

R

Revision Page

a. Overview

In this system documentation version 1.0, it consists of the documentation components
that are adapted from IEEE Recommended Practice for Software Requirements
Specification, Software Design Description and Software Test Documentation that has
been simplified and customized. In this version, it will cover all of the sections from the
introduction until the specific requirements.

. Target Audience

e Stakeholder
e Development Team
e Users

Project Team Members

List the team members in a table by stating their roles and the status for each assigned
task e.g. by sections for this SD version (complete, partially complete, incomplete). If the
assigned tasks are not done and have been assigned to other team members, state
accordingly.

Member Name Role Task Status
Shahril Bin Saiful | Team Leader 3.2 Component Completed
Bahri (A20EC0144) Model

4.2.3 Detail

Description of

<Notification>

subsystem

6.2 Overall Interface

Design
Amir Iskandar Bin | Team Member 4.1 Complete | Completed
Norkhairulazaddin Package Diagram
(A20EC0011) 424 Detail

Description of

<Assessment>

subsystem

5.1 Data Description
Iman Ehsan Bin | Team Member 3.1 Architectural | Completed
Hassan Style and Rationale
(A20EC0048) 421 Detail

Description of

<Login> subsystem

SD-Template-v3-ForSECJ2203-SE@UTM-15Apr2021

6.1 Overview of

Interface
Muhammad Aiman | Team Member 4.2.2 Detail | Completed
Bin Abdul Razak Description of
(A20EC0082) <Communication>

subsystem

5.2 Data Dictionary

d. Version Control History

Version | Primary Author(s) Description of Version Date
Completed
1.0 Shahril Bin Saiful Bahri Completed Chapter 1 and 2, 05/06/2022
(Team Leader) Section 1.1to 1.5and 2.1 to 2.5
2.0 Amir Iskandar Bin | Completed Chapter 3 until 6, 16/06/2022
Norkhairulazaddin (Team | Section 3.1 to 6.1
Leader)

Note:

This System Documentation (SD) template is adapted from IEEE Recommended Practice for Software Requirements
Specification (SRS) (IEEE Std. 830-1998), Software Design Descriptions (SDD) (IEEE Std. 10161998 1), and Software Test
Documentation (IEEE Std. 829-2008) that are simplified and customized to meet the need of SECJ2203 course at School of
Computing, UTM. Examples of models are from Arlow and Neustadt (2002) and other sources stated accordingly.

SD-Template-v3-ForSECJ2203-SE@UTM-15Apr2021

Table of Contents

1 Introduction 3-5
1.1 Purpose 3
1.2 Scope 3,4
1.3 Definitions, Acronyms and Abbreviations 4
1.4 References 4
1.5 Overview 4,5
2 Specific Requirements 6-32
21 External Interface Requirements 6-8
211 User Interfaces 6,7
2.1.2 | Hardware Interfaces 7
21.3 Software Interfaces 7,8
2.1.4 | Communication Interfaces 8
2.2 System Features 8-31
2.2.1 UCO001: Use Case <Login> 12,13
2.2.2 | UCO002: Use Case <Verification> 14,15
2.2.3 UCO003: Use Case <View Message> 15, 16
2.2.4 | UCO004: Use Case <Add Message> 16, 17
2.2.5 | UCO005: Use Case <Delete Message> 17,18
2.2.6 UCO006: Use Case <Edit Message> 18, 19
2.2.7 | UCO007: Use Case <Notification Data> 19, 20
2.2.8 UCO008: Use Case <View Notification> 20, 21
2.2.9 UCO009: Use Case <Add Notification> 21,22
2.2.10 | UC010: Use Case <Update Notification> 22,23
2.2.11 | UC011: Use Case <Delete Notification> 23, 24
2.2.12 | UC012: Use Case <Return Message> 24, 25

2.2.13 | UC013: Use Case <Upload Question>

25, 26, 27

2.2.14 | UC014: Use Case <Take Exam> 27, 28, 29
2.2.15 | UC015: Use Case <View Grades> 29, 30, 31

2.3 Performance and Other Requirements 31

2.4 Design Constraints 31, 32

2.5 Software System Attributes 32

System Architectural Design 33-34

3.1 Architectural Style and Rationale 33

3.2 Component Model 34

Detailed Description of Components 35-61

4.1 Complete Package Diagram 35

4.2 Detailed Description 35-61
421 P001: <Login> Subsystem 35-40
4.2.2 | P002: <Communication> Subsystem 40-47
4.2.3 | P003: <Notification> Subsystem 47-53
424 | P004: <Assessment> Subsystem 53-61

Data Design 62-66

5.1 Data Description 62-63

5.2 Data Dictionary 63-66

Interface Design 67-78

6.1 Overview of Interface 67-78

1. Introduction

1.1 Purpose

This Software Documentation describes the proposed 2u2i Final Year Project with
Industry (FYP-lI) Management System in which several sections will be clarified. The
sections that will be described for this software documentation are the specific requirements,
detailed description of components and the requirements matrix. This document contains the
system design that explains the architecture of the system. This also includes the complete
description of the components used in the system. The data design is also included in this
documentation that contains the data description and data dictionary. This documentation
was intended for the stakeholder, development team and the system’s user. This is to
provide them with necessary information about the system that will help them to understand
more about the function available in the system. The stakeholder can make a decision,
approval or changes to the system based on the documentation. Other than that, the
development team can use the documentation to show and monitor their progress in the
development process. The audience of the documentation also can provide necessary
feedback during the development based on the documentation.

1.2 Scope

The software product is the internship system which mainly focuses on final year students
that undergo internships. It is a system where all the students will interact to find their right
place in the internship. The system add, delete and edit the messages to ease the process
of the communication .This helps the students to ask their lecturer if they have any inquiries
.Other than that, there are notification systems where the student and lecturer can view
,add,update and delete notifications .This helps students to stay up to date with any new

information that is related to internship news.

The scope of this system includes
- User access by authentication
- View message
- Add message
- Delete message
- Edit message
- View notification
- Delete notification
- Upload questions
- View grades

- Take exam

This internship system is an online application that can be accessed by the website which
provides both lecturer and student access and find the information more easily. The goal of
the system is to create a platform for the student to find their company to do the internships.
Meanwhile, the objective is to make lecturer and supervisor jobs easier and save their time

of helping their students to find the place for an internship.

1.3 Definitions, Acronyms and Abbreviation

Definitions of all terms, acronyms and abbreviation used are to be defined here.

Terms, Meaning
Acronyms/Abbreviation

SD System Documentation

Stakeholder Individual or group that has an interest in any decision or
activity of an organization

Inquiries An act of asking information

Mnemonic A system such as pattern of letters, ideas, or associaciations
which assists in remembering something.

C++ An object-oriented computer language.

IDE Integrated development environment is software for building
applications that combines common developer tools into a
single graphical user interface (GUI).

1.4 References

1. Sommerville, |. 2016. “Software Engineering”, 10th Edition, Pearson.

1.5 Overview .

The 2u2i Final Year Project with Industry (FYP-1) Management System consists of
introduction, specific requirements, system architectural design, detailed description of
components, data design, interface design, requirements matrix, test cases, as well as
appendices. In the introductory phase, we describe the purpose and scope of the project.

We have also provided definitions and abbreviations, as well as some references. In specific

4

requirements, we have covered several external interface requirements which includes user
interfaces, hardware interfaces, software interfaces, and communication interfaces. We also
explained about several system features which include user access, communication,
notification data and assessment. The performance of the project as well as the constraints
were also discussed. Other than that, software system attributes were also discussed. In
system architectural design, we have explained about architectural style and rationale as
well as component model. For detailed description of components, the complete package
diagram as well as detailed description of its subsystems were discussed. Data design
section includes the data description and data dictionary. For interface design, we have
displayed an overview of the interface as a whole. We have also discussed the

requirements matrix. For the last part, we discuss the test cases in the project.

2. Specific Requirements

2.1 External Interface Requirements

2.1.1 User Interfaces

User access

Users are required to enter their username and password.

Student will enter the main page of student's profile while supervisor will enter the
main page of supervisor profile

Access will be given to the right username and password through verification

The username and password will be save for future login

There will be authentication for the user to make sure that the right user enter the

system

Notification

Users can access the notification by going to the interface and choosing notification
Students are only able to view the notifications that are available in the notification
database.

Coordinator able to modify the notifications database by adding more notifications to
the database.

Coordinator able to modify the notifications database by updating the searched
notifications in the database.

Coordinator able to modify the notification database by deleting the searched
notifications in the database.

The system will display “no data found” if there is no data found in the database.

Communication

Students, supervisors, coordinators, coaches, and examiners are able to have full
accessibility to view, add, delete, and edit a message.

Users are able to access messages in the system by going to the interface and
choosing notification

Users are able to view existing messages by them or by other people in the system.
Users are able add a new message in the system.

Users are able to delete an existing message in the system.

Users are able to edit an existing message created by them in the system.
6

e The system will keep an organized list of messages added by users of the system.

Assessment
e Examiners can upload the questions by adding it into the database.
e Students can take the exam online by attempting it on the system.
e Students can view their grade after they have finished their exam.

e Examiners can view their student’s grade after their student;s has finished the exam.

2.1.2 Hardware Interfaces

The 2u2i Final Year Project with Industry (FYP-I) Management System is a web
based system. The system will be connected to the servers provided by Amazon Web
Services and database from MySQL. The web server will have 8 GB of RAM to support the
system load while using it. The database will have 1TB capacity to store all of the data. The
system can be accessed from multiple devices such as smartphone, laptop or desktop. It
also can be accessed by computers that use different operating systems such as Windows,
MacOS or Linux. The clients are required to use modern web browsers such as Google
Chrome, Microsoft Edge or Mozilla Firefox. The clients also need to have an Internet
connection with minimum bandwidth of 10MB/s to access the system. The data from the
server will be transferred and received by the clients using basic networking protocols. They

also need to enable cookies to ensure they get the best experience using the system.

