
SECJ2203: Software Engineering

System Documentation (SD)

2u2i Final Year Project with Industry (FYP-I)

Management System

Version 2.0

16 June 2022

School of Computing, Faculty of Engineering

Prepared by: Inferno

Name of Members:
1. Amir Iskandar Bin Norkhairulazaddin

2. Iman Ehsan Bin Hassan

3. Muhammad Aiman Bin Abdul Razak

4. Shahril Bin Saiful Bahri

Revision Page

a. Overview

In this system documentation version 1.0, it consists of the documentation components
that are adapted from IEEE Recommended Practice for Software Requirements
Specification, Software Design Description and Software Test Documentation that has
been simplified and customized. In this version, it will cover all of the sections from the
introduction until the specific requirements.

b. Target Audience

● Stakeholder
● Development Team
● Users

c. Project Team Members

List the team members in a table by stating their roles and the status for each assigned
task e.g. by sections for this SD version (complete, partially complete, incomplete). If the
assigned tasks are not done and have been assigned to other team members, state
accordingly.

Member Name Role Task Status
Shahril Bin Saiful
Bahri (A20EC0144)

Team Leader 3.2 Component
Model

4.2.3 Detail
Description of
<Notification>
subsystem

6.2 Overall Interface
Design

Completed

Amir Iskandar Bin
Norkhairulazaddin
(A20EC0011)

Team Member 4.1 Complete
Package Diagram
4.2.4 Detail
Description of
<Assessment>
subsystem
5.1 Data Description

Completed

Iman Ehsan Bin
Hassan
(A20EC0048)

Team Member 3.1 Architectural
Style and Rationale
4.2.1 Detail
Description of
<Login> subsystem

Completed

2

SD-Template-v3-ForSECJ2203-SE@UTM-15Apr2021

6.1 Overview of
Interface

Muhammad Aiman
Bin Abdul Razak
(A20EC0082)

Team Member 4.2.2 Detail
Description of
<Communication>
subsystem
5.2 Data Dictionary

Completed

d. Version Control History

Version Primary Author(s) Description of Version Date
Completed

1.0 Shahril Bin Saiful Bahri
(Team Leader)

Completed Chapter 1 and 2,
Section 1.1 to 1.5 and 2.1 to 2.5

05/06/2022

2.0 Amir Iskandar Bin
Norkhairulazaddin (Team
Leader)

Completed Chapter 3 until 6,
Section 3.1 to 6.1

16/06/2022

Note:

This System Documentation (SD) template is adapted from IEEE Recommended Practice for Software Requirements

Specification (SRS) (IEEE Std. 830-1998), Software Design Descriptions (SDD) (IEEE Std. 10161998 1), and Software Test

Documentation (IEEE Std. 829-2008) that are simplified and customized to meet the need of SECJ2203 course at School of

Computing, UTM. Examples of models are from Arlow and Neustadt (2002) and other sources stated accordingly.

3

SD-Template-v3-ForSECJ2203-SE@UTM-15Apr2021

Table of Contents

1 Introduction 3 - 5

1.1 Purpose 3

1.2 Scope 3, 4

1.3 Definitions, Acronyms and Abbreviations 4

1.4 References 4

1.5 Overview 4, 5

2 Specific Requirements 6 - 32

2.1 External Interface Requirements 6 - 8

2.1.1 User Interfaces 6, 7

2.1.2 Hardware Interfaces 7

2.1.3 Software Interfaces 7, 8

2.1.4 Communication Interfaces 8

2.2 System Features 8 - 31

2.2.1 UC001: Use Case <Login> 12, 13

2.2.2 UC002: Use Case <Verification> 14, 15

2.2.3 UC003: Use Case <View Message> 15, 16

2.2.4 UC004: Use Case <Add Message> 16, 17

2.2.5 UC005: Use Case <Delete Message> 17, 18

2.2.6 UC006: Use Case <Edit Message> 18, 19

2.2.7 UC007: Use Case <Notification Data> 19, 20

2.2.8 UC008: Use Case <View Notification> 20, 21

2.2.9 UC009: Use Case <Add Notification> 21, 22

2.2.10 UC010: Use Case <Update Notification> 22, 23

2.2.11 UC011: Use Case <Delete Notification> 23, 24

2.2.12 UC012: Use Case <Return Message> 24, 25

1

2.2.13 UC013: Use Case <Upload Question> 25, 26, 27

2.2.14 UC014: Use Case <Take Exam> 27, 28, 29

2.2.15 UC015: Use Case <View Grades> 29, 30, 31

2.3 Performance and Other Requirements 31

2.4 Design Constraints 31, 32

2.5 Software System Attributes 32

3 System Architectural Design 33-34

3.1 Architectural Style and Rationale 33

3.2 Component Model 34

4 Detailed Description of Components 35-61

4.1 Complete Package Diagram 35

4.2 Detailed Description 35-61

4.2.1 P001: <Login> Subsystem 35-40

4.2.2 P002: <Communication> Subsystem 40-47

4.2.3 P003: <Notification> Subsystem 47-53

4.2.4 P004: <Assessment> Subsystem 53-61

5 Data Design 62-66

5.1 Data Description 62-63

5.2 Data Dictionary 63-66

6 Interface Design 67-78

6.1 Overview of Interface 67-78

2

1. Introduction

1.1 Purpose

This Software Documentation describes the proposed 2u2i Final Year Project with
Industry (FYP-I) Management System in which several sections will be clarified. The
sections that will be described for this software documentation are the specific requirements,
detailed description of components and the requirements matrix. This document contains the
system design that explains the architecture of the system. This also includes the complete
description of the components used in the system. The data design is also included in this
documentation that contains the data description and data dictionary. This documentation
was intended for the stakeholder, development team and the system’s user. This is to
provide them with necessary information about the system that will help them to understand
more about the function available in the system. The stakeholder can make a decision,
approval or changes to the system based on the documentation. Other than that, the
development team can use the documentation to show and monitor their progress in the
development process. The audience of the documentation also can provide necessary
feedback during the development based on the documentation.

