UNIVERSITI TEKNOLOGI MALAYSIA

FACULTY OF ENGINEERING
SCHOOL OF COMPUTING
SEMESTER 2/20212022

SECR2033/07 - COMPUTER ORGANIZATION

AND ARCHITECTURE
PROJECT
BOOLEAN CALCULATOR
LECTURERS
Dr Aida Ali
GROUP : E
VIDEO LINK :
https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt
2usp=sharing
Name Matric ID
MUHAMMAD NAJWAN HAZIM BIN KHAIRI A21EC0087
MUHAMMAD WAFFI QAYYUM BIN DIN A21EC0097
MUHAMMAD IRHAM HAKIM BIN ROSLAN A21EC0081
MUHAMMAD KAMIL EIZAZ BIN OTHMAN A21EC0084
MUHAMMAD THORIQ BIN KAHAIRI A21EC0096

https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt?usp=sharing
https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt?usp=sharing

MEMBER RESPONSIBILITIES

Name Responsibilities

1. Prepare the Visual Studio program template

NAJWAN HAZIM 2. Incharge of debugging and compiling the program

3. Responsible for the Coding and Explanation topic
in the report template

4. Incharge of finalize the report template

1. Incharge of AND operation in the program

WAFFI QAYYUM 2. Re-adjust the program to produce the same output
as the provided examples

3. Prepare the report template

4. Responsible for the Discussion & Conclusion topic

in the report template

1. Incharge of OR operation in the program

IRHAM HAKIM 2. Responsible for the Coding and Explanation topic
in the report template

3. Incharge of formatting and correcting mistakes in
the report template

4. Incharge of finalize the report template

1. Incharge of NOT operation in the program

KAMIL EIZAZ 2. Responsible for the Example of Inputs & Outputs
topic in the report template

3. Incharge of compiling the video presentation of
each member

4. Incharge of finalize the coding

1. Incharge of XOR operation in the program

THORIQ 2. Incharge of debugging and compiling the program

3. Responsible for the Discussion & Conclusion topic
in the report template

4. Incharge of finalize the coding

TABLE OF CONTENTS

PART 1: CODING AND EXPLANATION 4-9
PART 2: EXAMPLE OF INPUTS AND OUTPUTS 10-13
PART 3: DISCUSSION AND CONCLUSION 14-15
PART 4: REFERENCES 16
PART 5: APPENDIX (full coding) 17 -21

CODING AND EXPLANATION

INCLUDE Irvime32.inc

.data
menuChoice DWORD 2
hexaMuml DWORD 2
hexahum? DWORD 2

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

3 BYTE

tri@ BYTE

trill BYTE

ri2 BYTE

trl3 BYTE

value BYTE

errorstr BYTE

hexaStrl BYTE

hexaStr2 BYTE

1A
LM

R e
- ey [i, | |
(T - R

[ag

(7 T T P I P I P I ¥ I P |

Bl

Diagram 1

The Code seen above is primarily our prompt message to the user; simply, all of the variables
are strings that tell the user which option to select from a range of (1-5) and the type of
choice they have made, such as "Boolean AND" and "Boolean OR." The final portion of the
code asks the user to enter a number in 32-bit hexadecimal format and also displays the result
string, informing the user of the outcome of the action they selected. Also, there is a variable

with DWORD as the data type for restoring value from the register.

M :
snewline
rprimt out strs

edx, offset s=tra : print
1 writestring
call Crlf
mow edx, offset str7 : print
call writestring
call Crlf
mow edx, offset str8 : print
call writestring
call Crlf

mow edx, offset strg : print

call writestring

call Crlf
r edx, offset strlo : print
1 writestring

offset strill : print
call writestring
call Crlf

mow edx, offset i : print out strl2
call writestring

call Readlec : et input from user
i menuwChoice, eax

call Crlf

Fmp L1

Diagram 2
In this main proc, we provide a menu for the user to choose which operator the user wanted
to do. All call WriteStrings are to call the string that we have provided in the data. After the

user inputs his/her choice then it will jump to L1 which is for comparing the data.

cmp menuChoice,
je AndInput : if menuChoice
cmp menuChoice,
je OrInput = if menuChoice
cmp menuChoice,
je NotInput : jump if menuChodice
cmp menuChoice,

je XorInput % if menuChoice

cmp menuChoice,

je ExitOutput * if menuChoice

cmp menuChoice,

ja ErrorOutput - if menuChoice

cmp menuChoice, 1

jb ErrorOutput % if menuChoice below than 1

Diagram 3
In L2, there is a bunch of compare commands for comparing the data. All options are
provided in L2 which is if the user inputs number 1-5, it will go to the option that he/she has
chosen but if the user exceeds 5 or below 1, it will jump to ErrorOutput which is it will

display about the error message and ask the user to re-enter the number.