2.1.3 Software Interfaces

1. Google Chrome (Web Browser)
Name: Google Chrome
Mnemonic: Chrome, Google
Specification number: 103.0.000.00
Version number:
103.0.5060.33 (Windows & macOS & Linux)
103.0.5060.33(Android)
103.0.5060.34(i0S)

Sources: www.google.com/chrome/

Discussion: We use this web browser to operate our systems because it's easier and

fast for our users.

http://www.google.com/chrome/

2. MySQL (Database)
Name: MySQL
Mnemonic: CREATETABLE, SELECT, INSERT INTO
Specification number: 8.0.00
Version number: 8.0.28

Sources: https://www.mysqgl.com/

Discussion: The database that we used to create, store, search, and also delete all

the data in the system.

3. VSC (Programming Software)
Name: Visual Studio Code
Mnemonic: C++, Java, Python
Specification number: 1.67.0
Version number: 1.67.2

Sources: https://code.visualstudio.com/

Discussion: The best IDE for us to operate our programming software using many

languages such as MySQL and also C++.

2.1.4 Communication Interfaces

This should list the different communication interfaces, such as local network protocols and
so on. For receiving student and college management information and encrypting all
important information from and into our system for data transfer security, our system will
employ Hypertext Transfer Protocol Secure (https). HTTP is a protocol for sending and

receiving data.

TCP/IP (Transmission Control Protocol/Internet Protocol) is also used by the system to link
network devices via the internet. It may also be used to send data across the Internet. For
data transfer, TCP is used. TCP is compatible with IP and enhances it. It's used to send and
receive data through a network. It breaks down any communication into a sequence of

packets that are transferred from source to destination, where they are reassembled.

2.2 System Features
The system features included in the use case diagram. The use case diagrams will
be used to explain the features in the system. The domain model will be used to represent

the relationship between the classes in the system. There are also use case descriptions
8

https://www.mysql.com/
https://code.visualstudio.com/

and sequence diagrams to explain all of the processes involved in the 2u2i Final Year
Project with Industry (FYP-I) Management System. The use case description will explain all
of the condition and flow of the events of a use case while the sequence diagram will explain

the interaction of the classes while the use case is executed.

message

=<include==
Fupernvisor
Verification
message

. Edit message
(UCB)

View
notification{UC8)

Add

Student
notification(UC9)

=<includes:= =<include==

Coach
Update
ofification(UC10]
Delete
______ notification{11)
==zgxtend== - ()
Examiner

Take Exam

;
==gxtend==

View grades
(UC15)

Figure 2.1: Use Case Diagram for <2u2i Final Year Project with Industry (FYP-l) Management System>

10

Figure 2.2: Activity Diagram for <2u2i Final Year Project with Industry (FYP-l) Management System>

11

Assussmant

id - Slring
quastion: Siring
arswer | Boalkean

Examine

s _edsl | BEookzan

Btdeni

is_null : Boolean
Is_firish | Booksan
aradi . char
ks - int
Shadert] - Shudani

message: Siring
acdMassagel]

nama: String
amail: Siring
passwaord: Shing
id: String

11

‘WVarificabion

Is_Frue : Bookan
s false: Bookan

usernama: String
nassword: String

footer. Shing

I

e ss20e] |
sodaleMessaged]
deletefMessage])

Communicatian

rama: String
aemal: Siring
passwond: E¥ring
id- String

'

|

Malification

neadar: siring
itia: String
content: Siring

Supardsor

marme E¥ing
email: Sring
passwond: Siring

id:- String
1.1 —
-

Coach

e Sring
amail: Siring
passwond: Siring
id: Siring

' |

2

|

1

Coardinalor |

rame: Siring
email: Siring
passwond: Siring
id: Siring

Vigwhatfication |

winmNofilication]|

AddHotificatian

acaotfcation]

UpdalaMotification

updabeioificationd)

Drvaxbehado i cartion

daleizMalificatian]]

K

[a

[4

1"

Figure 2.3: Domain Model for <2u2i Final Year Project with Industry (FYP-) Management System>

2.2.1 UCO001: Use Case <Login>

12

Isers

i
-

Use Cases: Login

ID: UC1

Actors:

Al Student

A2 Supervisor
A3 Coordinator
Ad Coach

A5 Examiner

Includes:

UC2 Verification

Extensions Point:

Preconditions:

Flow of Events:

1. Users enter their username and password to the system.
2. Users click on the login buttaon to proceed accessing the system.

3. Include Verification

Postconditions:

Figure 2.4: Use Case Description for <Login>

<zBoundary==
Interface

==Controller==
LoginCantrol

Logini)

EnterUserMamePassward()

requestLogin()

=

Figure 2.5: Sequence Diagram for <Login>

» reguestVerifications) |"‘|

==Entity==
Student
Supervisor
Coach
Coordinator
Examiner

Verification{)

k™
r

2.2.2 UCO002: Use Case<Verification>

Use Cases: Verification

ID: UC2

Actors:

Includes:

Extensions Point:

Preconditions:
1. The username and password have been entered by the user.

Flow of Events:
1. The username and password will be verified with the data in the
database.
2. Ifthe username and password matched with the database
2.1 The user will be authorized and can access the system.
2.2 The user will be directed to the main menu.

3. Else
3.1 The system will display error message and redirected to login
page.
3.2 The user needs to enter the correct username and password.
Postconditions:

1. Users are sent to the main page and can access the system.

Figure 2.6: Use Case Description for <Verification>

14

==Entity==
Student
Supervisar
Users ==Boundary== ==Controller== Coach
Interface LoginControl Coordinator
1l , Examiner
i i :
requestVerification() M Verification{)
MainhMenu() VerificationSuccess() LserFound()
-« Mmmmmmmmmmmmmmmaan R e
Alt
[data not found)] requestVerification() Verificationd)
DisplayErrarMessagel) VerificationFailed() UserNotFound()
+ i R Haint & R e

Figure 2.7: Sequence Diagram for <Verification>

2.2.3 UC003: Use Case<View Message>

Use Case: View Message

1Dz pes

Actor:

Al Student

A2 Supervisor
A3 Coordinator
Ad Coach

AL Examiner

Includes:

Extension points:

Preconditions:
1. The actor has logged in to the system.
2, The actor has added message.

Flow of Events:

1. The actor logs into the system.

2. The system gives cholces to the actor for
miessaging.-

3. The actor chooses to view 3 massage,

4. The system shows the actor the existing
message.

5. The actor logs out of the system.

Postoonditions:

1, The message has been viewed by the actor.

Figure 2.8: Use Case Description for <View Message>

15

Student

chooselessage()

-~

displayMessage()

==zBoundary== ==Enfiity==
Interface <<Controller-> Message

» ! chooseViewMessage() 5 ;

, accessMessage()

: i gt

! ! ;

: i sendData() :

' MessageDatal) | Mmoo :

T ! i

Figure 2.9: Sequence Diagram for <View Message>

2.2.4 UC004: Use Case<Add Message>

Use Case: Add Message

ID: uca
Actor:
Al Student
A2 Supervisor
A3 Coordinator
Ad Coach

| AS Examiner
Includes:

Extension points:

Preconditions:
1. The actor has logged in to the system.

Flow of Events:

1. The actor logs into the system,

2, The system gives choices to the actor for
messaging.
The actor chooses to add a message.

;e W

The system updates.
7. The actor logs out of the system.

The system displays a text box to add a message,
The actor Rlls in the text bou for the mesdage,

Postconditions:
1. The message has been added by the actor,

Figure 2.10: Use Case Description for <Add

16

Message>

==Boundary== ==Entity==

Student Interface ==Controller== Message
: T | :
chooseMessage()
ik choosetddMessage() Ak
' ; accessMessage()
addMessage()
i | SystemUpdatel)) bbb :
: displayMessage() e L]

Figure 2.11: Sequence Diagram for <Add Message>

2.2.5 UC005: Use Case<Delete Message>

Use Case: Delete Message

ID: UcCs

Actor:

Al Student

A2 Supervisor
A3 Coordinator
A4 Coach

A5 Examiner
Includes:

Extension points:

Preconditions:
1. The actor has logged in to the system.
2. The actor has added message.
Flow of Events:
1. The actor logs into the system.
2. The system gives choices to the actor for
messaging.
3. The actor chooses to delete a message.
4. The system shows list of messages to delete.
5. The system asks for confirmation on deleting the
message.
6. The system updates.
7. The actor logs out of the system.

Postconditions:

1. Then

has been deleted by the actor.

Figure 2.12: Use Case Description for <Delete Message>

17

==Boundary== ==Enfity==

Shudent Interface <<Controller-> Message
chooseMessage()
| chooseDeleteMessage() |:
i . accessMessage() !
| P 1 >]
DeleteMezzage()
| : SystemUpdate() e s
i e s a H

Figure 2.13: Sequence Diagram for <Delete Message>

2.2.6 UC006: Use Case<Edit Message>

Use Case: Edit Message

ID: uce

Actor:

Al Student

A2 Supervisor
A3 Coordinator
A4 Coach

A5 Examiner

Includes:

Extension points:

Preconditions:
1. The actor has logged in to the system.
2. The actor has added message.
Flow of Events:
1. The actor logs into the system.
2. The system gives choices to the actor for
messaging.
3. The actor chooses to edit a message.
4. The system displays a text box to edit the
message.
5. The actor fills in the text box for the message.
6. The system updates.
7. The actor logs out of the system.
Postconditions:
1. The message has been edited by the actor.