1.2 Scope

The software product is the internship system which mainly focuses on final year students

that undergo internships. It is a system where all the students will interact to find their right

place in the internship. The system add, delete and edit the messages to ease the process

of the communication .This helps the students to ask their lecturer if they have any inquiries

.Other than that, there are notification systems where the student and lecturer can view

,add,update and delete notifications .This helps students to stay up to date with any new

information that is related to internship news.

The scope of this system includes

- User access by authentication

- View message

- Add message

- Delete message

- Edit message

- View notification

- Delete notification

- Upload questions

- View grades

- Take exam
3

This internship system is an online application that can be accessed by the website which

provides both lecturer and student access and find the information more easily. The goal of

the system is to create a platform for the student to find their company to do the internships.

Meanwhile, the objective is to make lecturer and supervisor jobs easier and save their time

of helping their students to find the place for an internship.

1.3 Definitions, Acronyms and Abbreviation
Definitions of all terms, acronyms and abbreviation used are to be defined here.

Terms,
Acronyms/Abbreviation

Meaning

SD System Documentation

Stakeholder Individual or group that has an interest in any decision or
activity of an organization

Inquiries An act of asking information

Mnemonic A system such as pattern of letters, ideas, or associaciations
which assists in remembering something.

C++ An object-oriented computer language.

IDE Integrated development environment is software for building
applications that combines common developer tools into a
single graphical user interface (GUI).

1.4 References

1. Sommerville, I. 2016. “Software Engineering”, 10th Edition, Pearson.

1.5 Overview .

The 2u2i Final Year Project with Industry (FYP-I) Management System consists of

introduction, specific requirements, system architectural design, detailed description of

components, data design, interface design, requirements matrix, test cases, as well as

appendices. In the introductory phase, we describe the purpose and scope of the project.

We have also provided definitions and abbreviations, as well as some references. In specific

4

requirements, we have covered several external interface requirements which includes user

interfaces, hardware interfaces, software interfaces, and communication interfaces. We also

explained about several system features which include user access, communication,

notification data and assessment. The performance of the project as well as the constraints

were also discussed. Other than that, software system attributes were also discussed. In

system architectural design, we have explained about architectural style and rationale as

well as component model. For detailed description of components, the complete package

diagram as well as detailed description of its subsystems were discussed. Data design

section includes the data description and data dictionary. For interface design, we have

displayed an overview of the interface as a whole. We have also discussed the

requirements matrix. For the last part, we discuss the test cases in the project.

5

2. Specific Requirements

2.1 External Interface Requirements
2.1.1 User Interfaces

User access

● Users are required to enter their username and password.

● Student will enter the main page of student's profile while supervisor will enter the

main page of supervisor profile

● Access will be given to the right username and password through verification

● The username and password will be save for future login

● There will be authentication for the user to make sure that the right user enter the

system

Notification

● Users can access the notification by going to the interface and choosing notification

● Students are only able to view the notifications that are available in the notification

database.

● Coordinator able to modify the notifications database by adding more notifications to

the database.

● Coordinator able to modify the notifications database by updating the searched

notifications in the database.

● Coordinator able to modify the notification database by deleting the searched

notifications in the database.

● The system will display “no data found” if there is no data found in the database.

Communication

● Students, supervisors, coordinators, coaches, and examiners are able to have full

accessibility to view, add, delete, and edit a message.

● Users are able to access messages in the system by going to the interface and

choosing notification

● Users are able to view existing messages by them or by other people in the system.

● Users are able add a new message in the system.

● Users are able to delete an existing message in the system.

● Users are able to edit an existing message created by them in the system.
6

● The system will keep an organized list of messages added by users of the system.

Assessment

● Examiners can upload the questions by adding it into the database.

● Students can take the exam online by attempting it on the system.

● Students can view their grade after they have finished their exam.

● Examiners can view their student’s grade after their student;s has finished the exam.

2.1.2 Hardware Interfaces

The 2u2i Final Year Project with Industry (FYP-I) Management System is a web

based system. The system will be connected to the servers provided by Amazon Web

Services and database from MySQL. The web server will have 8 GB of RAM to support the

system load while using it. The database will have 1TB capacity to store all of the data. The

system can be accessed from multiple devices such as smartphone, laptop or desktop. It

also can be accessed by computers that use different operating systems such as Windows,

MacOS or Linux. The clients are required to use modern web browsers such as Google

Chrome, Microsoft Edge or Mozilla Firefox. The clients also need to have an Internet

connection with minimum bandwidth of 10MB/s to access the system. The data from the

server will be transferred and received by the clients using basic networking protocols. They

also need to enable cookies to ensure they get the best experience using the system.

2.1.3 Software Interfaces

1. Google Chrome (Web Browser)
Name: Google Chrome

Mnemonic: Chrome, Google

Specification number: 103.0.000.00

Version number:

103.0.5060.33 (Windows & macOS & Linux)

103.0.5060.33(Android)

103.0.5060.34(iOS)

Sources: www.google.com/chrome/

Discussion: We use this web browser to operate our systems because it's easier and

fast for our users.