ArndInput :
call Clr=scr
mow ed; OFFSET =strl : print
call kriteString
call crlf
call opfAmnd

OrInput:
call Clrscr
m edx, OFFSET str2 : print
call WriteString
Ccall crlf
call opOr

NotInput:
call Clrscr
OFFSET =tr3
Hritestring
crlf
opMMoi

Hor-Input:
call Clrscr
mow ed OFFSET str4 : print
call kriteString
call crlf
call opXor

Diagram 4

ExitOutput:

mov edx, offset strl3

call writestring

call crlf

call crlif

all WaitMsg :+ system pause
i

ErrorOutput
call Crlf

mov edx, OFFSET errorStr ; print out errorSstr
call WriteString
call crlf

r edx, offset 1. : print out stri2
call writestring
call ReadDec : et input from user
mov menuChoice,
call Crlf
jmp L1

Diagram 5

In Diagram 4, shows that it will print messages according to the user’s input. If the user
enters number 1 then it will print out “Boolean and” and the same for other operations. Then,
it will call proc for the calculation part. Each operation has its own calculation part. Diagram
5 shows for exit output and the error output. If the user chooses option 5, then the user will
exit the program. Then, if the user puts the wrong number, then the program will ask the user
to re-enter the number again until the number option is correct. If the user enters number 5 in

the option, it will go to ExitOutput to print out all about exit.

; AND OPERATION

opAnd PROC

mow eax, 8

mow edx, OFFSET hexaStrl 3 print

call WriteString

call ReadHex : dnput hexa number from wuser
mow hexaNuml, eax

mowv edx, OFFS5ET hexaStr2 3 print owut hexaStr2

call WritesString

call ReadHex 3 input hexa number from user
mow hexalMum?2, eax

mow eax, hexaMoml 3 calculation for AND coperation
AND eax, hexaMumzZ

edx, offset walue : print out the result
Writestring

WiriteHex

crlf

maimn

g
(1] q

A nnn
B & A
e o
o R

5
m
-

+ return Ffrom procedoare

opAnd ENDP

Diagram 6
First, in this opAnd PROC, we shift 0 to the eax register. Then, using the WriteString
function, we print hexaStrl and hexaStr2. The user will then be prompted to enter two digits
by the application. It will read the two numbers in hexadecimal format. The application will
show the result AND operation in hexadecimal once two numbers are entered. We utilise the
"ReadHex" library procedure to read numbers encoded in hexadecimal. An end-of-line

sequence is written to standard output using the Crlf method.

mowv edx, OFFSET hexaStrl : print out hexaStrl

call WriteString

call ReadHex : dinput hexa number from wuser
mow hexaMuml, eax

mow edx, OFFSET hexaStr2 3 print out hexaStr2

call WriteString

call ReadHex : dinput hexa number from user
mow hexalum?2, eax

mow eax, hexakuml 3 calculation for OR operation
DR eax, hexaMNum2

mov edx, offset wvalue ;3 print out the result
call WriteString

call WriteHex

call crlf

call main

ret : return from procedure

opDr

Diagram 7
Basically, all step in Diagram 6 are similar with diagram 7. The difference is we are using OR

in the coding to calculate OR operation. Then, it will return to the main proc.

3 NOT OPERATION
ophot PROC

mov edx, OFFSET hexaStrl ; print out hexaStrl
call WriteString
call ReadHex ; input hexa number from user

NOT eax : calculation for NOT operation

mov edx, offset walue : print out the result
call WriteString

call WriteHex; @@@BFFF2

call crlf

call madin

ret 3 return from procedure

opiot ENDP

Diagram 8
Basically, all step in Diagram 6 are similar with diagram 8. The difference is we are using
NOT in the coding to calculate NOT operation and we only need one input hexanumber from

the user. Then, it will return to the main proc.

