
System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

SESSION 2021/2022, SEMESTER 2

SECJ 2203: SOFTWARE ENGINEERING

ALTERNATIVE ASSESSMENT:

SOFTWARE TESTING DOCUMENT

PROJECT TITLE: Inferno 2u2i Final Year Project With Industry (FYP-I)

Management System

Name Shahril Bin Saiful Bahri

Matric No. A20EC0144

Year / Programme 2 SECBH

Section 01

Lecturer Name Puan Nor Hawaniah Zakaria

 i

Table of Contents

Section A Requirements-based Testing 2-4

 A1 Functional Requirements 2-3

 A1.1 Test Requirements (TR) 2

 A1.2 Test Cases 2-3

 A2 Non-Functional Requirements 3-4

 A2.1 Test Requirements (TR) 3

 A2.2 Test Cases 4

 A3 Summary 4

Section B Black-box Testing 5-9

 B1 Object Class 5-9

 B1.1 Equivalence Partitioning and Boundary Value

Analysis

5-8

 B1.1 Test Cases 9

 B2 Summary 10

Section C White-box Testing 11-12

 C1 Methods Class 11-12

 C1.1 Flow Graph 11

 C1.2 Cyclomatic Complexity 11-12

 C1.3 Test Cases 12

 C2 Summary 12

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

2

Section A: Requirements-based Testing

A1 Functional Requirements

Diagram 1: Use Case Notification

A1.1 Test Requirements (TR)

Table 1. List of Functional Test Requirements

Use Case (UC) TR ID Test Requirements

UC <09>

<Add

Notification>

TR001 Validate that Coordinator able press Notifications

TR002 Validate that Coordinator able to choose Add

Notification

TR003 Validate that Coordinator able select user (to send),

enter title and content of Notification

TR004 Validate that Coordinator able to Add Notification

TR005 Validate that Student able to choose Add Notification

A1.2 Test Cases

Table 2. List of Functional Test Cases

TR ID Case No. Data Entered Expected Result

TR002 TCTR002_01 User click Add Notification Display “Add Notification

Tab”

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

3

 TCTR002_02 User click Add Notification No output display

 TCTR002_03 User didn’t click Add

Notification

No output display

TR003 TCTR003_01 User selects user to send Display “user name” on Add

Notification Tab

 TCTR003_02 User enter title and content

of Notification

Display the data from user

input

“Title <user input>

Content <user input>”

 TCTR003_03 User enter title and content

of Notification

Unable to display user input

TR004 TCTR004_01 User click Add Notification

after successfully input

(user, title and content)

Display “Notification is

added”

 TCTR004_02 User click Add Notification

but missing

(user/title/content)

Display “This area is missing,

please enter the input”

 TCTR004_03 User didn’t click Add

Notification

No output display

A2 Non-Functional Requirements

A2.1 Test Requirements (TR)

Table 3. List of Non-Functional Test Requirements

Non-functional TR ID Test Requirements

Performance of

System

TR001 System should be able to take 1.0 second after

clicking anything on the system GUI

TR002 System should be able to handle more than 1000

students (including staff) and at least 200 users at one

time during peak hours

TR003 Sytem should have the capacity of having 10 contents

in a page with scrolling involved.

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

4

A2.2 Test Cases

Table 4. List of Non-Functional Test Cases

TR ID Case No. Data Entered Expected Result

TR001 TCTR001_01 Coordinator clicks on Add

Notification

Display “Add Notification

Tab” after 1.0 seconds.

 TCTR002_02 Coordinator clicks on

Delete Notification

Display “Notification List”

after 1.0 seconds.

 TCTR003_03 Coordinator clicks on

Delete Notification

Display “Notification List”

after 1.0 seconds.

A3 Summary

In my opinion, the best level of testing is the unit testing is because this type of

testing is performed at the earliest stages of development process. This is an

advantage as we are able to detect any errors in the early stages of the software

and by doing so it minimize the software development risk as well time and

money in changing the full completed software in the future. In conclusion, I

think unit testing is the best level of testing to implement in any software

engineering project.

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

5

Section B: Black-box Testing

B1 Object Class

B1.1 Equivalence Partitioning and Boundary Value Analysis

Table 5. Equivalence Partition and Input Range

Object

class

Attributes Equivalence Partition and Input Range

Coordinator coordinatorID 1. Valid : coordinatorID must be characters

[a-z] & characters [0-9] with length between

1-10

2. Invalid : coordinatorID must be characters

[a-z] & characters [0-9] with length more

than 10

3. Invalid : coordinatorID must be characters

[a-z] & characters [0-9] with length less than

1

coordinatorName 1. Valid : coordinatorName must be characters

[a-z] with length between 10-50

2. Invalid : coordinatorName must be

characters [a-z] with length more 50

3. Invalid : coordinatorName must be

characters [a-z] with length less 10

coordinatorEmail 1. Valid : coordinatorEmail must be characters

[a-z] with length between 10-20 &

“@example.com”

2. Invalid : coordinatorEmail must be

characters [a-z] with length more 20 &

“@example.com”