7

http://www.google.com/chrome/

2. MySQL (Database)
Name: MySQL

Mnemonic: CREATETABLE, SELECT, INSERT INTO

Specification number: 8.0.00

Version number: 8.0.28

Sources: https://www.mysql.com/

Discussion: The database that we used to create, store, search, and also delete all

the data in the system.

3. VSC (Programming Software)
Name: Visual Studio Code

Mnemonic: C++, Java, Python

Specification number: 1.67.0

Version number: 1.67.2

Sources: https://code.visualstudio.com/

Discussion: The best IDE for us to operate our programming software using many

languages such as MySQL and also C++.

2.1.4 Communication Interfaces
This should list the different communication interfaces, such as local network protocols and

so on. For receiving student and college management information and encrypting all

important information from and into our system for data transfer security, our system will

employ Hypertext Transfer Protocol Secure (https). HTTP is a protocol for sending and

receiving data.

TCP/IP (Transmission Control Protocol/Internet Protocol) is also used by the system to link

network devices via the internet. It may also be used to send data across the Internet. For

data transfer, TCP is used. TCP is compatible with IP and enhances it. It's used to send and

receive data through a network. It breaks down any communication into a sequence of

packets that are transferred from source to destination, where they are reassembled.

2.2 System Features
The system features included in the use case diagram. The use case diagrams will

be used to explain the features in the system. The domain model will be used to represent

the relationship between the classes in the system. There are also use case descriptions
8

https://www.mysql.com/
https://code.visualstudio.com/

and sequence diagrams to explain all of the processes involved in the 2u2i Final Year

Project with Industry (FYP-I) Management System. The use case description will explain all

of the condition and flow of the events of a use case while the sequence diagram will explain

the interaction of the classes while the use case is executed.

9

Figure 2.1: Use Case Diagram for <2u2i Final Year Project with Industry (FYP-I) Management System>

10

Figure 2.2: Activity Diagram for <2u2i Final Year Project with Industry (FYP-I) Management System>

11

Figure 2.3: Domain Model for <2u2i Final Year Project with Industry (FYP-I) Management System>

2.2.1 UC001: Use Case <Login>

12

Figure 2.4: Use Case Description for <Login>

Figure 2.5: Sequence Diagram for <Login>

13

2.2.2 UC002: Use Case<Verification>

Figure 2.6: Use Case Description for <Verification>

14

Figure 2.7: Sequence Diagram for <Verification>

2.2.3 UC003: Use Case<View Message>

Figure 2.8: Use Case Description for <View Message>

15

Figure 2.9: Sequence Diagram for <View Message>

2.2.4 UC004: Use Case<Add Message>

Figure 2.10: Use Case Description for <Add Message>

16

Figure 2.11: Sequence Diagram for <Add Message>

2.2.5 UC005: Use Case<Delete Message>

Figure 2.12: Use Case Description for <Delete Message>

17

Figure 2.13: Sequence Diagram for <Delete Message>

2.2.6 UC006: Use Case<Edit Message>

Figure 2.14: Use Case Description for <Edit Message>

18

Figure 2.15: Sequence Diagram for <Edit Message>

2.2.7 UC007: Use Case <Notification Data>

Figure 2.16: Use Case Description for <Notification Data>

19

Figure 2.17: Sequence Diagram for <Notification Data>

2.2.8 UC008: Use Case <View Notification>

Figure 2.18: Use Case Description for <View Notification>

20

Figure 2.19: Sequence Diagram for <View Notification>

2.2.9 UC009: Use Case <Add Notification>

Figure 2.20: Use Case Description for <Add Notification>

21

Figure 2.21: Sequence Diagram for <Add Notification>

2.2.10 UC010: Use Case <Update Notification>

Figure 2.22: Use Case Description for <Update Notification>

22

Figure 2.23: Sequence Diagram for <Update Notification>

2.2.11 UC011: Use Case <Delete Notification>

Figure 2.24: Use Case Description for <Delete Notification>

23

Figure 2.25: Sequence Diagram for <Delete Notification>

2.2.12 UC012: Use Case <Return Message>

Figure 2.26: Use Case Description for <Return Message>

24

Figure 2.27: Sequence Diagram for <Return Message>

2.2.13 UC013: Use Case<Upload Question>

Figure 2.28: Use Case Description for <Upload Question>

25

Figure 2.29: Sequence Diagram for <Upload Question> if Question Not Available

26

Figure 2.30: Sequence Diagram for <Upload Question> if Question Available

2.2.14 UC014: Use Case<Take Exam>

27

Figure 2.31: Use Case Description for <Take Exam>

28

Figure 2.32: Sequence Diagram for <Take Exam>

2.2.15 UC015: Use Case<View Grades>

29

Figure 2.33: Use Case Description for <View Grades>

30

Figure 2.34: Sequence Diagram for <View Grades>

2.3 Performance and Other Requirements
● The RESPONSE TIME of the system should be only 1.0 second after the user clicks

on the system.

● The WORKLOAD of the system should be able to handle more than 1000 students

(including staff) and at least 200 users at one time during peak hours.

● The THROUGHPUT of the system should be around 10 operations per second. This

means that the system can handle updating, adding, deleting and viewing content all

at the same time.

