
FACULTY OF ENGINEERING

SCHOOL OF COMPUTING

SEMESTER 2/20212022

SECR2033/07 - COMPUTER ORGANIZATION

AND ARCHITECTURE

PROJECT

BOOLEAN CALCULATOR

LECTURERS

Dr Aida Ali

GROUP : E

VIDEO LINK :
https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt

?usp=sharing

Name Matric ID

MUHAMMAD NAJWAN HAZIM BIN KHAIRI A21EC0087

MUHAMMAD WAFFI QAYYUM BIN DIN A21EC0097

MUHAMMAD IRHAM HAKIM BIN ROSLAN A21EC0081

MUHAMMAD KAMIL EIZAZ BIN OTHMAN A21EC0084

MUHAMMAD THORIQ BIN KAHAIRI A21EC0096

https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt?usp=sharing
https://drive.google.com/drive/folders/1-hOhLhj70zJ4cmSECLCjgor3Wgpo7jrt?usp=sharing

MEMBER RESPONSIBILITIES

Name Responsibilities

NAJWAN HAZIM

1. Prepare the Visual Studio program template

2. Incharge of debugging and compiling the program

3. Responsible for the Coding and Explanation topic

in the report template

4. Incharge of finalize the report template

WAFFI QAYYUM

1. Incharge of AND operation in the program

2. Re-adjust the program to produce the same output

as the provided examples

3. Prepare the report template

4. Responsible for the Discussion & Conclusion topic

in the report template

IRHAM HAKIM

1. Incharge of OR operation in the program

2. Responsible for the Coding and Explanation topic

in the report template

3. Incharge of formatting and correcting mistakes in

the report template

4. Incharge of finalize the report template

KAMIL EIZAZ

1. Incharge of NOT operation in the program

2. Responsible for the Example of Inputs & Outputs

topic in the report template

3. Incharge of compiling the video presentation of

each member

4. Incharge of finalize the coding

THORIQ

1. Incharge of XOR operation in the program

2. Incharge of debugging and compiling the program

3. Responsible for the Discussion & Conclusion topic

in the report template

4. Incharge of finalize the coding

2

TABLE OF CONTENTS

Content Page

PART 1: CODING AND EXPLANATION 4 - 9

PART 2: EXAMPLE OF INPUTS AND OUTPUTS 10-13

PART 3: DISCUSSION AND CONCLUSION 14 - 15

PART 4: REFERENCES 16

PART 5: APPENDIX (full coding) 17 - 21

3

CODING AND EXPLANATION

Diagram 1

The Code seen above is primarily our prompt message to the user; simply, all of the variables

are strings that tell the user which option to select from a range of (1-5) and the type of

choice they have made, such as "Boolean AND" and "Boolean OR." The final portion of the

code asks the user to enter a number in 32-bit hexadecimal format and also displays the result

string, informing the user of the outcome of the action they selected. Also, there is a variable

with DWORD as the data type for restoring value from the register.

4

Diagram 2

In this main proc, we provide a menu for the user to choose which operator the user wanted

to do. All call WriteStrings are to call the string that we have provided in the data. After the

user inputs his/her choice then it will jump to L1 which is for comparing the data.

Diagram 3

In L2, there is a bunch of compare commands for comparing the data. All options are

provided in L2 which is if the user inputs number 1-5, it will go to the option that he/she has

chosen but if the user exceeds 5 or below 1, it will jump to ErrorOutput which is it will

display about the error message and ask the user to re-enter the number.

5

Diagram 4

Diagram 5

6

In Diagram 4, shows that it will print messages according to the user’s input. If the user

enters number 1 then it will print out “Boolean and” and the same for other operations. Then,

it will call proc for the calculation part. Each operation has its own calculation part. Diagram

5 shows for exit output and the error output. If the user chooses option 5, then the user will

exit the program. Then, if the user puts the wrong number, then the program will ask the user

to re-enter the number again until the number option is correct. If the user enters number 5 in

the option, it will go to ExitOutput to print out all about exit.