=OR OPERATION

L

opXor PROC

mow edx, OFFSET hexaStrl ; print out hexaStril

call Writestring

call ReadHex : input hexa number from wser
mov hexaMNuml, eax

mov edx, OFFSET hexaStr2 ; print out hexaStr2

call WriteString

call ReadHex ; input hexa number from user
mov hexahum?2 ,

mov eax, 3 ; calculation for NOT operation
Z0OR

mow edx, offset wvalue : print out the result
call WriteString

call WriteHex

call crlf

call main

ret 3 return from procedure

opXor ENDP

Diagram 9

Same with digram 6, and 7, all step are similar with diagram 9. The only difference in opXor
proc is we are using XOR in the coding to calculate XOR operation. Then, it will return to the

main proc.

EXAMPLE OF INPUTS AND OUTPUTS

e Output when the user enters an incorrect/invalid number of options given

Boolean Calculator
AND W

1
A

ITmnvalid mnumber please enter again.
=0

Chod c (]

ITnmnwvalid mumber rlease enter again.
Enter your choice I

ITnmnwvalid mumber rlease enter again.
Enter your choice:

Diagram 10
The message "Invalid number, please enter again." will appear if the user inputs a number
that is lower than 1 or higher than 5. Therefore, the user must provide a value between 1 and

5, or else the application will not perform the task.

e QOutput for AND operation when the user enters value 1

Boolean AND

Input the first 32-bit hexadecimal operand: 686066834
Input the second 32-bit hexadecimal operand: 88886815
The 32-bit hexadecimal result is B@ee6e14

=

2.
i
4.

Diagram 11

10

X Y ANSWER
0 0 0
0 1 0
1 0 0
1 1 1

The program will perform an AND operation after the user selects option number 1. The
user's initial input is 34h. It would be 00110100b in binary. The second input is 15h, or
00010101b in binary. These two numbers provide the result 00010100b when we use the
AND operator. 00010100b would be 14h in hexadecimal conversion. The application will

then return to the main menu so the user can select another choice or do the same action.

e Output for OR operation when the user enters value 2

Boolean OR
Input the first 3: it hexadecimal operand: 8088634
the second 3z it hexadecimal operand: B8680015
result is 888806835

Boolean Calculator
X AND y
®x OR y
¥ NOT y
* XOR vy

H =
2.

(S R ¥

Enter your choice:

Diagram 12
X Y ANSWER
0 0 0
0 1 1
1 0 1
1 1 1

11

Following the user's selection of choice number 2, the programme will do an OR operation.
34h is the user's initial input. In binary, it would be 00110100b. The second input is 15h, or in
binary, 00010101b. When we use the OR operator to these two numbers, we get the value
00110101b. If 00110101b were converted to hexadecimal, it would be 35h. When the user
wants to choose another option or take the same action, the application will then return to the

main menu.

e Output for NOT when the user enters value 3

Boolean NOT
Input the first 32-bit hexadecimal operand: 96668815
The 32-bit hexadecimal result is FFFFFFEA

Boolean Calculator
X AND w

x OR ¥y

MNOT x

®x XOR y

Exit Program

T -
4.

Enter your choice:

Diagram 13
X ANSWER
0 1
1 0

When the user chooses option number 3, the application will do a NOT operator. The user's
initial input is 15h. It would be 00010101b in binary. The value 11101010b is what we obtain
when we apply the NOT operator. Hexadecimal representation of 11101010b is FFFFFFEAh.
The application will then return to the main menu when the user wishes to select another

choice or perform the same activity.

12

e Output for XOR when the user enters value 4

Boolean XOR

Input the ftirst 32-bit hexadecimal operand: 268688634
Input the second ?-bit hexadecimal operand: 922822815
The 32-bit hexadecimal result is GBE806821

- Boolean Calculator
* AMND

*x OR wy

NOT

*x XOR vy

Exit Program

i [
2.
.