● The CAPACITY of the system should be around 10 contents in a page with scrolling

involved.

2.4 Design Constraints
● The system will be represented following the standards that are used on websites

nowadays so the users can easily understand the system.

● The contents of the system shall follow the regulations by the Malaysia Government

and Universiti Teknologi Malaysia (UTM).

31

● The language that will be used in the system is only limited to English and Bahasa

Melayu.

● The system shall store the file related to the Final Year Project of 2u2i students that

are currently doing their industrial training including their assessment.

● The file stored can only be accessed by those who have authorities.

● The website is constrained by the capacity of access that it can have at one time.

Heavy load can cause the transfer of data to be slower and may cause server down.

2.5 Software System Attributes
● The system is available on any web browser
● Unique username and password registered for every user. They can use the

username and password to log in to the system.
● Users can view, add, delete, edit messages to any users that are registered to the

system.
● Students are able to view notifications that have been sent by the coordinator.
● The students are able to view their grades after they finished the exam.

32

3.0 System Architectural Design

3.1 Architecture Style and Rationale
The architectural style that we use is layered architecture style. The layered
architecture style is organized into horizontal layers where each layer will perform a
specific role in the system. There are 4 layers of layered architecture: presentation
layer, data service layer , business logic layer and data access layer. It is composed
of many layers that function together as a single unit of software. The layered
architecture style usually works where the data stores are controlled by layer .The
client needs to request the systems to perform certain actions. Basically the data is
held on the central database where all subsystems can be accessed and this makes
the activities to be more manageable as it is split into smaller tasks. Here are a lot of
reasons why we choose this kind of architecture .One of the reasons is this
architecture helps us to organize the data of the students and lecturers in a single
database and are able to be accessed by the university. With this architecture, we
are able to see any development changes in each of the subsystems and are able to
make the changes .Other than that, layered architecture is simple and it is easy to
implement and learn. Next , it has the consistency in the overall code and the
layered projects. Also, it is browable where all the objects are kept together.

33

3.2 Component Model

Figure 3.1: Component Diagram of <Inferno 2u2i Final Year Project with Industry (FYP-I) Management

System >

In the system, there are a total of 4 subsystems which are the login, assessment,
communication and notification subsystem. Each of these subsystems will be connected as
shown above. The login subsystem is connected to the other 3 subsystems. This is because
the user needs to log into the system first before they can access the system. In the Login
subsystem, the verification needs the login information from the login component. Then, the
verification component will let the user access into the system according to their role. In the
Assessment subsystem, there dependencies exist between the components. The take exam
component needs to require the question from the upload question component. Then, the
view grades component needs to require grades from the take exam component. In the
Notification subsystem, all of the components are connected to the notification data
component. In the Communication subsystem, all of the components are connected to the
message database.

34

4.0 Detailed Description of Components

4.1 Complete Package Diagram.

Figure 4.1: Package Diagram for <Inferno 2u2i Final Year Project with Industry (FYP-I) Management

System>

4.2 Detailed Description
4.2.1 P001: <Login> Subsystem

Figure 4.2: Package Diagram for <Login> Subsystem

35

4.2.1.1 Class Diagram

Figure 4.3: Class Diagram for <Login> Subsystem

Entity Name Student
Method Name EnterUserNamePassword()
Input keyUsername, keyPassword
Output
Algorithm 1. Start

2. User entered their username and password by keyboard
3. End

Entity Name Student
Method Name requestLogin()
Input GUI Input

36

Output
Algorithm 1. Start

2. User click on the login button
3. End

Entity Name Supervisor
Method Name EnterUserNamePassword()
Input keyUsername, keyPassword
Output
Algorithm 1. Start

2. User entered their username and password by keyboard
3. End

Entity Name Supervisor
Method Name requestLogin()
Input GUI Input
Output
Algorithm 1. Start

2. User click on the login button
3. End

Entity Name Coordinator
Method Name EnterUserNamePassword()
Input keyUsername, keyPassword
Output
Algorithm 1. Start

2. User entered their username and password by keyboard
3. End

Entity Name Coordinator
Method Name requestLogin()
Input GUI Input
Output
Algorithm 1. Start

2. User click on the login button
3. End

37

Entity Name Coach
Method Name EnterUserNamePassword()
Input keyUsername, keyPassword
Output
Algorithm 1. Start

2. User entered their username and password by keyboard
3. End

Entity Name Coach
Method Name requestLogin()
Input GUI Input
Output
Algorithm 1. Start

2. User click on the login button
3. End

Entity Name Examiner
Method Name EnterUserNamePassword()
Input keyUsername, keyPassword
Output
Algorithm 1. Start

2. User entered their username and password by keyboard
3. End

Entity Name Examiner
Method Name requestLogin()
Input GUI Input
Output
Algorithm 1. Start

2. User click on the login button
3. End

Entity Name VerificationDatabase
Method Name UserFound()
Input keyUsername, keyPassword
Output verificationStatus
Algorithm 1. Start

2. If keyUsername && keyPassword not null

38

2.1 If keyUsername && keyPassword match
2.2 verificationStatus = “success”

3. End

Entity Name VerificationDatabase
Method Name UserNotFound()
Input keyUsername,keyPassword
Output verificationStatus
Algorithm 1. Start