Figure 2.14: Use Case Description for <Edit Message>

18

Student

chooseMessage()

==Boundary==>

==Controller==
Interface

' |le—

L J

chooseEditMessage()

h

=<Entity==
Messages

accessMessage()

Figure 2.15: Sequence Diagram for <Edit Message>

2.2.7 UCO007: Use Case <Notification Data>

EditMes=age()

i SystemUpdate e —
displayMessage()) P ystemLi pdate) | :

Use cases: Notification Data

ID: UC7

Extends:
<returnMessage>

Preconditions:

Flow of Events:
1. If there are data in notification
1.1. Return data to users.

1.2. System returns back to previous use case.

2. Else
2.1. There are no data available in the system
<returnMessage>

Postconditions:
1. User able to get the data from Notification Data
2. User will get an error message if there is no data.

Figure 2.16: Use Case Description for <Notification Data>

19

h J

u == Cantraler>>»
sers
chooseMolification| '
» choaseAddioificalion] N
chou=eUpdateMoification)
- acoessMalificafion|) '
chooessDelete Malilicaton| N —
H choosaYiewMalification()
E jdata ex=g] E sendDiata|
L H
1| [data doesnt exis(H '
i I

Figure 2.17: Sequence Diagram for <Notification Data>

2.2.8 UCO008: Use Case <View Notification>

Use cases: View Notification

ID: UC8
Actors:
Al Student
Includes:
UC7 Notification Data
Preconditions:
1. The student has logged in into the system.
2. Student has entered the interface of the system.
Flow of Events:
1. Student selects “View Notification”
2. include (Notification Data)
3. System will send a request to access the notification
database
4 For each data found
4.1. System will print out notification data
5. There is no more data
5.1 System will exit the use case
Postconditions:
1. System able to display the notification to Students

Figure 2.18: Use Case Description for <View Notification>

20

“ =eBundany=»

Student Interrface

choaseMNotification|

¥

vieatoificaban)

dis plaryMaltification|

Figure 2.19: Sequence Diagram for <View Notification>

2.2.9 UCO009: Use Case <Add Notification>

Use cases: Add Notification

ID: UC9

Actors:

A3 Coordinator

Includes:

UC7 Notification Data

Preconditions:

1. Coordinator is logged in into the system.

Flow of Events:

1. Coordinator selects “Add Notification”

2. include (Notification Data)

3. System will send a request to access the notification
database

4. Coordinator add notification to the database.
Postconditions:

1. Coordinator able to add notification to the system for
Student to view.

Figure 2.20: Use Case Description for <Add Notification>

21

%,
' L

-

ar

2.2.10 UCo10:

=iGonimllerss

choasaMolificationd)

accezsMaolificalion|

nalificationDala{) H LR

Figure 2.21: Sequence Diagram for <Add Notification>

Use Case <Update Notification>

Use cases: Update Notification

ID: UC10

Actors:
A3 Coordinator

Includes:
UC7 Notification Data

Extends:
<returnMessage>

Preconditions:
1. Coordinator is logged in into the system.

Flow of Events:
1. Coordinator selects “Update Notification”
2. include {Notification Data)
3. System will send a request to access the notification
database
4. While searching for notification
4.1. If notification data is found
4.1.1. Coordinator is able to update the
notification
4.2 Else
<returnMessage>

Postconditions:
1. Coordinator able to update the notification data

Figure 2.22: Use Case Description for <Update Notification>

22

choasellpdateNalification|

* mocansMalification|

[data exisl]

sendDa |

Figure 2.23: Sequence Diagram for <Update Notification>

2.2.11 UCO011: Use Case <Delete Notification>

Use cases: Delete Notification

ID: UC11

Actors:
A3 Coordinator

Includes:
UC7 Notification Data

Extends:
<returnMessage>

Preconditions:
1. Coordinator is logged in into the system.

Flow of Events:
1. Coordinator selects “Delete Notification”
2. include (Notification Data)
3. System will send a request to access the notification
database
4. While searching for notification
4.1. If notification data is found
4.1.1. Coordinator is able to delete the
notification
4.2 Else
<returnMessage>

Postconditions:
1. Coordinator able to delete the notification data

Figure 2.24: Use Case Description for <Delete Notification>

23

seanchDala)

'
Y —
£ == Frundany=
Coordinaior Interrface
oaseMoiificalion]
- chovsalelelebotification|
» E acoesshotification]) searchDlata|
|:_1I
. e D Lo i
II' [[data exist [deleteData| | T i
E [l i L]
[data dossn'l exist] retumbesape| i
L

Figure 2.25: Sequence Diagram for <Delete Notification>

2.2.12UC012: Use Case <Return Message>

Extension use cases: Return Message
ID: UC12
Extends:
UC7 Notification Data at <returnMessage>
UC10 Update Notification at <returnMessage>
UC11 Delete Notification at <returnMessage>
Flow of Events:
1. System will print out a message “No notification data
available”
Postconditions:
1. Users can add types of news that they want in their
notification
2. Users can view the news that they had selected for
their notification

Figure 2.26: Use Case Description for <Return Message>

24

chooseNalification|

. H choaseViewhoSfication|

chocseUpdaleMotficalion] s Motifcalion(

chooseDelele® oifcalion]

relurniesaged | ML

Figure 2.27: Sequence Diagram for <Return Message>

2.2.13 UC013: Use Case<Upload Question>

Use case: Upload Question

ID: UC13
Actors:

A5 Examiner
Includes:

Extension Points:

Preconditions:
1. The examiner has logged in to the system.
Flow of Events:
1. The examiner clicks on the button that they want to
upload the question.
2. If the question not uploaded yet
2.1 The file that contains the questions can be
uploaded by clicking the upload button.
2.2 The answer for each of the question need to be
set by clicking the right answer for the question.
2.3 The system stores the questions and answers
2.4 The exam is ready to be taken by the students
3. Else
3.1 The message about the gquestion has been
uploaded will be displayed.
3.2 The examiner will be redirected to main page.
Postconditions:
1. The guestion has been uploaded to the system.

Figure 2.28: Use Case Description for <Upload Question>

25

Examin=y ==Boundary=* =<Contraller== “<Entity=s
Hi Interface QuestionControl Assessment
UploadQuestion() ™ m
L AddExam() ChecklfQuestionExist()
£ (==] ————————
| . ReadyUpload{) QuestionMull{)
Displaylpload()
UploadFile() AddQuestion(} SaveQuestion(])
- [o s e
File5Success() UploadSuccess()
SetAnswer() Addanswer]) Savednswer()
) My
| | DisplaySuccess() L ExamPeady() L

Figure 2.29: Sequence Diagram for <Upload Question> if Question Not Available

26

Examiner =zBoundary>=> | ==Controller== <<Entity==
] Interface QuestonControl Assessment
UploadQuestion() I
AddExam() Check fQuestionExist()
- M= T H‘ ------------------------

. CannotUpload() - QuestionAwvailable()
DisplayMessage() : ‘
DirectainhMenu() ;

MainManu{} i i

Figure 2.30: Sequence Diagram for <Upload Question> if Question Available

2.2.14 UC014: Use Case<Take Exam>

27

Use case: Take Exam

1D: UC14

Actors:
Al Student

Includes:

Extension Points:
UCD14 View Grades

Preconditions:
1. The student has logged in to the system.
2. The question has been uploaded on to the system.

Flow of Events:

1. The students click on the exam that they need to
attend.

2. The student attempts the exam by clicking the start
button.

3. All the questions are displayed and need to be
answered by the student.

4. After all the guestion has been answered, the
student can finish the student by clicking the finish
button.

5. If the student has finished the exam
5.1 Extend View Grades

Postconditions:
The student has finished the exam.

Figure 2.31: Use Case Description for <Take Exam>

28

Student ~
:Er <<Boundary=> {{-un.ﬁtr?_!lerb} <<Entitys>
N Interface QuestionContral Assessment
AttendExami) o]
ViewExam(GetExami)
- o
) Exzam#fwvailable])
DisplayExami}
AtternptExam() RequestQuestion(} - GetQuestion()
o M- --------scsccssmarmrmnborrmr e e m s m s n iy
DisplayQuestion(} , return Question
L
o L >
Answerluestion() AddAnswer() UpdateAnswer()
DizplayMazzage() o AN I
AnswerSaved(]
FinighExam{) ExamFinish{) E
A - - —c-sciissssssamsmmpassssssssmsmsm-—msssssass
ViewGrade() | | return Grade L |

2.2.15UC015:

Figure 2.32: Sequence Diagram for <Take Exam>

Use Case<View Grades>

29

Use case: View Grades

1D: UC15

Actors:
Al Student
A5 Examiner

Includes:

Extension Points:

Preconditions:
1. The student has logged in to the system.
2. The examiner has logged in to the system.
3. The student has finished their exams

Flow of Events:
1. The system will check the student’s answer based on
the answer that has been set by examiners.
2. The grades obtained after the checking has finished.
3. If the student wants to view grades
1.1 The grades displayed immediately after the
BXaIMS.
4. If the examiner wants to view grades
2.1 Alist of students that has finished the exam will
be displayed.
2.2 The examiner can click on the student's name
and their grades will be displayed.

Postconditions:

Figure 2.33: Use Case Description for <View Grades>

30

Examiner 2 == z=Controllars== _ -
. E:nl..r'i:!ar',' Controlle “xEntitys == Entity=s
H Interface GradaCantral Assessment Student
L2 i
1 - i H
ViewGrades() 1 H . : :
GetStudent() |"'| ReguestStudent() : —
gi I &

r A
F Y

DisplayStudent() ! return Student

L 4

ViewStudentGrade() RequestGrade()

=
k
|

--

F Y
A

return Grade
DisplayStudentGrade()

Figure 2.34: Sequence Diagram for <View Grades>

2.3 Performance and Other Requirements

The RESPONSE TIME of the system should be only 1.0 second after the user clicks
on the system.