Enter your choice:

Diagram 14
X Y ANSWER
0 0 0
0 1 1
1 0 1
1 1 0

After the user selects option number 4, the application will do an XOR operation. The user's
initial input is 34h. It would be 00110100b in binary. The second input is 15h, or 00010101b
in binary. The result of applying the XOR operator to these two values is 00100001b.
Hexadecimal representation of 00100001b would be 21h. The application will then return to

the main menu when the user wishes to select another choice or perform the same activity.

e Output for Exit program when the user enters value 5

BEoolean Calculator

1
>
i

Diagram 15

13

DISCUSSION AND CONCLUSION

Assembly language source files must be a part of a project, which is similar to a box
container, for Visual Studio to accept them. A project stores configuration data such the
locations of the linker, assembler, and necessary libraries. A project contains a folder where
all of its files are listed by name and location. This project makes use of the project template
in the .asm format that our instructor provided at the outset of teaching us assembly language.
We must take advantage of Irvine Link Library. A number of helpful routines to input data,
output data, and carry out various activities that typically require numerous operating system
calls are available in the Irvine link library. Here is a list of some of the Irvine32 and Irvinel6

library procedures we used to create this project:

Clrscr Clears the screen, moves the cursor to the upper-left corner.
Crlf Writes a carriage return / linefeed to the display.
Mov Copies a byte or word from a source operand to a destination operand.

Writestring Write a null-terminated string. Input: EDX points to the strings offset.
ReadHex Reads a 32-bit Hexadecimal integer from the keyboard.

WriteHex Writes a 32-bit Hexadecimal integer to the console window in Hexadecimal

format.
Jmp (Jump Unconditionally) Jump to a code label.
JE Jump if equal.
JA Jump if left operand bigger than right operand.
JB Jump if left operand smaller than right operand.
AND Performs a Boolean AND operation between two operands
OR Performs a Boolean OR operation between two operands
NOT Performs a Boolean NOT operation between two operands
XOR Performs a Boolean XOR operation between two operands

The coding we created has the flaw of being both too basic and long. We are
continuously learning even though we are in the first year of our software course degree
programme. Over time and with practice, it is possible to learn far more effective techniques
or shortcuts for much simpler code. Nevertheless, this code still follows the project's

instructions and makes use of the assembly language that we have studied in class.

14

In conclusion, we have applied the knowledge that we learned from this course
Computer Organization and Architecture to design a simple Boolean Calculator. We have a
fundamental understanding of computer programming language and the idea of assembly
programming. As a programmer, it is crucial to possess a solid foundation in assembly
programming. We shouldn't undervalue the significance of assembly language because
computer programming languages are frequently used for creating software programmes and

apps for us who will be the future Software Engineer.

15

REFERENCES

e Chris. (2017). Boolean calculator - x86 assembly language. Gist. Retrieved June 30,
2022, from https://gist.github.com/killuhwhale/94be4126b1{9d1abf3c32778f8b3cdSS

e Code, H. (2022). How to convert a boolean expression into assembly code. Retrieved
30 June 2022, from

https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-

into-assembly-code

16

https://gist.github.com/killuhwhale/94be4126b1f9d1abf3c32778f8b3cd55
https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-into-assembly-code
https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-into-assembly-code

APPENDIX

Full coding:

TITLE Project COA(main.asm)
: Boolean Calculator

: Section: 06

; Group: E

Group member : 1) MUHAMMAD NAJWAN HAZIM BIN KHAIRI(A21EC0087)
: 2) MUHAMMAD THORIQ BIN KAHAIRI (A21EC0096)
: 3) MUHAMMAD WAFFI QAYYUM BIN DIN (A21EC0097)
: 4) MUHAMMAD IRHAM HAKIM BIN ROSLAN (A21EC0081)
; 5) MUHAMMAD KAMIL EIZAZ BIN OTHMAN (A21EC0084)

INCLUDE Irvine32.inc

.data
menuChoice DWORD ?
hexaNum1 DWORD ?
hexaNum2 DWORD ?
str1 BYTE "Boolean AND ", 0
str2 BYTE "Boolean OR ", 0
str3 BYTE "Boolean NOT ", 0
str4 BYTE "Boolean XOR ", 0
str5 BYTE "--- Boolean Calculator ---------- "0
str6 BYTE "1. xAND y", 0
str7 BYTE "2. x OR y", 0
str8 BYTE "3. x NOT y", 0
str9 BYTE "4. x XOR y", 0
str10 BYTE "5. Exit Program", O
str11 BYTE " "0
str12 BYTE "Enter your choice: ", 0
str13 BYTE "Bye." ,0
value BYTE "The 32-bit hexadecimal resultis ", 0
errorStr BYTE "Invalid number, please enter again. ", 0
hexaStr1 BYTE "Input the first 32-bit hexadecimal operand: ", 0
hexaStr2 BYTE "Input the second 32-bit hexadecimal operand: ", 0