2. If keyUsername && keyPassword null
2.1 If keyUsername && keyPassword not matched
2.2 verificationStatus = “fail”

3. End

4.2.1.2 Sequence Diagram

a) SD001: Sequence diagram for Login

39

Figure 4.4: Sequence Diagram for <Login>

b) SD002: Sequence diagram for Verification

Figure 4.5: Sequence Diagram for <Verification>

4.2.2 P002: <Communication> Subsystem

Figure 4.6: Package Diagram for <Communication> Subsystem

40

4.2.2.1 Class Diagram

Figure 4.7: Class Diagram for <Communication> Subsystem

Entity Name Student
Method Name accessMessages
Input studentID, studentPassword
Output messageData
Algorithm 1. Start

2. Student logs in to system with ID and password
3. Student chooses to view, add, delete, or edit message
4. If student chooses to view message, communication database will

get and display messages
5. Else if student chooses to add message, student can add

message which will be set by communication database

41

6. Else if student chooses to delete message, student can delete
message which will be removed by communication database

7. Else if student chooses to edit message, student can edit message
by resetting the message data in communication database

8. End

Entity Name Supervisor
Method Name accessMessages
Input svID, svPassword
Output messageData
Algorithm 1. Start

2. Supervisor logs in to system with ID and password
3. Supervisor chooses to view, add, delete, or edit message
4. If supervisor chooses to view message, communication database

will get and display messages
5. Else if supervisor chooses to add message, supervisor can add

message which will be set by communication database
6. Else if supervisor chooses to delete message, supervisor can

delete message which will be removed by communication
database

7. Else if supervisor chooses to edit message, supervisor can edit
message by resetting the message data in communication
database

8. End

Entity Name Coordinator
Method Name accessMessages
Input coordinatorID, coordinatorPassword
Output messageData
Algorithm 1. Start

2. Coordinator logs in to system with ID and password
3. Coordinator chooses to view, add, delete, or edit message
4. If coordinator chooses to view message, communication database

will get and display messages
5. Else if coordinator chooses to add message, coordinator can add

message which will be set by communication database
6. Else if coordinator chooses to delete message, coordinator can

delete message which will be removed by communication
database

7. Else if coordinator chooses to edit message, coordinator can edit
message by resetting the message data in communication
database

8. End

Entity Name Coach
Method Name accessMessages
Input coachID, coachPassword

42

Output messageData
Algorithm 1. Start

2. Coach logs in to system with ID and password
3. Coach chooses to view, add, delete, or edit message
4. If coach chooses to view message, communication database will

get and display messages
5. Else if coach chooses to add message, coach can add message

which will be set by communication database
6. Else if coach chooses to delete message, coach can delete

message which will be removed by communication database
7. Else if coach chooses to edit message, coach can edit message

by resetting the message data in communication database
8. End

Entity Name Examiner
Method Name accessMessages
Input examinerID, examinerPassword
Output messageData
Algorithm 1. Start

2. Examiner logs in to system with ID and password
3. Examiner chooses to view, add, delete, or edit message
4. If examiner chooses to view message, communication database

will get and display messages
5. Else if examiner chooses to add message, examiner can add

message which will be set by communication database
6. Else if examiner chooses to delete message, examiner can delete

message which will be removed by communication database
7. Else if examiner chooses to edit message, examiner can edit

messages by resetting the message data in communication
database

8. End

Entity Name UserCommunicationInterface
Method Name accessViewMessages, accessAddMessages, accessDeleteMessages,

accessEditMessages
Input -
Output -
Algorithm 1. Start

2. Interface receives choice by user
3. If user chooses view message, go to viewMessageHandler
4. Else if user chooses add message, go to addMessageHandler
5. Else if user chooses delete message, go to

deleteMessageHandler
6. Else if user chooses edit message, go to editMessageHandler
7. End

Entity Name iewMessageHandler

43

Method Name displayMessage
Input -
Output -
Algorithm 1. Start

2. viewMessageHandler will display message from communication
database

3. End

Entity Name addMessageHandler
Method Name addMessage
Input -
Output -
Algorithm 1. Start

2. addMessageHandler will add new message data to
communication database

3. End

Entity Name deleteMessageHandler
Method Name deleteMessage
Input -
Output -
Algorithm 1. Start

2. deleteMessageHandler will delete existing message data from
communication database

3. End

Entity Name editMessageHandler
Method Name editMessage
Input -
Output -
Algorithm 1. Start

2. editMessageHandler will edit existing message data from
communication database

3. End

Entity Name MessageDatabase
Method Name getMessage, setMessage
Input messageData
Output messageData
Algorithm 1. Start

2. Database will receive command from user
3. If user wants to view message, communication database will get

and display message data

44

4. Else if user wants to add message, communication database will
set new message into message data in communication database

5. Else if user wants to delete message, communication database
will delete message by messageID

6. Else if user wants to edit message, communication database will
set new message to the existing message

4.2.2.2 Sequence Diagram
a) SD003: Sequence diagram for View Message

Figure 4.8: Sequence Diagram for <View Message>

b) SD004: Sequence diagram for Add Message

45

Figure 4.9: Sequence Diagram for <AddMessage>

c) SD005: Sequence diagram for Delete Message

Figure 4.10: Sequence Diagram for <Delete Message>

d) SD006: Sequence diagram for Edit Message
46

Figure 4.11: Sequence Diagram for <Edit Message>

4.2.3 P003: <Notification> Subsystem

Figure 4.12: Package Diagram for <Notification> Subsystem

4.2.3.1 Class Diagram

47

Figure 4.13: Class Diagram for <Notification> Subsystem

Entity Name Student
Method Name chooseNotification()
Input GUI Input
Output -
Algorithm 1. Start