The WORKLOAD of the system should be able to handle more than 1000 students
(including staff) and at least 200 users at one time during peak hours.

The THROUGHPUT of the system should be around 10 operations per second. This
means that the system can handle updating, adding, deleting and viewing content all
at the same time.

The CAPACITY of the system should be around 10 contents in a page with scrolling

involved.

2.4 Design Constraints

The system will be represented following the standards that are used on websites
nowadays so the users can easily understand the system.

The contents of the system shall follow the regulations by the Malaysia Government
and Universiti Teknologi Malaysia (UTM).

31

e The language that will be used in the system is only limited to English and Bahasa
Melayu.

e The system shall store the file related to the Final Year Project of 2u2i students that
are currently doing their industrial training including their assessment.

e The file stored can only be accessed by those who have authorities.

e The website is constrained by the capacity of access that it can have at one time.

Heavy load can cause the transfer of data to be slower and may cause server down.

2.5 Software System Attributes

The system is available on any web browser
Unique username and password registered for every user. They can use the
username and password to log in to the system.

e Users can view, add, delete, edit messages to any users that are registered to the
system.
Students are able to view notifications that have been sent by the coordinator.
The students are able to view their grades after they finished the exam.

32

3.0 System Architectural Design

3.1 Architecture Style and Rationale

The architectural style that we use is layered architecture style. The layered
architecture style is organized into horizontal layers where each layer will perform a
specific role in the system. There are 4 layers of layered architecture: presentation
layer, data service layer , business logic layer and data access layer. It is composed
of many layers that function together as a single unit of software. The layered
architecture style usually works where the data stores are controlled by layer .The
client needs to request the systems to perform certain actions. Basically the data is
held on the central database where all subsystems can be accessed and this makes
the activities to be more manageable as it is split into smaller tasks. Here are a lot of
reasons why we choose this kind of architecture .One of the reasons is this
architecture helps us to organize the data of the students and lecturers in a single
database and are able to be accessed by the university. With this architecture, we
are able to see any development changes in each of the subsystems and are able to
make the changes .Other than that, layered architecture is simple and it is easy to
implement and learn. Next , it has the consistency in the overall code and the
layered projects. Also, it is browable where all the objects are kept together.

33

3.2 Component Model

Figure 3.1: Component Diagram of <Inferno 2u2i Final Year Project with Industry (FYP-I) Management
System >

In the system, there are a total of 4 subsystems which are the login, assessment,
communication and notification subsystem. Each of these subsystems will be connected as
shown above. The login subsystem is connected to the other 3 subsystems. This is because
the user needs to log into the system first before they can access the system. In the Login
subsystem, the verification needs the login information from the login component. Then, the
verification component will let the user access into the system according to their role. In the
Assessment subsystem, there dependencies exist between the components. The take exam
component needs to require the question from the upload question component. Then, the
view grades component needs to require grades from the take exam component. In the
Notification subsystem, all of the components are connected to the notification data
component. In the Communication subsystem, all of the components are connected to the
message database.

34

4.0 Detailed Description of Components

4.1 Complete Package Diagram.

Login

!

Delete message |(-b| Edit message

Assessment Notification ‘
‘ TakeExam |~-b| ViewGrades | ‘ Verification |< """ >| Login | | ViewNotification | | UpdateNotification
5 « — ¥
UploadQuestions i'
| AddNotification |4 ----- ’| DeleteMotification |
Communication
| View message | | Add message |

Figure 4.1: Package Diagram for <Inferno 2u2i Final Year Project with Industry (FYP-I) Management
System>

4.2 Detailed Description
4.2.1 P001: <Login> Subsystem

Login

View Layer

Domain Layer

‘Logininterface “VerificationInterface

LoginController

‘VerificationController

Data Access

‘LoginDatabase

Figure 4.2: Package Diagram for <Login> Subsystem

35

4.2.1.1 Class Diagram

-studentName:String
-studentEmail:String
-studentPassword:String
-studentCGPA-double
-studentAddress:String
-studentAge:int
-studentDateOfBirth:Date
-studentGender-char
-studentPhoneNo:int

-svNameString
-svEmail:String
-svPassword:String
-svAddress:String
-svAge:int
-svDateOfBirth:Date
-svGender-char
-svPhoneNorint

-coordinatorName Siring
-coordinatorEmail:String
-coordinatorPassword:String
-coordinatorAddress: String
-coordinatorAge:int
-coordinatorDateQfBirth:Date
-coordinatorGender.char
-coordinatorPhoneNorint

-coachName:String
-coachEmail:String
-coachPassword:String
-coachAddress:String
-coachAge:int
-coachDateOfBirth: Date
-coachGender.char
-coachPhoneNoint

<<Entity>> <<Entity>> <<Entity>> <<Entity>> <<Entity>>
Student Supervisor Coordinator Coach Examiner
-studentiD:String -svID:String -coordinatoriD:String -coachlD:String -gxaminerlD:String

-examinerName:String
-examinerEmail: String
-examinerPassword:String
-axaminerAddress: String
-examinerAge:int
-examinerDateOfBirth:Date
-examinerGender.char
-examinerPhoneNo'int

+ EnterUserNamePassword(): void
+ requestLogin() - void

+ EnterUserNamePassword(): void
+ requestLogin() - void

+ EnterUserNamePassword(): void
+ reqguestLogin() - void

+ EnterUserNamePassword(): void
+ requestLogin() : void

+ EnterUserNamePassword(): void
+ requestLogin() - void

|
l

<<Boundary>>
Logininterface

+ Login() : void

+ MainMenu() :void

+ DisplayErrorMessage() : void
+ requestVerification(): void

+ AddDetail()

<<Controller>>
LoginController

= Veerification(): void
+ VerficationSuccess() - void

<<Entity>>
LoginDatabase

- userlD : String

+ VerificationFail(): void
+ UpdateDetail() : void

<<Entity>>
VerificationDatabase

- verificationID - String
- verificationStatus - String

+ UserFound() : void
+ UserNotFound() -void

keyUsername : String
|- keyPassword :String

Figure 4.3: Class Diagram for <Login> Subsystem

Entity Name

Student

Method Name

EnterUserNamePassword()

Input

keyUsername, keyPassword

Output

Algorithm

1. Start

2. User entered their username and password by keyboard

3. End

Entity Name

Student

Method Name

requestLogin()

Input

GUI Input

36

Output

Algorithm 1. Start
2. User click on the login button
3. End

Entity Name Supervisor

Method Name EnterUserNamePassword()

Input keyUsername, keyPassword

Output

Algorithm 1. Start
2. User entered their username and password by keyboard
3. End

Entity Name Supervisor

Method Name requestLogin()

Input GUI Input

Output

Algorithm 1. Start
2. User click on the login button
3. End

Entity Name Coordinator

Method Name EnterUserNamePassword()

Input keyUsername, keyPassword

Output

Algorithm 1. Start
2. User entered their username and password by keyboard
3. End

Entity Name Coordinator

Method Name requestLogin()

Input GUI Input

Output

Algorithm 1. Start
2. User click on the login button
3. End

37

Entity Name Coach

Method Name EnterUserNamePassword()

Input keyUsername, keyPassword

Output

Algorithm 1. Start
2. User entered their username and password by keyboard
3. End

Entity Name Coach

Method Name requestLogin()

Input GUI Input

Output

Algorithm 1. Start
2. User click on the login button
3. End

Entity Name Examiner

Method Name EnterUserNamePassword()

Input keyUsername, keyPassword

Output

Algorithm 1. Start
2. User entered their username and password by keyboard
3. End

Entity Name Examiner

Method Name requestLogin()

Input GUI Input

Output

Algorithm 1. Start
2. User click on the login button
3. End

Entity Name VerificationDatabase

Method Name UserFound()

Input keyUsername, keyPassword

Output verificationStatus

Algorithm 1. Start

2. If keyUsername && keyPassword not null

38

2.1 If keyUsername && keyPassword match
2.2 verificationStatus = “success”

3. End
Entity Name VerificationDatabase
Method Name UserNotFound()
Input keyUsername,keyPassword
Output verificationStatus
Algorithm 1. Start

2. If keyUsername && keyPassword null
2.1 If keyUsername && keyPassword not matched
2.2 verificationStatus = “fail”

3. End

4.2.1.2 Sequence Diagram

a) SD001: Sequence diagram for Login

Users ==Boundary== ==Controller== ==Entity==
N Logininterface LoginController Login
Login() i u

EnterUserMamePassword() o

o AddDetail()

> UpdateDetail()
requestLogin() requestVerification() Verification()
> » *

-

39

Figure 4.4: Sequence Diagram for <Login>
b) SD002: Sequence diagram for Verification

Users =<=Boundary== ==Controller==
- Logininterface LoginController ==Entity==
L . . Verification
requestVerification() [] Verification() [
MainMenu() VerificationSuccess() UserFound()
< . oL EEL AL
Alt
[data not found] requestVerification() Verification()
DisplayErrorMessage() VerificationFailed() UserNotFound()
.3 - - - s s mm oo S
Figure 4.5: Sequence Diagram for <Verification>
4.2.2 P002: <Communication> Subsystem
Communication
View Layer Domain Layer
‘UserCommunicationinterface “ViewNotificationHandler AddNotificationHandler
‘DeleteNotificationHandler -EditMessageHandler
Data Access Layer
‘Message ‘User

Figure 4.6: Package Diagram for <Communication> Subsystem

40

4.2.2.1 Class Diagram

<<Entity=> <<Entity== <<Entity=> <<Entity=> <<Entity=>
Student Supervisor Coordinator Coach Examiner
-studentlD:String -svID:String -coordinatoriD:String -coachlD:String -examinerl D:String