Diagram 6

First, in this opAnd PROC, we shift 0 to the eax register. Then, using the WriteString

function, we print hexaStr1 and hexaStr2. The user will then be prompted to enter two digits

by the application. It will read the two numbers in hexadecimal format. The application will

show the result AND operation in hexadecimal once two numbers are entered. We utilise the

"ReadHex" library procedure to read numbers encoded in hexadecimal. An end-of-line

sequence is written to standard output using the Crlf method.

7

Diagram 7

Basically, all step in Diagram 6 are similar with diagram 7. The difference is we are using OR

in the coding to calculate OR operation. Then, it will return to the main proc.

Diagram 8

Basically, all step in Diagram 6 are similar with diagram 8. The difference is we are using

NOT in the coding to calculate NOT operation and we only need one input hexanumber from

the user. Then, it will return to the main proc.

8

Diagram 9

Same with digram 6, and 7, all step are similar with diagram 9. The only difference in opXor

proc is we are using XOR in the coding to calculate XOR operation. Then, it will return to the

main proc.

9

EXAMPLE OF INPUTS AND OUTPUTS

● Output when the user enters an incorrect/invalid number of options given

Diagram 10

The message "Invalid number, please enter again." will appear if the user inputs a number

that is lower than 1 or higher than 5. Therefore, the user must provide a value between 1 and

5, or else the application will not perform the task.

● Output for AND operation when the user enters value 1

Diagram 11

10

X Y ANSWER

0 0 0

0 1 0

1 0 0

1 1 1

The program will perform an AND operation after the user selects option number 1. The

user's initial input is 34h. It would be 00110100b in binary. The second input is 15h, or

00010101b in binary. These two numbers provide the result 00010100b when we use the

AND operator. 00010100b would be 14h in hexadecimal conversion. The application will

then return to the main menu so the user can select another choice or do the same action.

● Output for OR operation when the user enters value 2

Diagram 12

X Y ANSWER

0 0 0

0 1 1

1 0 1

1 1 1

11

Following the user's selection of choice number 2, the programme will do an OR operation.

34h is the user's initial input. In binary, it would be 00110100b. The second input is 15h, or in

binary, 00010101b. When we use the OR operator to these two numbers, we get the value

00110101b. If 00110101b were converted to hexadecimal, it would be 35h. When the user

wants to choose another option or take the same action, the application will then return to the

main menu.

● Output for NOT when the user enters value 3

Diagram 13

X ANSWER

0 1

1 0

When the user chooses option number 3, the application will do a NOT operator. The user's

initial input is 15h. It would be 00010101b in binary. The value 11101010b is what we obtain

when we apply the NOT operator. Hexadecimal representation of 11101010b is FFFFFFEAh.

The application will then return to the main menu when the user wishes to select another

choice or perform the same activity.

12

● Output for XOR when the user enters value 4

Diagram 14

X Y ANSWER

0 0 0

0 1 1

1 0 1

1 1 0

After the user selects option number 4, the application will do an XOR operation. The user's

initial input is 34h. It would be 00110100b in binary. The second input is 15h, or 00010101b

in binary. The result of applying the XOR operator to these two values is 00100001b.

Hexadecimal representation of 00100001b would be 21h. The application will then return to

the main menu when the user wishes to select another choice or perform the same activity.

● Output for Exit program when the user enters value 5

Diagram 15

13

DISCUSSION AND CONCLUSION

Assembly language source files must be a part of a project, which is similar to a box

container, for Visual Studio to accept them. A project stores configuration data such the

locations of the linker, assembler, and necessary libraries. A project contains a folder where

all of its files are listed by name and location. This project makes use of the project template

in the .asm format that our instructor provided at the outset of teaching us assembly language.