2. Student choose notification
3. End

Entity Name Coordinator
Method Name chooseNotification()
Input GUI Input
Output -
Algorithm 1. Start

2. Coordinator choose notification
3. End

Entity Name NotificationDatabase

48

Method Name sendData()
addData()
searchData()

Input notiID,notiTitle,notiContent,notiTime,notiDate,notiStatus
Output -
Algorithm 1. Start

2. Controller request access to database
3. If the controller wants to add data, it will add it to the database
4. If controller wants data it will search the data using searchData
5. Existed data will be sent back to controller
6. End

Boundary Name StudentNotificationInterface
Method Name chooseViewNotification()

displayNotification()
Input -
Output displayNotification()
Algorithm 1. Start

2. Choose view notification
3. Data from ViewNotificationHandler is shown using

displayNotification()
4. End

Boundary Name CoordinatorNotificationInterface
Method Name chooseAddNotification()

chooseUpdateNotification()
chooseDeleteNotification()

Input -
Output -
Algorithm 1. Start

2. If choose add notification, go to AddNotificationHandler
3. If choose update notification, go to UpdateNotificationHandler
4. If choose delete notification, go to DeleteNotificationHandler
5. End

Controller Name ViewNotificationHandler
Method Name accessNotification()

notificationData()
returnMessage()

Input -
Output -
Algorithm 1. Start

2. Request access data at NotificationDatabase
3. If data exist data will be sent to StudentNotificationInterface

49

4. Else it will returnMessage showing error
5. End

Controller Name AddNotificationHandler
Method Name accessNotification()

notificationData()
Input -
Output -
Algorithm 1. Start

2. Request access data at NotificationDatabase
3. End

Controller Name UpdateNotificationHandler
Method Name accessNotification()

updateNotificationData()
returnMessage()

Input -
Output -
Algorithm 1. Start

2. Request access data at NotificationDatabase
3. If data exist coordinator can update data
4. Else it will returnMessage showing error
5. End

Controller Name DeleteNotificationHandler
Method Name accessNotification()

deletenotificationData()
returnMessage()

Input -
Output -
Algorithm 1. Start

2. Request access data at NotificationDatabase
3. If data exist coordinator can update data
4. Else it will returnMessage showing error
5. End

50

4.2.3.2 Sequence Diagram
a)SD007 : Sequence diagram for NotificationDatabase

Figure 4.14: Sequence Diagram for <NotificationDatabase>

b)SD008 : Sequence diagram for ViewNotification

Figure 4.15: Sequence Diagram for <ViewNotification>

c)SD009 : Sequence diagram for AddNotification

51

Figure 4.16: Sequence Diagram for <AddNotification>

d)SD010 : Sequence diagram for UpdateNotification

Figure 4.17: Sequence Diagram for <UpdateNotification>

e)SD011 : Sequence diagram for DeleteNotification

Figure 4.18: Sequence Diagram for <DeleteNotification>

52

f)SD012 : Sequence diagram for ReturnMessage

Figure 4.19: Sequence Diagram for <ReturnMessage>

4.2.4 P004: <Assessment> Subsystem

Figure 4.20: Package Diagram for <Assessment> Subsystem

53

4.2.4.1 Class Diagram

Figure 4.21: Class Diagram for <Assessment> Subsystem

Entity Name Student
Method Name AttendExam()
Input GUI Input
Output
Algorithm 1. Start

2. User clicks on the attend exam button
3. Exam information is displayed
4. End

Entity Name Student
Method Name AttemptExam()
Input GUI Input
Output
Algorithm 1. Start

54

2. User clicks on the attempt exam button
3. Exam is started and questions is displayed
4. End

Entity Name Student
Method Name AnswerQuestion()
Input studentAnswer
Output
Algorithm 1. Start

2. User enters their answer for the question
3. studentAnswer is updated
4. End

Entity Name Student
Method Name FinishExam()
Input GUI Input
Output
Algorithm 1. Start

2. User clicks on the finish button
3. Message indicate exam has finished is displayed
4. End

Entity Name Student
Method Name ViewGrades()
Input
Output grade
Algorithm 1. Start

2. Grade is obtained from the database
3. Grade is displayed
4. End

Entity Name Examiner
Method Name UploadQuestion()
Input GUI Input
Output
Algorithm 1. Start

2. User clicks on the upload question button
3. Upload menu is displayed
4. End

Entity Name Examiner
Method Name UploadFile()

55

Input assessmentQuestion
Output
Algorithm 1. Start

2. If assessmentQuestion not available
2.1 User enters the question for the exam
2.2 The assessment question is updated
2.3 Success message is displayed

3. Else
3.1 User cannot upload the question
3.2 Message about the question already available is displayed
3.3 User directed to the main menu.