-studentName: String
-studentEmail:Sfring
-studentPassword: String
-studentCGPA double
-studentAddress:Siring
-studeniAge:int
-studentDate OfBirth-Date
-studentGender:char
-studentPhoneMocint

-svName:String
-svEmail-String
-svPassword:String
-svAddress:String
-svAgeint
-svDateQiBirth:Date
-svGender-char
-svPhoneNoint

-coordinatorName: String
-coordinatorEmail-String
-coordinatorPassword:String
-coordinatorAddress:String
-coordinatorAge:int
-coordinatorDate OfBirth:Datt
-coordinatorGender-char
-coordinatorPhoneMoint

-coachName:String
-coachEmail:String
-coachPassword:String
-coachAddress:String
-coachAge:int
-coachDateOiBirih:Date
-coachGender-char
-coachPhoneNo:int

-examineriame:Sring
-examinerEmail:String
-examinerPassword:String
-examinerAddress:String
-examinerAge:int
-examinerDateOiBirth:Date
-examinerGender-char
-examinerPhoneNo:int

+accessMessages()void

+accessMessages()void

+accesshMessages()void

+accessMessages()void

+accessMeszages():void

r

<<Boundary>>

UserCommunicationinterface

+accessViewhMessages() void
+accessUpdateMessages()void
+accessAddMessages()void
+accessEditMessages()void

—

=<<Conftroller>>
ViewMessageHandler

<<Controller>>
AddMessageHandler

-me:

ageData: MessageDatabase

-me:

ageData: MessageDatabase

+displayMessage():veid

+addMessage()void

I

<<Controller>>
DeleteMessageHandler

<<Controller>>
EditMessageHandler

-messageData: MessageDatabase

-messageData: MessageDatabase

+deleteMessage()void

+editMessage()veid

<<Entity>>
communicationDatabase

-messagelD
-messageTitle
-messageBody
-messageDate
-messageTime

+gethlessage():void
i je(me:

agelD,me

ageTitle,

messageBody messageTime
messageDate)void
+delsteMassage(massagelD)void

Figure 4.7: Class Diagram for <Communication> Subsystem

Entity Name

Student

Method Name

accessMessages

Input

studentID, studentPassword

Output

messageData

Algorithm

Start

PON=

get and display messages

o

Student logs in to system with ID and password
Student chooses to view, add, delete, or edit message
If student chooses to view message, communication database will

Else if student chooses to add message, student can add

message which will be set by communication database

41

Else if student chooses to delete message, student can delete
message which will be removed by communication database

7. Else if student chooses to edit message, student can edit message
by resetting the message data in communication database
8. End
Entity Name Supervisor
Method Name accessMessages
Input svID, svPassword
Output messageData
Algorithm 1. Start
2. Supervisor logs in to system with ID and password
3. Supervisor chooses to view, add, delete, or edit message
4. If supervisor chooses to view message, communication database
will get and display messages
5. Else if supervisor chooses to add message, supervisor can add
message which will be set by communication database
6. Else if supervisor chooses to delete message, supervisor can
delete message which will be removed by communication
database
7. Else if supervisor chooses to edit message, supervisor can edit
message by resetting the message data in communication
database
8. End
Entity Name Coordinator
Method Name accessMessages
Input coordinatorlD, coordinatorPassword
Output messageData
Algorithm 1. Start
2. Coordinator logs in to system with ID and password
3. Coordinator chooses to view, add, delete, or edit message
4. If coordinator chooses to view message, communication database
will get and display messages
5. Else if coordinator chooses to add message, coordinator can add
message which will be set by communication database
6. Else if coordinator chooses to delete message, coordinator can
delete message which will be removed by communication
database
7. Else if coordinator chooses to edit message, coordinator can edit
message by resetting the message data in communication
database
8. End
Entity Name Coach
Method Name accessMessages

42

Input

coachlD, coachPassword

Output messageData
Algorithm 1. Start
2. Coach logs in to system with ID and password
3. Coach chooses to view, add, delete, or edit message
4. If coach chooses to view message, communication database will
get and display messages
5. Else if coach chooses to add message, coach can add message
which will be set by communication database
6. Else if coach chooses to delete message, coach can delete
message which will be removed by communication database
7. Else if coach chooses to edit message, coach can edit message
by resetting the message data in communication database
8. End
Entity Name Examiner
Method Name accessMessages
Input examinerlD, examinerPassword
Output messageData
Algorithm 1. Start
2. Examiner logs in to system with ID and password
3. Examiner chooses to view, add, delete, or edit message
4. If examiner chooses to view message, communication database
will get and display messages
5. Else if examiner chooses to add message, examiner can add
message which will be set by communication database
6. Else if examiner chooses to delete message, examiner can delete
message which will be removed by communication database
7. Else if examiner chooses to edit message, examiner can edit
messages by resetting the message data in communication
database
8. End
Entity Name UserCommunicationinterface

Method Name

accessViewMessages, accessAddMessages, accessDeleteMessages,
accessEditMessages

Input

Output

Algorithm

Start

Interface receives choice by user

If user chooses view message, go to viewMessageHandler
Else if user chooses add message, go to addMessageHandler
Else if user chooses delete message, go to
deleteMessageHandler

Else if user chooses edit message, go to editMessageHandler
End

RN =

No

43

Entity Name

iewMessageHandler

Method Name displayMessage
Input -
Output -
Algorithm 1. Start
2. viewMessageHandler will display message from communication
database
3. End
Entity Name addMessageHandler
Method Name addMessage
Input -
Output -
Algorithm 1. Start
2. addMessageHandler will add new message data to
communication database
3. End
Entity Name deleteMessageHandler
Method Name deleteMessage
Input -
Output -
Algorithm 1. Start
2. deleteMessageHandler will delete existing message data from
communication database
3. End
Entity Name editMessageHandler
Method Name editMessage
Input -
Output -
Algorithm 1. Start
2. editMessageHandler will edit existing message data from
communication database
3. End
Entity Name MessageDatabase
Method Name getMessage, setMessage
Input messageData
Output messageData
Algorithm 1. Start

2. Database will receive command from user

44

3. If user wants to view message, communication database will get
and display message data

4. Else if user wants to add message, communication database will
set new message into message data in communication database

5. Else if user wants to delete message, communication database
will delete message by messagelD

6. Else if user wants to edit message, communication database will
set new message to the existing message

4.2.2.2 Sequence Diagram

a) SDO003: Sequence diagram for View Message

< > ity>
<Boundary <<Controllers» <<Entity>>
User Interface Message

" '
" '
—

" ' 1
'

chooseMessage()

A 4

chooseViewlMessage()

‘ accessMessage()

Y

H sendData())
MessageData() [L e T |

displayMessage()

A

Figure 4.8: Sequence Diagram for <View Message>

b) SD004: Sequence diagram for Add Message

45

<<Boundary>> <<Entity>>
User Interface <<Controller>> Message
chooselMessage() . . :
: »! ' :
; gk chooseAddMesssage() N : '
' _ accessMessage() :
: ' ! >
. : : addMessage() ;
' : SystemUpdate() b '
i displayMessage() et i L]
Figure 4.9: Sequence Diagram for <AddMessage>
c) SDO005: Sequence diagram for Delete Message
<<Boundary>> < -~ <<Entity>>
User Interface Controller Message
E chooselMessags() : .
: > : i
! ' chooseDeleteMessage() ! !
E : accessMessage() .
| s s o
! I DeleteMessage() .
; ; SystemUpdate() : bbby :

Figure 4.10: Sequence Diagram for <Delete Message>

d) SDO006: Sequence diagram for Edit Message

46

<<Boundary>> <<Entity>>
<< >>
User Interface Controller Message
: chooseMessage() i i :
: > , : :
!) chooseEditMessage() ! !
1] rad il [
E ' ' accessMessage() :
E . EditMessage() \
i) : SystemUpdate() Tt i
' displayMessage() e ! H
e : ; :

Figure 4.11: Sequence Diagram for <Edit Message>

4.2.3 P003: <Notification> Subsystem

Hotifieation

Viaw Layer

| romnn |
| v |

Comaln Layer

‘ Studenthot

ficationintarface ‘

:Coondinatoriolificatianines face

‘ NimwholificaonHandler ‘

{UpdateMalificatonHandler

‘ AddMotificalionHandler

| DeleleNotilicationHandler

Dats Accass

‘ NolificationDatabase ‘ ‘

Sludenl ‘

‘ Coardinator

‘ ‘ ‘RelumMessage ‘

Figure 4.12: Package Diagram for <Notification> Subsystem

4.2.3.1 Class Diagram

47

<<Entity>>
Student

-student O:String

-studentiame:String

-studentEmail:String

~studentPassword String
nz

-studentCGRA:String

-studenthge:String
-studentDateOfBith: Suri
-studentGender:String
-studentPhoneMao: String

+chooseMotification():weid

¥

<<Entity==
Coordinator

~cogrdinatoriD:String
~cordinatorhame: String
~cordinatorEmail:String
-coordinatorPassword:String
~coordinatorsy Stri
~coordinatorAge:String
~coordinatorDateCBirth: String
-coordinatorGendar:String
-coerdinatorPhoneNe: Siring

+chooseMotification])-void

=<Controller=>
AddMotificationHandler

-MotiData: MotificationDatabase

+aceassMotification():veid
+natificationDatal) void

<<Boundary>>
StudentMotificationinterface

<<Boundary=>
CoordinatorMotificationinterface

<<Controller==
UpdateNotificationHandler

+choose\iewNotification(}void
+displayMotification():void

ViewMNotificationHandler

==Controllers=

-MaotiData: MotificationDatabase

+accessMotification):void
+notificationData()voi
+returnMezsage()void

+chooseAddMotification(): woid
+choosellpdsteMatification oid

schooseDeleteMotification]): void

= <<Entity=>
NotificationDatabase

-noilD
-notiTitle
-notiContent
-notiTime:
-notiDate
-notiStatus

+sendData(natilD,notiTitle,
notiContent,notiTime,
notiDate, notiStatus): String
+addData(notilD, notiTitle,
notiContent notiTime,
nofiDate, notiStatus): String
+zzarchDa oid