We must take advantage of Irvine Link Library. A number of helpful routines to input data,

output data, and carry out various activities that typically require numerous operating system

calls are available in the Irvine link library. Here is a list of some of the Irvine32 and Irvine16

library procedures we used to create this project:

Clrscr Clears the screen, moves the cursor to the upper-left corner.

Crlf Writes a carriage return / linefeed to the display.

Mov Copies a byte or word from a source operand to a destination operand.

Writestring Write a null-terminated string. Input: EDX points to the strings offset.

ReadHex Reads a 32-bit Hexadecimal integer from the keyboard.

WriteHex Writes a 32-bit Hexadecimal integer to the console window in Hexadecimal

format.

Jmp (Jump Unconditionally) Jump to a code label.

JE Jump if equal.

JA Jump if left operand bigger than right operand.

JB Jump if left operand smaller than right operand.

AND Performs a Boolean AND operation between two operands

OR Performs a Boolean OR operation between two operands

NOT Performs a Boolean NOT operation between two operands

XOR Performs a Boolean XOR operation between two operands

The coding we created has the flaw of being both too basic and long. We are

continuously learning even though we are in the first year of our software course degree

programme. Over time and with practice, it is possible to learn far more effective techniques

or shortcuts for much simpler code. Nevertheless, this code still follows the project's

instructions and makes use of the assembly language that we have studied in class.

14

In conclusion, we have applied the knowledge that we learned from this course

Computer Organization and Architecture to design a simple Boolean Calculator. We have a

fundamental understanding of computer programming language and the idea of assembly

programming. As a programmer, it is crucial to possess a solid foundation in assembly

programming. We shouldn't undervalue the significance of assembly language because

computer programming languages are frequently used for creating software programmes and

apps for us who will be the future Software Engineer.

15

REFERENCES

● Chris. (2017). Boolean calculator - x86 assembly language. Gist. Retrieved June 30,

2022, from https://gist.github.com/killuhwhale/94be4126b1f9d1abf3c32778f8b3cd55

● Code, H. (2022). How to convert a boolean expression into assembly code. Retrieved

30 June 2022, from

https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-

into-assembly-code

16

https://gist.github.com/killuhwhale/94be4126b1f9d1abf3c32778f8b3cd55
https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-into-assembly-code
https://stackoverflow.com/questions/61277688/how-to-convert-a-boolean-expression-into-assembly-code

APPENDIX

Full coding:

TITLE Project COA(main.asm)
; Boolean Calculator
; --
; Section: 06
; Group: E
; Group member : 1) MUHAMMAD NAJWAN HAZIM BIN KHAIRI(A21EC0087)
; 2) MUHAMMAD THORIQ BIN KAHAIRI (A21EC0096)
; 3) MUHAMMAD WAFFI QAYYUM BIN DIN (A21EC0097)
; 4) MUHAMMAD IRHAM HAKIM BIN ROSLAN (A21EC0081)
; 5) MUHAMMAD KAMIL EIZAZ BIN OTHMAN (A21EC0084)
; --

INCLUDE Irvine32.inc

.data
menuChoice DWORD ?
hexaNum1 DWORD ?
hexaNum2 DWORD ?
str1 BYTE "Boolean AND ", 0
str2 BYTE "Boolean OR ", 0
str3 BYTE "Boolean NOT ", 0
str4 BYTE "Boolean XOR ", 0
str5 BYTE "--- Boolean Calculator ----------", 0
str6 BYTE "1. x AND y", 0
str7 BYTE "2. x OR y", 0
str8 BYTE "3. x NOT y", 0
str9 BYTE "4. x XOR y", 0
str10 BYTE "5. Exit Program", 0
str11 BYTE "---------------------------------", 0
str12 BYTE "Enter your choice: ", 0
str13 BYTE "Bye." ,0
value BYTE "The 32-bit hexadecimal result is ", 0
errorStr BYTE "Invalid number, please enter again. ", 0
hexaStr1 BYTE "Input the first 32-bit hexadecimal operand: ", 0
hexaStr2 BYTE "Input the second 32-bit hexadecimal operand: ", 0