4. End

Entity Name Examiner
Method Name DirectMainMenu()
Input GUI Input
Output
Algorithm 1. Start

2. User clicks on the back to main menu button
3. Main menu is displayed
4. End

Entity Name AssessmentDatabase

Method Name CheckIfQuestionExist()
Input
Output availability
Algorithm 1. Start

2. If assessmentQuestion is not null
2.1 return true

3. End

Entity Name AssessmentDatabase
Method Name QuestionNull()
Input
Output availability
Algorithm 1. Start

2. if assessmentQuestion is null
2.1 return false

3. End

Entity Name AssessmentDatabase
Method Name SaveQuestion()

56

Input assessmentQuestion
Output
Algorithm 1. Start

2. Assessment question entered by the user is updated in the
database

3. End

Entity Name AssessmentDatabase
Method Name SaveAnswer()
Input assessmentAnswer
Output
Algorithm 1. Start

2. Assessment answer entered by the user is updated in the
database

3. End

Entity Name AssessmentDatabase
Method Name QuestionAvailable()
Input
Output
Algorithm 1. Start

2. If assessmentQuestion not null
2.1 availability = true

3. End

Entity Name AssessmentDatabase
Method Name GetExam()
Input
Output assessmentID
Algorithm 1. Start

2. assessmentID is obtained from the database
3. assessmentID is sent to the controller
4. End

Entity Name AssessmentDatabase
Method Name GetQuestion()
Input
Output assessmentQuestion
Algorithm 1. Start

2. assessmentQuestion is obtained from the database
3. assessmentQuestion is sent to the controller
4. End

57

Entity Name AssessmentDatabase
Method Name UpdateAnswer()
Input studentAnswer
Output
Algorithm 1. Start

2. studentAnswer is updated in the database
3. End

Entity Name AssessmentDatabase
Method Name GetGrade()
Input
Output grade
Algorithm 1. Start

2. Grade is calculated based on the amount of correct answer by
the student

3. If marks<=40
3.1 grade=’F’

4. else if marks<=50
4.1 grade=’D’

5. else if marks<=60
5.1 grade=’C’

6. else if marks<=80
6.1 grade=’B’

7. else if marks<=100
7.1 grade=’A’

8. return grade
9. End

58

4.2.4.2 Sequence Diagram
a)SD013 : Sequence diagram for Upload Questions

Figure 4.22: Sequence Diagram for <Upload Question>

59

b)SD014 : Sequence diagram for Take Exam

Figure 4.23: Sequence Diagram for <Take Exam>

60

c)SD015 : Sequence diagram for View Grade

Figure 4.24: Sequence Diagram for <Vire Grades>

61

5.0 Data Design

5.1 Data Description
The major data or systems entities are stored into a relational database named Inferno 2u2i

Final Year Project with Industry (FYP-I) Management System, processed and organized into

10 entities as listed in Table 5.1.

Figure 5.1: Entity Relationship Diagram for <Inferno 2u2i Final Year Project with Industry (FYP-I)

Management System>

62

Table 5.1: Description of Entities in the Database

No. Entity Name Description
1. Student Store the information of the student
2. Coach Store the information of the coach
3. Supervisor Store the information of the supervisor
4. Examiner Store the information of the examiner
5. Coordinator Store the information of the coordinator
6. Assessment Store the information related to assessment
7. Communication Store the messages between users
8. Notification Store the information about notifications
9. Login Store the information related to login
10 Verification Store the information related to verification

5.2 Data Dictionary
5.2.1 Entity: <Student>

Attribute Name Type Description
studentID VARCHAR2(10) Student ID, Primary Key
studentName VARCHAR2(50) Student full name
studentEmail VARCHAR2(20) Student email
studentPassword VARCHAR2(20) Student password
studentCGPA NUMERIC(2,2) Student CGPA
studentAddress VARCHAR(100) Student current address
studentAge INT Student age
studentDateOfBirth DATE Student date of birth
studentGender CHAR(1) Student gender
studentPhoneNo VARCHAR(15) Student phone number

5.2.2 Entity: <Coach>

Attribute Name Type Description
coachID VARCHAR2(10) Coach ID, Primary Key
coachName VARCHAR2(50) Coach full name
coachEmail VARCHAR2(20) Coach email
coachPassword VARCHAR2(20) Coach password
coachAddress VARCHAR2(100) Coach current address
coachAge INT Coach age

63

coachDateOfBirth DATE Coach date of birth
coachGender CHAR(1) Coach gender
coachPhoneNo VARCHAR2(15) Coach phone number

5.2.3 Entity: <Supervisor>

Attribute Name Type Description
svID VARCHAR2(10) Supervisor ID, Primary Key
svName VARCHAR2(50) Supervisor full name
svEmail VARCHAR2(20) Supervisor email
svPassword VARCHAR2(20) Supervisor password
svAddress VARCHAR2(100) Supervisor current address
svAge INT Supervisor age
svDateOfBirth DATE Supervisor date of birth
svGender CHAR(1) Supervisor gender
svPhoneNo VARCHAR2(15) Supervisor phone number

5.2.4 Entity: <Examiner>

Attribute Name Type Description
examinerID VARCHAR2(10) Examiner ID, Primary Key
examinerName VARCHAR2(50) Examiner full name
examinerEmail VARCHAR2(20) Examiner email
examinerPassword VARCHAR2(20) Examiner password
examinerAddress VARCHAR2(100) Examiner current address
examinerAge INT Examiner age
examinerDateOfBirth DATE Examiner date of birth
examinerGender CHAR(1) Examiner gender
examinerPhoneNo VARCHAR2(15) Examiner phone number

5.2.5 Entity: <Coordinator>

Attribute Name Type Description
coordinatorID VARCHAR2(10) Coordinator ID, Primary Key
coordinatorName VARCHAR2(50) Coordinator full name
coordinatorEmail VARCHAR2(20) Coordinator email
coordinatorPassword VARCHAR2(20) Coordinator password
coordinatorAddress VARCHAR2(100) Coordinator current address
coordinatorAge INT Coordinator age
coordinatorDateOfBirth DATE Coordinator date of birth