-MetiData: MotificationDatabase

+aceessMotification{):veid
+updateDatalMotification
Distabass):String
+returnMessagsved

“<Controller==
DeleteNotificationHandler

-MotiData: NetifieationDatabase

+aceessMotification():veid
+deletelata(Notification
Diztabass):String
+retumMessage)ved

Figure 4.13: Class Diagram for <Notification> Subsystem

Entity Name

Student

Method Name

chooseNotification()

Input

GUI Input

Output

Algorithm

1. Start

3. End

2. Student choose notification

Entity Name

Coordinator

Method Name

chooseNotification()

Input

GUI Input

Output

Algorithm

1. Start

3. End

2. Coordinator choose notification

Entity Name

NotificationDatabase

48

Method Name sendData()
addData()
searchData()
Input notilD,notiTitle,notiContent,notiTime,notiDate, notiStatus
Output -
Algorithm 1. Start
2. Controller request access to database
3. If the controller wants to add data, it will add it to the database
4. If controller wants data it will search the data using searchData
5. Existed data will be sent back to controller
6. End

Boundary Name

StudentNoaotificationInterface

Method Name chooseViewNotification()
displayNotification()
Input -
Output displayNotification()
Algorithm 1. Start
2. Choose view notification
3. Data from ViewNotificationHandler is shown using
displayNotification()
4. End

Boundary Name

CoordinatorNotificationInterface

Method Name

chooseAddNotification()
chooseUpdateNotification()
chooseDeleteNotification()

Input

Output

Algorithm

arOND=

Start

If choose add naotification, go to AddNotificationHandler

If choose update notification, go to UpdateNotificationHandler
If choose delete notification, go to DeleteNotificationHandler
End

Controller Name

ViewNotificationHandler

Method Name accessNotification()
notificationData()
returnMessage()
Input -
Output -
Algorithm 1. Start
2. Request access data at NotificationDatabase

3.

If data exist data will be sent to StudentNotificationInterface

49

4. Else it will returnMessage showing error
5. End

Controller Name | AddNotificationHandler

Method Name accessNotification()
notificationData()

Input -

Output -

Algorithm 1. Start

2. Request access data at NotificationDatabase
3. End

Controller Name

UpdateNotificationHandler

Method Name accessNotification()
updateNotificationData()
returnMessage()
Input -
Output -
Algorithm 1. Start
2. Request access data at NotificationDatabase
3. If data exist coordinator can update data
4. Else it will returnMessage showing error
5. End

Controller Name

DeleteNotificationHandler

Method Name accessNotification()
deletenotificationData()
returnMessage()
Input -
Output -
Algorithm 1. Start
2. Request access data at NotificationDatabase
3. If data exist coordinator can update data
4. Else it will returnMessage showing error
5. End

50

4.2.3.2 Sequence

Diagram

a)SDO007 : Sequence diagram for NotificationDatabase

chooseNolificatian]

chooseAddMotification|

choazaUpdateMalificaion|

cho aleleNotificalion])

chooseViewNotification)

access Motificalion)

Molificatian

All

[data exist]

E [distis daesm exist]

notificalionDatai)

refumnMesage()

sendDatal)

b)SD008 : Sequence diagram for ViewNotification

c)SDO009 : Sequence diagram for AddNotification

Figure 4.14: Sequence Diagram for <NotificationDatabase>

cheaseMolificatan|

displayMotification()
e

Figure 4.15: Sequence Diagram for <ViewNotification>

choaseViewNalification|

nolificationData()

51

arccessMolificaian]

sendDista()

—

A

Crardinaior

w=Comiraller==

Handler

chooseMalificatan(} l
chaoseAddNatification() ;
secessMalificatan(} :
: H nolificationDatal) H Ly
: e : H

Figure 4.16: Sequence Diagram for <AddNotification>

d)SD010 : Sequence diagram for UpdateNotification

X

Coardinatar

ZCantrdlerss

Hander

choozeMalificaian() :
» choaseUpdateMolification(}
accessNotfication(] : searchDita|)
: . i ; sendDiata()
fata exist] . updateDita) H LR A
i [date doesn exisy : retemMesage() :
H L

Figure 4.17: Sequence Diagram for <UpdateNotification>

e)SD011 : Sequence diagram for DeleteNotification

.: : =eBounary>=

<aControllers>

Coardginator Interface Handker
choosablalificatan| .
» chooseDeleleNotificalion()
acoessNotificalion() : searchDila(}
. . . _ . semd Dtz ()
fdata exis]] . deleteDatal) [l LT
o] [data doesn® exist] . refumMesage() .
e

Figure 4.18: Sequence Diagram for <DeleteNotification>
52

f)SD012 : Sequence diagram for ReturnMessage

chaaseUpdaleNotification

chooseDele leNotification ()

Figure 4.19: Sequence Diagram for <ReturnMessage>

4.2.4 P004: <Assessment> Subsystem

Assessment

View Layer

‘Uploadinterface -Gradelnterface

‘Examinterface

Data Layer
Domain Layer
- AszzessmeniDatabase
‘QuestionConiroller
Student
“GradeController
Examiner
‘ExamController

Figure 4.20: Package Diagram for <Assessment> Subsystem

53

4.2.4.1 Class Diagram

<<Boundary>> <<Confroller>>
Examinterface ExamController

<<Enfity>>
Student

- studentiD - String

- studentName : String

- studentEmail :String

- studentPassword :String
- studentCGPA - double
studentAddress : String
udentAge : int
studentDateQiBirth - Date
- studentGender : char

- studentPhoneNo : String

+ DisplayExam() : void

+ DisplayQuestion() - void
+ DisplayMessage() : void
+ ViewGrade() :void

+ ViewExam() : void

+ ExamAvailable() - void
+ RequestQuestion() : void
+ AddAnswer() :void

+ AnswerSaved() : void

+ ExamFinish() - void

+ AttendExam() : void

+ AttemptExam() : void

+ AnswerQuestion() : void
+ FinishExam() : void

+ ViewGrades() : void

<<Boundary>>
Gradelnterface

<<Controller>>
GradeController

<<Enfity>>
AssessmentDatabase

+ ViewGrades() : void

<<Entity>>
Examiner

examineriD : String
examinerName : String
examinerEmail - String
examinerPassword - String
examinerAddress : String
examinerAge - int
examinerDateQfBirth - Date
examinerGender : char
examinerPhoneNo : String

- assessmentlD - Siring

- assessmentQuestion : String
- assessmentAnswer : char
- studentAnswer : char

- assessmentStatus : String

- grade : char

-marks - int

- availability - boolean

+ DisplayStudent() -void + GetStudent() - void

+ DisplayStudentGrade() - void + RequestGrade() : void
<<Boundary>>
Uploadinterface <<Controller>>

QuestionController

+ UploadQuestion() : void
+ UploadFile() : void
+ SetAnswer() : void
+ DirectMainMenu() : void

+ DisplayUpload() : void

+ FileSuccess() - void + AddExam() - void

+ DisplaySuccess() - void + ReadyUpload() : void
+ DisplayMessage() : void + AddQuestion : void

+ MainMenu() : void + UploadSuccess() - void

+ AddAnswer() - void
+ ExamReady() : void
+ CannotUpload() - void

Figure 4.21: Class Diagram for <Assessment> Subsystem

+ ChecklfQuestionExist() - boolean

+ QuestionNull() -veid

+ SaveQuestion() : void

+ SaveAnswer() : void

+ QuestionAvailable() : void
+ GetExam() : void

+ GetQuestion() :String

+ UpdateAnswer() - void

+ GetGrade() : char

Entity Name

Student

Method Name

AttendExam()

Input

GUI Input

Output

Algorithm

1. Start

2. User clicks on the attend exam button
3. Exam information is displayed

4. End

Entity Name

Student

Method Name

AttemptExam()

Input

GUI Input

Output

Algorithm

1. Start

54

2. User clicks on the attempt exam button
3. Exam is started and questions is displayed
4. End

Entity Name Student

Method Name AnswerQuestion()

Input studentAnswer

Output

Algorithm 1. Start
2. User enters their answer for the question
3. studentAnswer is updated
4. End

Entity Name Student

Method Name FinishExam()

Input GUI Input

Output

Algorithm 1. Start
2. User clicks on the finish button
3. Message indicate exam has finished is displayed
4. End

Entity Name Student

Method Name ViewGrades()

Input

Output grade

Algorithm 1. Start
2. Grade is obtained from the database
3. Grade is displayed
4. End

Entity Name Examiner

Method Name UploadQuestion()

Input GUI Input

Output

Algorithm 1. Start
2. User clicks on the upload question button
3. Upload menu is displayed
4. End

Entity Name Examiner

Method Name UploadFile()

55

Input assessmentQuestion
Output
Algorithm 1. Start
2. If assessmentQuestion not available
2.1 User enters the question for the exam
2.2 The assessment question is updated
2.3 Success message is displayed
3. Else
3.1 User cannot upload the question
3.2 Message about the question already available is displayed
3.3 User directed to the main menu.
4. End
Entity Name Examiner
Method Name DirectMainMenu()
Input GUI Input
Output
Algorithm 1. Start
2. User clicks on the back to main menu button
3. Main menu is displayed
4. End
Entity Name AssessmentDatabase
Method Name ChecklIfQuestionExist()
Input
Output availability
Algorithm 1. Start
2. If assessmentQuestion is not null
2.1 return true
3. End
Entity Name AssessmentDatabase
Method Name QuestionNull()
Input
Output availability
Algorithm 1. Start
2. if assessmentQuestion is null
2.1 return false
3. End
Entity Name AssessmentDatabase
Method Name SaveQuestion()