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

6

3. Invalid : coordinatorEmail must be

characters [a-z] with length less 10 &

“@example.com”

coordinatorPassword 1. Valid : coordinatorPassword must be

characters [a-z] with length between 10-20

2. Invalid : coordinatorPassword must be

characters [a-z] with length more 20

3. Invalid : coordinatorPassword must be

characters [a-z] with length less 10

coordinatorAddress 1. Valid : coordinatorPassword must be

characters [a-z] with length between 10-20

2. Invalid : coordinatorPassword must be

characters [a-z] with length more 20

3. Invalid : coordinatorPassword must be

characters [a-z] with length less 10

coordinatorAge 1. Valid : coordinatorAge must be integer more

than 0

2. Invalid : coordinatorAge must be integer less

than 0

coordinatorDateOfBirth 1. Valid : coordinatorDateOfBirth must be date

that is less than the currentDate

2. Invalid : coordinatorDateOfBirth must be

date that is same with the currentDate

3. Invalid : coordinatorDateOfBirth must be

date that is same more the currentDate

coordinatorGender 1. Valid : coordinatorGender must be character

[M/F]

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

7

2. Invalid : coordinatorGender must be

character other than [M/F]

coordinatorPhoneNo 1. Valid : coordinatorPhoneNo must be

characters [0-9] and between 1 and 15

2. Invalid : coordinatorPhoneNo must be

characters [0-9] and more than 15

3. Invalid : coordinatorPhoneNo must be

characters [0-9] and less than 1

Object

class

Attributes Equivalence Partition and Input Range

Notification

Database

notiId 1. Valid : notiId must be characters [a-z] &

characters [0-9] with the length between 1-

10

2. Invalid : notiId must be characters [a-z] &

characters [0-9] with the length more than

10

3. Invalid : notiId must be characters [a-z] &

characters [0-9] with the length less than 1

notiTitle 1. Valid : notiTitle must be characters [a-z] with

the length between 5-50

2. Invalid : notiTitle must be characters [a-z]

with the length more than 50

3. Invalid : notiTitle must be characters [a-z]

with the length less than 5

notiContent 1. Valid : notiContent must be characters [a-z]

with the length between 5- 100

2. Invalid : notiContent must be characters [a-

z] with the length more than 100

3. Invalid : notiContent must be characters [a-

z] with the length less than 5

notiTime 1. Valid : notiTime must be time which equals

to the currentTime

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

8

2. Invalid : notiTime must be time which more

than the currentTime

3. Invalid : notiTime must be time which less

than the currentTime

notiDate 1. Valid: notiDate must be date which equals to

the currentDate

2. Invalid : notiDate must be date which more

than the currentDate

3. Invalid : notiDate must be date which less

than the currentDate

notiStatus 1. Valid : notiStatus must be characters [a-z]

with the length between 1-20

2. Invalid : notiStatus must be characters [a-z]

with the length more than 20

3. Invalid : notiStatus must be characters [a-z]

with the length less than 1

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

9

B1.2 Test Cases

Table 6. Object Class Based Test Cases

Object name: Coordinator

Method name: AddData

Case

No.

Equivalence Class Pass

/Fail

?

Representative

(BVA)

Expected

Result

TC001 notiContent is character [a-z]

with length between 5-100

Pass Hello everyone I

love you

Data is added to

Notification

TC002 notiContent is character [a-z]

with length more than 100

Fail ***************

Invalid data

TC003 notiContent is character [a-z]

with length less than 5

Fail Hai Invalid length

Object name: NotificationDatabase

Method name: AddData

Case

No.

Equivalence Class Pass

/Fail

?

Representative

(BVA)

Expected

Result

TC001 notiContent is character [a-z]

with length between 5-100

Pass Hello everyone I

love you

Data is added to

Notification

TC002 notiContent is character [a-z]

with length more than 100

Fail ***************

Invalid data

TC003 notiContent is character [a-z]

with length less than 5

Fail Hai Invalid length

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

10

B2 Summary

In my opinion, this level of black box testing is to check whether the user entered the right

input. This is because it is important to check if the data is correct or it will make an error to

the system. For example we take the method AddData for both object Coordinator &

NotificationDatabase and the attribute being the notiContent. If the user successfully entered

the right format and length for the notiContent than they system will be able to insert the data

to the table. If we use the wrong format or length, the system cannot process the data and it

will be an invalid data. In conclusion, I think its very important to do black-box strategy

because it can maintain the system to be working as it is supposed to do.

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

11

Section C: White-box Testing

C1 Methods Class

Table 7. Methods Class

Entity Name NotificationDatabase

Method Name addData()

Input notiId, notiTitle, notiContent, notiTime, notiDate, notiStatus

Output -

Algorithm 1. Start
2. Controller request access to database
3. If the controller request to add data
 3.1 If format is correct
 3.1.1 Data is added to database
 3.2 Else
 3.2.1 Failed to add data to database
4. Existed data will be sent back to controller

5. End

C1.1 Flow Graph

System Testing Document for < Inferno 2u2i Final Year Project With Industry (FYP-I) Management
System >

12

C1.2 Cyclomatic Complexity

Formula 1: V(G) = #Edges - #Nodes +2

 = 8 – 8 + 2

 = 2

Formula 2: V(G) = #Predicates Nodes +1

 = 1 + 1

 = 2

Formula 3: V(G) = Region

 = 2

Independent Path:

1. 1-2-3-4-5-7-8

2. 1-2-3-4-6-7-8

C1.3 Test Cases

Table 8. Independent Path Based Test Cases

Case

No.

Independent Path Pass/Fail? Data* for Test

Cases

Expected

Result

TC001 1-2-3-4-5-7-8 Pass notiContent=

”Hello Everyone”

Data is added to

Notification

TC002 1-2-3-4-6-7-8 Pass notiContent=

“ ”

Invalid Data

C2 Summary

In my opinion, for the best level of white-box testing is unit testing because it is performed on

each unit or code as it is developing. This method helps us to find the path of the system which

can either be pass or fail based on our algorithm. For example for in table 8 we can determine

that if the system works. In conclusion, its important to do white-box testing to ensure that our

system is working fine.