64

coordinatorGender CHAR(1) Coordinator gender
coordinatorPhoneNo VARCHAR2(15) Coordinator phone number

5.2.6 Entity: <Assessment>

Attribute Name Type Description
assessmentID VARCHAR2(10) Assessment ID, Primary Key
assessmentQuestion VARCHAR2(200) Question in the assessment
assessmentAnswer CHAR(1) Answer for the question
studentAnswer CHAR(1) Answer for the question by the

student
assessmentStatus VARCHAR(20) Status of the assessment

(exist/null/finish)
grade CHAR(1) Grade of the assessment obtained

by student
marks INT Mark of the assessment obtained by

student

5.2.7 Entity: <Communication>

Attribute Name Type Description
messageID VARCHAR2(10) Message ID, Primary Key
messageText VARCHAR(200) Text for the message
messageTime TIME Time of the message created
messageDate DATE Date of the message created

5.2.8 Entity: <Notification>

Attribute Name Type Description
notiID VARCHAR2(10) Notification ID, Primary Key
notiTitle VARCHAR(50) Title of the notification
notiContent VARCHAR(100) Content of the notification
notiTime TIME Time of the notification created
notiDate DATE Date of the notification created
notiStatus VARCHAR(20) Status of the notification created

5.2.9 Entity: <Login>

Attribute Name Type Description
userID VARCHAR2(10) User ID, Primary Key
keyUsername VARCHAR2(20) Username key in by user

65

keyPassword VARCHAR2(20) Password key in by user

5.2.10 Entity: <Verification>

Attribute Name Type Description
verificationID VARCHAR2(10) Verification ID, Primary Key
verificationStatus VARCHAR2(20) Status for the verification (true/false)

66

6.0 Interface Design

6.1 Overview of Interface
For login , where all the process started , the user whether student or lecturer will

need to login by inserting their username and password. After that, the user is needed to

click the button so that the process can be carried on. The system will be required to be

verified by finding the data that synchronizes with the existing data. There will be two

conditions where if the data have been found, the user will get the authorization to access

the system and will be directed to the main menu which contains a lot of option to choose

from such as notification , messaging and much more

If the data has not been found, there will be an error message displayed and it will be

redirected to the login menu.

For communication, this is the platform where the users are able to communicate

with each other through messaging. There will be four functions that can be used for

communication such as View Message, Add Message ,Delete Message and Edit

Message.The history of messaging and text will be saved into the database.

For View Message, the user is required to search for the message that the user

wanted. If the message is nowhere to be found, the user is required to find the message

again. Then, the message will be displayed on the screen.

For Add Message, the user is able to add any message to the other users whether

they have any questions to ask to their lecturer regarding the status of their internships. This

can be done by sending the message including photo, file and much more.

For Delete Message, the users are able to delete the message that they have sent

whether it is a photo or file. Sometimes the users have mistakenly sent the messages to the

wrong person. so the user needs to search for the message that they want to delete and just

delete it. They can delete as much they want . There are no restrictions on deleting the

message.

For Edit Message, the users have the rights to edit the messages that they have sent

to other users. This can be done by searching the messages that they want to edit. Here the

users are able to edit the message and there will be a notification pop out saying that the

messages have been updated . This is to prevent any miscommunication between users

such as student and lecturer or student and the company that they intern with.

For notification, this is where the user will get their notifications such as email. For

Coordinator, the features are Add Notification, Update Notification, and Delete Notification,
67

while Students features are only View Notification. All data that are related to notification are

saved in Notification Data.

For add notification, the coordinator must select Add Notification and it will send the

request to the database to access, and the coordinator is able to add notification to the

database.

For update notification, the coordinator must select Update Notification and it will

send a request to the database to access, and the system will search for the available data.

If the data exists, then the coordinator is able to update the notification, else it will return

back an error message.

For delete notification, the coordinator must select Delete Notification and it will send

a request to the database to access, and the system will search for the available data. If the

data exists, then the coordinator is able to delete the notification, else it will return back an

error message.

For view notification, the student must select View Notification and it will send a

request to the database to access, and the system will search for available data. If the data

exists, then the system will print out all the notification data until there is no more available

data.

For assessment, this is where the students are able to take exams which are

uploaded by the examiners. Features for assessment are Upload Question, Take Exam, and

View Grades.

For the Upload Question, the examiner must select the button that they want to

upload the question. If the question is not yet uploaded, the file containing the questions can

be uploaded by clicking the upload button, then the answer for each question needs to be

set by clicking the right answer for the questions. System then stores the questions and

answers in the database. Else, if the questions is already uploaded, it will print out a

message telling that the questions had been uploaded before, and then the examiner will be

redirected to the main page.

For the Take Exam, the exam questions must already be uploaded to the database,

and the student needs to click on the exam that they need to attend. Students then attempt

the exam by clicking the start button, all questions that are displayed must be answered by

the student. After finishing all questions, students are able to click the finish button to

complete the Take Exam.

For the View Grades, the exam questions must already be finished by the students.

The system will check the student’s answer based on the answer sheet that has been

uploaded to the database. The grades are obtained after checking is finished. If the student

68

wants to view grades, the grades will be displayed immediately after the exam. If the

examiner wants to view a student's grade, a list of students that finished the exam will be

displayed, and the examiner is able to click any student’s name to view their grades.

6.2 Overall Interface Design
-Login Interface

-Home Interface

69

-Message Interface

70

71

-Notification Interface

72

73

74

-Exam Interface

75

76

77

78