.code
main PROC

Menu:
call crlf :newline
mov edx, offset str5 ;print out str5
call writestring
call Crif
mov edx, offset stré ; print out str6
call writestring
call Crif
mov edx, offset str7 ; print out str7

17

L1:

call writestring

call Crif

mov edx, offset str8
call writestring

call Crif

mov edx, offset str9
call writestring

call Crif

mov edx, offset str10
call writestring

call Crif

mov edx, offset str11
call writestring

call Crif

mov edx, offset str12
call writestring

call ReadDec

mov menuChoice, eax
call Crif

jmp L1

cmp menuChoice, 1
je AndInput

cmp menuChoice, 2
je Orlnput

cmp menuChoice, 3
je Notlnput

cmp menuChoice, 4
je Xorlnput

cmp menuChoice, 5
je ExitOutput

cmp menuChoice, 5
ja ErrorOutput

cmp menuChoice, 1
jb ErrorOutput

AndInput:

call Clrscr

mov edx, OFFSET str1
call WriteString

call crif

call opAnd

Orlnput:

call Clrscr

mov edx, OFFSET str2
call WriteString

call crif

call opOr

Notlnput:

; print out str8

; print out str9

; print out str10

; print out str11

; print out str12

; get input from user

; jump if menuChoice = 1
; jump if menuChoice = 2
; jump if menuChoice = 3
; jump if menuChoice = 4
; jump if menuChoice = 5
; jump if menuChoice above than 5

; jump if menuChoice below than 1

; print out str1

; print out str2

18

call Clrscr

mov edx, OFFSET str3

call WriteString
call crif
call opNot

Xorlnput:
call Clrscr

mov edx, OFFSET str4

call WriteString
call crlf
call opXor

ExitOutput:

mov edx, offset str13
call writestring

call crif

call crif

call WaitMsg

exit

ErrorOutput:
call Crlf

mov edx, OFFSET errorStr

call WriteString

call crif

mov edx, offset str12
call writestring

call ReadDec

mov menuChoice, eax

call Crif
jmp L1

main ENDP

. AND OPERATION
opAnd PROC

mov eax, 0

mov edx, OFFSET hexaStr1
call WriteString

call ReadHex

mov hexaNum1, eax

mov edx, OFFSET hexaStr2
call WriteString

call ReadHex

mov hexaNumz2, eax

; print out str3

; print out str4

; print out str13

; system pause

; print out errorStr

; print out str12

; get input from user

; print out hexaStr1
; input hexa number from user
; print out hexaStr2

; input hexa number from user

19

mov eax, hexaNum1
AND eax, hexaNum2

mov edx, offset value
call WriteString

call WriteHex

call crlf

call main

ret

opAnd ENDP

' OR OPERATION
opOr PROC

mov edx, OFFSET hexaStr1
call WriteString

call ReadHex

mov hexaNum1, eax

mov edx, OFFSET hexaStr2
call WriteString

call ReadHex

mov hexaNumz2, eax

mov eax, hexaNum1
OR eax, hexaNum2

mov edx, offset value
call WriteString

call WriteHex

call crlf

call main

ret

opOr ENDP

- NOT OPERATION

opNot PROC

mov edx, OFFSET hexaStr1
call WriteString

call ReadHex

NOT eax

mov edx, offset value
call WriteString

; calculation for AND operation

; print out the result

; return from procedure

; print out hexaStr1
; input hexa number from user
; print out hexaStr2

; input hexa number from user

; calculation for OR operation

; print out the result

; return from procedure

; print out hexaStr1
; input hexa number from user
; calculation for NOT operation

; print out the result

20

call WriteHex; 0000FFF2
call crIf

call main

ret

opNot ENDP

' XOR OPERATION
opXor PROC

mov edx, OFFSET hexaStr1
call WriteString

call ReadHex

mov hexaNum1, eax

mov edx, OFFSET hexaStr2
call WriteString

call ReadHex

mov hexaNum2, eax

mov eax, hexaNum1
XOR eax, hexaNum2

mov edx, offset value
call WriteString

call WriteHex

call crIf

call main

ret

opXor ENDP

END main

; return from procedure

; print out hexaStr1
; input hexa number from user
; print out hexaStr2

; input hexa number from user

; calculation for NOT operation

; print out the result

; return from procedure

21