56

Input assessmentQuestion
Output
Algorithm 1. Start
2. Assessment question entered by the user is updated in the
database
3. End
Entity Name AssessmentDatabase
Method Name SaveAnswer()
Input assessmentAnswer
Output
Algorithm 1. Start
2. Assessment answer entered by the user is updated in the
database
3. End
Entity Name AssessmentDatabase
Method Name QuestionAvailable()
Input
Output
Algorithm 1. Start
2. If assessmentQuestion not null
2.1 availability = true
3. End
Entity Name AssessmentDatabase
Method Name GetExam()
Input
Output assessmentID
Algorithm 1. Start
2. assessmentlD is obtained from the database
3. assessmentlD is sent to the controller
4. End
Entity Name AssessmentDatabase
Method Name GetQuestion()
Input
Output assessmentQuestion
Algorithm 1. Start
2. assessmentQuestion is obtained from the database
3. assessmentQuestion is sent to the controller
4. End

57

Entity Name AssessmentDatabase
Method Name UpdateAnswer()
Input studentAnswer
Output
Algorithm 1. Start
2. studentAnswer is updated in the database
3. End
Entity Name AssessmentDatabase
Method Name GetGrade()
Input
Output grade
Algorithm 1. Start

2. Grade is calculated based on the amount of correct answer by
the student
3. If marks<=40

3.1 grade="F’

4. else if marks<=50
4.1 grade="D’

5. else if marks<=60
5.1 grade="C’

6. else if marks<=80
6.1 grade="B’

7. else if marks<=100
7.1 grade='A

8. return grade

9. End

58

4.2.4.2 Sequence Diagram
a)SD013 : Sequence diagram for Upload Questions

Examiner <<Boundary== <<Controller==> J—
B ¥ Enfity=>=
i Uploadinterface QuestionController Assessr;:ent
T i i
UploadQuestion(} .] . . M
AddExam() ChecklfQuestionExist()
. > > >
LR 6 - oo oo
ReadyUpload QuestionMull
DisplayUpload() voR 0 0
UploadFile() AddQuestion() SaveQuestion()
* ______________________
FileSuccess() UploadSuccess()
SetAnswer() AddAnswer() SaveAnswer()
I S
| | DisplaySuccess() ExamReady()
: T T T
Alternative J = M j_ J_
A UploadQuestion() . . .
if QuestionAvailable AddExam() ChecklfQuestionExist()
< oo R R E LRt
CannotUpload() L QuestionAvailable() L}

DisplayMassage()

DirectMainhMenu()

MainMenu()

-~

Figure 4.22: Sequence Diagram for <Upload Question>

59

b)SD014 : Sequence diagram for Take Exam

Student ==Boundary== ==Conirollers= <<Entitys>
o Examinterface ExamController Assessment
AttendExam() ™ ™
N ViewExam() GetExam()
- €
) ExamAvailable()
DisplayExami()
AttemptExam() RegquestQuestion() - GetQuestion()
< R e eI
DisplayQuestion() i return Question
AnswerCuestion() AddAnswer() UpdateAnswer()
DisplayMessage! o
ey gel) AnswerSaved()
FinishExam() ExamFinish() T
-+ b~ — - = ee - R T LLLLLTTEEEEE
ViewGrade() return Grade

Figure 4.23: Sequence Diagram for <Take Exam>

60

c)SDO015 : Sequence diagram for View Grade

Examiner ==Boundary== ==Coniroller== <<Enfity>> <<Enfity>>
0 Gradelnterface GradeConfroller Assessment Student
ViewGrades() : \ i
o GetStudent() |"" RequestStudent() ! .
- > . >
L |
< ME = =] R e I R E L L LR R
DisplayStudent() return Student i
. J]]
ViewStudentGrade() RequestGrade() —U GetGrade() E
. SR femmmmommmmmmmmmemamaneas :
)) : return Grade :
DisplayStudentGrade() E i
- L : :
: i

Figure 4.24: Sequence Diagram for <Vire Grades>

61

5.0 Data Design

5.1 Data Description

The major data or systems entities are stored into a relational database named Inferno 2u2i

Final Year Project with Industry (FYP-I) Management System, processed and organized into

10 entities as listed in Table 5.1.

Examiner
Assessment
examineriD {PK} Coemmunication 1
assessmentlD {PK} . examinerName .
assessmentQuestion 1 <« 2amines 11 | o amineremail - uses - 1
assessmentAnswer examinerPassword messagelD [PK}
studentAnswer examinerAddress 1 messageText 4
assessmentStatus examinerage messageTime
grade examinerDate OfBirth messageDate
marks examinerGender
examinerPhoneNo *1
takes J
uses - A uses Supervisor
1=
sviD [PK}
1.1 svName
Login 1.1 - cnters 1.1 | syEmail
Student 11 svPasswaord
1.* svAddress
userlD {PK} 11 svAge
studentiD {PK} keyUsername svDateOfBirth
studentName keyPassword
svGender A vses
studentEmail 1.1 enters 1.1 1.1 svPhoneNo
studentPassword
studentCGPA
studentAddress
studentAge Coach
studentDateOrBirh -~ undergoes
studentGender - enfers 1.1
studentPhoneNo 1.1 coachiD {PK]
N coachName
1 Verification coachEmail
hPassword
- enters coad
verificationI D {PK} coachAddress
verfficationStatus Notification coachAge
coachDateQiBirth
coachGender
notilD {PK} coachPhoneNo
, notiTitle 1
views - "1 | noticantent
notiTime
notiDate Coordinator
notiStatus
1.1
coordinatoriD {PK}
cordinatorName
cordinatorEmail
A sends coordinatorPassword
coordinatorAddress
1.* | coordinatorAge
coordinatorDateOTBirth
coordinatorGender
coordinatorPhoneNe

Figure 5.1: Entity Relationship Diagram for <Inferno 2u2i Final Year Project with Industry (FYP-I)

Management System>

62

A vses

Table 5.1: Description of Entities in the Database

No. | Entity Name Description

1. Student Store the information of the student

2. Coach Store the information of the coach

3. Supervisor Store the information of the supervisor

4. Examiner Store the information of the examiner

5. Coordinator Store the information of the coordinator

6. Assessment Store the information related to assessment
7. Communication Store the messages between users

8. Notification Store the information about notifications

9. Login Store the information related to login

10 | Verification Store the information related to verification

5.2 Data Dictionary

5.2.1 Entity: <Student>

Attribute Name Type Description
studentiD VARCHAR2(10) Student ID, Primary Key
studentName VARCHAR2(50) Student full name
studentEmail VARCHAR2(20) Student email
studentPassword VARCHAR2(20) Student password
studentCGPA NUMERIC(2,2) Student CGPA
studentAddress VARCHAR(100) Student current address
studentAge INT Student age
studentDateOfBirth DATE Student date of birth
studentGender CHAR(1) Student gender
studentPhoneNo VARCHAR(15) Student phone number
5.2.2 Entity: <Coach>
Attribute Name Type Description

coachID VARCHAR2(10) Coach ID, Primary Key
coachName VARCHAR2(50) Coach full name
coachEmail VARCHAR2(20) Coach email
coachPassword VARCHAR2(20) Coach password
coachAddress VARCHAR2(100) Coach current address
coachAge INT Coach age

63

coachDateOfBirth DATE Coach date of birth
coachGender CHAR(1) Coach gender
coachPhoneNo VARCHAR2(15) Coach phone number
5.2.3 Entity: <Supervisor>
Attribute Name Type Description
sviD VARCHAR2(10) Supervisor ID, Primary Key
svName VARCHAR2(50) Supervisor full name
svEmail VARCHAR2(20) Supervisor email
svPassword VARCHAR2(20) Supervisor password
svAddress VARCHAR2(100) Supervisor current address
svAge INT Supervisor age
svDateOfBirth DATE Supervisor date of birth
svGender CHAR(1) Supervisor gender
svPhoneNo VARCHAR2(15) Supervisor phone number
5.2.4 Entity: <Examiner>
Attribute Name Type Description

examinerlD

VARCHAR2(10)

Examiner ID, Primary Key

examinerName

VARCHAR2(50)

Examiner full name

examinerEmail

Examiner email

examinerPassword

VARCHAR2(20)

Examiner password

examinerAddress

(

(
VARCHAR2(20)

(

(

VARCHAR2(100)

Examiner current address

examinerAge

INT

Examiner age

examinerDateOfBirth DATE Examiner date of birth
examinerGender CHAR(1) Examiner gender
examinerPhoneNo VARCHAR2(15) Examiner phone number

5.2.5 Entity: <Coordinator>

Attribute Name

Type

Description

coordinatoriD

VARCHAR2(10)

Coordinator ID, Primary Key

coordinatorName

VARCHAR2(50)

Coordinator full name

coordinatorEmail

Coordinator email

coordinatorPassword

VARCHAR2(20)

Coordinator password

coordinatorAddress

(

(
VARCHAR2(20)

(

(

VARCHARZ2(100)

Coordinator current address

coordinatorAge

INT

Coordinator age

coordinatorDateOfBirth

DATE

Coordinator date of birth

64

coordinatorGender

CHAR(1)

Coordinator gender

coordinatorPhoneNo

VARCHAR2(15)

Coordinator phone number

5.2.6 Entity: <Assessment>

Attribute Name Type Description

assessmentiD VARCHAR2(10) Assessment ID, Primary Key

assessmentQuestion VARCHAR2(200) Question in the assessment

assessmentAnswer CHAR(1) Answer for the question

studentAnswer CHAR(1) Answer for the question by the
student

assessmentStatus VARCHAR(20) Status of the assessment
(exist/null/finish)

grade CHAR(1) Grade of the assessment obtained
by student

marks INT Mark of the assessment obtained by
student

5.2.7 Entity: <Communication>

Attribute Name Type Description

messagelD VARCHAR2(10) Message ID, Primary Key
messageText VARCHAR(200) Text for the message
messageTime TIME Time of the message created
messageDate DATE Date of the message created

5.2.8 Entity: <Notification>

Attribute Name Type Description

notilD VARCHAR2(10) Notification ID, Primary Key

notiTitle VARCHAR(50) Title of the natification

notiContent VARCHAR(100) Content of the notification

notiTime TIME Time of the notification created

notiDate DATE Date of the notification created

notiStatus VARCHAR(20) Status of the notification created
5.2.9 Entity: <Login>

Attribute Name Type Description

userlD VARCHAR2(10) User ID, Primary Key

keyUsername VARCHAR2(20) Username key in by user

65

keyPassword

VARCHAR2(20)

Password key in by user

5.2.10 Entity: <Verification>

Attribute Name Type Description
verificationlD VARCHAR2(10) Verification ID, Primary Key
verificationStatus VARCHAR2(20) Status for the verification (true/false)

66

6.0 Interface Design

6.1 Overview of Interface

For login , where all the process started , the user whether student or lecturer will
need to login by inserting their username and password. After that, the user is needed to
click the button so that the process can be carried on. The system will be required to be
verified by finding the data that synchronizes with the existing data. There will be two
conditions where if the data have been found, the user will get the authorization to access
the system and will be directed to the main menu which contains a lot of option to choose
from such as notification , messaging and much more

If the data has not been found, there will be an error message displayed and it will be

redirected to the login menu.

For communication, this is the platform where the users are able to communicate
with each other through messaging. There will be four functions that can be used for
communication such as View Message, Add Message ,Delete Message and Edit
Message.The history of messaging and text will be saved into the database.

For View Message, the user is required to search for the message that the user
wanted. If the message is nowhere to be found, the user is required to find the message
again. Then, the message will be displayed on the screen.

For Add Message, the user is able to add any message to the other users whether
they have any questions to ask to their lecturer regarding the status of their internships. This
can be done by sending the message including photo, file and much more.

For Delete Message, the users are able to delete the message that they have sent
whether it is a photo or file. Sometimes the users have mistakenly sent the messages to the
wrong person. so the user needs to search for the message that they want to delete and just
delete it. They can delete as much they want . There are no restrictions on deleting the
message.

For Edit Message, the users have the rights to edit the messages that they have sent
to other users. This can be done by searching the messages that they want to edit. Here the
users are able to edit the message and there will be a notification pop out saying that the
messages have been updated . This is to prevent any miscommunication between users

such as student and lecturer or student and the company that they intern with.

For notification, this is where the user will get their notifications such as email. For
Coordinator, the features are Add Notification, Update Notification, and Delete Notification,
67

while Students features are only View Notification. All data that are related to notification are
saved in Notification Data.

For add notification, the coordinator must select Add Notification and it will send the
request to the database to access, and the coordinator is able to add notification to the
database.

For update notification, the coordinator must select Update Notification and it will
send a request to the database to access, and the system will search for the available data.
If the data exists, then the coordinator is able to update the notification, else it will return
back an error message.

For delete notification, the coordinator must select Delete Notification and it will send
a request to the database to access, and the system will search for the available data. If the
data exists, then the coordinator is able to delete the notification, else it will return back an
error message.

For view notification, the student must select View Notification and it will send a
request to the database to access, and the system will search for available data. If the data
exists, then the system will print out all the notification data until there is no more available

data.

For assessment, this is where the students are able to take exams which are
uploaded by the examiners. Features for assessment are Upload Question, Take Exam, and
View Grades.

For the Upload Question, the examiner must select the button that they want to
upload the question. If the question is not yet uploaded, the file containing the questions can
be uploaded by clicking the upload button, then the answer for each question needs to be
set by clicking the right answer for the questions. System then stores the questions and
answers in the database. Else, if the questions is already uploaded, it will print out a
message telling that the questions had been uploaded before, and then the examiner will be
redirected to the main page.

For the Take Exam, the exam questions must already be uploaded to the database,
and the student needs to click on the exam that they need to attend. Students then attempt
the exam by clicking the start button, all questions that are displayed must be answered by
the student. After finishing all questions, students are able to click the finish button to
complete the Take Exam.

For the View Grades, the exam questions must already be finished by the students.
The system will check the student’s answer based on the answer sheet that has been
uploaded to the database. The grades are obtained after checking is finished. If the student

68

wants to view grades, the grades will be displayed immediately after the exam. If the
examiner wants to view a student's grade, a list of students that finished the exam will be

displayed, and the examiner is able to click any student’s name to view their grades.

6.2 Overall Interface Design

-Login Interface

Login
Sign in to continue

USERNAME

example@email.com

PASSWORD

X
Login Error

Please enter the right username/password

USERNAME

example@email com

PASSWORD

try again

-Home Interface

69

000 Message Notification EXAM ® Student

Home

Welcome <<user>> to the main menu

NEWS

Lorem ipsum dolor sit Lorem ipsum dolor sit Lorem ipsum dolor sit
amet amet. amet.
Message Notification EXAM ® Examiner

Home

Welcome <<user>> to the main menu

NEWS

Lorem ipsum dolor sit Lorem ipsum dolor sit Lorem ipsum dolor sit
amet amet amet.
-Message Interface
000 Home Notification EXAM ® Student

Message

® Supervisor 4]

Click block to
view message

70

000 Home Notification EXAM ® Student
Message e seccme
® Supervisor 4] Q
Click block to add
message
Add Message
000 Home Notification EXAM ® Student
Message s s
_
® Supervisor] T
Click block to edit
message
Add Message
000 Home Notification EXAM ® Student
Message e seccme
_
® Supervisor 4]
Click message to
edit message \
Edit Message

71

000 Home

Notification EXAM

® Student

® Supervisor

Message

+1

Edit Message Delete Message

Edit Message and
click Edit
Message block

l

Edit Message
000 Home Notification EXAM ® Student
Message . s
_
® Supervisor 4] /
Click block to
delete message
Add Message
000 Home Notification EXAM ® Student
Message s s s
_
® Supervisor 4]
Click message to
delete message \
Add Message

-Notification Interface

72

000 Home Message EXAM ® Student

Notification

= View Notification To: Student

From : Coordinator DATE : 15/6/2022
Title: Extension of exam period

To : Student
From : Coordinator

Title: Exam period DATE: 11/6/2022

000 Home Message EXAM ® coordnator
Notification
™ AddNotification &——— Click block to add
notification

™ Update Notification

& Delete Notification

Home Message EXAM @ coorgrater
Notification
™M D24 DATE: 16/6/2022 TIME: 243PM Add Wotifeation

To : <<user>>

From: Coordinator

Title: "BIG TITLE"

Content

Enter text here

73

000 Home Message EXAM ® coorcnator

Notification
™ AddNotification

Click block to
update notification

™ Update Notification

& DeleteNotification

000 Home Message EXAM ® coordnator
Notification

To : Student

From : Coordinator DATE : 16/6/2022 Update

Title: Extension of exam period Notification

To : Student

From : Coordinator . Update

DATE: 11/6/2022 P

Title: Exam period Notification

000 Home Message EXAM ® coordnator
Notification
™M D: 2234 DATE: 15/6/2022 TIME : 243PM Update Notification

To : <<user>>

From : Coordinator

Title: "BIG TITLE"

Content

Enter text here

74

000 Home Message EXAM ® coordnator

Notification
™ AddNotification

™ Update Notification

Click block to delete

™ Delete Notification | €=—— notification

000 Home Message EXAM ® coordrater

Notification

To : Student
From : Coordinator

DATE:: 15/6/2022 Delete
Title: Extension of exam period Notification

To : Student

From : Coordinator Delete
DATE: 11/6/2022 o
Title: Exam period Notification

-Exam Interface

Home Message Notification ® Examiner

Exam

Upload Question

Test 2 (COA SECD8263) Status: Students not DATE : 13/6/2022

completed
Start: 8.00 pm P

75

000 Home Message Notification ® Examiner
Exam

EE | AP Upload
Title: "exam title"
Assessment Question Upload
Assessment Answer Upload
Date : "enter date here"
Starts : "start time" Ends: "end time"

000 Home Message Notification ® Examiner

Exam
Upload Question

Test 2 (COA SECD8263) Status: Completed DATE : 13/6/2022

Start:8.00 pm

Scores
000 Home Message Notification ® Examiner
Exam
1
Student's Result

Shahril Bin Saiful Bahri Score
Naruto Anak Lelaki Minato L0
Ichigo Kurosaki L0
Man Kedah S

76

000 Home Message Notification ® Student
Exam
EE 1 %2
Title: Test 2 (COA SECD8263)
Name : "student's name"
SCORES:
Marks : ?2/?? Grade: ??
EXAM
000 Home Message Notification ® Student
Exam
Test 2 (COA SECD8263) Status: Notyet DATE : 13/6/2022
answered
Start:8.00 pm start
000 Home Message Notfication ® Student
Exam
S %))
Title: Test 2 (COA SECD8263)
Start:8.00pm End:12.00 pm
Start Exam

77

Home Message Notification

® Student

Exam

2 ;a2

Title: Test 2 (COA SECD8263)

Finish Exam
000 Home Message Notification ® Student
Exam
= 7))
Title: Test 2 (COA SECD8263)
Name : "student's name"
SCORES:
Marks : 2?2/?? Grade: ??
EXAM
000 Home Message Notification ® Student
Exam
Test 2 (COA SECD8263) Status: Completed DATE: 13/6/2022
Start:8.00 pm View Score

78