.code
main PROC

Menu:
call crlf ;newline
mov edx, offset str5 ;print out str5
call writestring
call Crlf
mov edx, offset str6 ; print out str6
call writestring
call Crlf
mov edx, offset str7 ; print out str7

17

call writestring
call Crlf
mov edx, offset str8 ; print out str8
call writestring
call Crlf
mov edx, offset str9 ; print out str9
call writestring
call Crlf
mov edx, offset str10 ; print out str10
call writestring
call Crlf
mov edx, offset str11 ; print out str11
call writestring
call Crlf

mov edx, offset str12 ; print out str12
call writestring
call ReadDec ; get input from user
mov menuChoice, eax
call Crlf
jmp L1

L1:
cmp menuChoice, 1
je AndInput ; jump if menuChoice = 1
cmp menuChoice, 2
je OrInput ; jump if menuChoice = 2
cmp menuChoice, 3
je NotInput ; jump if menuChoice = 3
cmp menuChoice, 4
je XorInput ; jump if menuChoice = 4
cmp menuChoice, 5
je ExitOutput ; jump if menuChoice = 5
cmp menuChoice, 5
ja ErrorOutput ; jump if menuChoice above than 5
cmp menuChoice, 1
jb ErrorOutput ; jump if menuChoice below than 1

AndInput:
call Clrscr
mov edx, OFFSET str1 ; print out str1
call WriteString
call crlf
call opAnd

OrInput:
call Clrscr
mov edx, OFFSET str2 ; print out str2
call WriteString
call crlf
call opOr

NotInput:

18

call Clrscr
mov edx, OFFSET str3 ; print out str3
call WriteString
call crlf
call opNot

XorInput:
call Clrscr
mov edx, OFFSET str4 ; print out str4
call WriteString
call crlf
call opXor

ExitOutput:

mov edx, offset str13 ; print out str13
call writestring
call crlf
call crlf
call WaitMsg ; system pause
exit

ErrorOutput:
call Crlf
mov edx, OFFSET errorStr ; print out errorStr
call WriteString
call crlf
mov edx, offset str12 ; print out str12
call writestring
call ReadDec ; get input from user
mov menuChoice, eax
call Crlf
jmp L1

main ENDP

; ---
; AND OPERATION

opAnd PROC

mov eax, 0
mov edx, OFFSET hexaStr1 ; print out hexaStr1
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum1, eax
mov edx, OFFSET hexaStr2 ; print out hexaStr2
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum2, eax

19

mov eax, hexaNum1 ; calculation for AND operation
AND eax, hexaNum2

mov edx, offset value ; print out the result
call WriteString
call WriteHex
call crlf
call main

ret ; return from procedure

opAnd ENDP

; --
; OR OPERATION

opOr PROC

mov edx, OFFSET hexaStr1 ; print out hexaStr1
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum1, eax
mov edx, OFFSET hexaStr2 ; print out hexaStr2
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum2, eax

mov eax, hexaNum1 ; calculation for OR operation
OR eax, hexaNum2

mov edx, offset value ; print out the result
call WriteString
call WriteHex
call crlf
call main

ret ; return from procedure

opOr ENDP

; --
; NOT OPERATION

opNot PROC

mov edx, OFFSET hexaStr1 ; print out hexaStr1
call WriteString
call ReadHex ; input hexa number from user

NOT eax ; calculation for NOT operation

mov edx, offset value ; print out the result
call WriteString

20

call WriteHex; 0000FFF2
call crlf
call main

ret ; return from procedure

opNot ENDP

; --
; XOR OPERATION

opXor PROC

mov edx, OFFSET hexaStr1 ; print out hexaStr1
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum1, eax
mov edx, OFFSET hexaStr2 ; print out hexaStr2
call WriteString
call ReadHex ; input hexa number from user
mov hexaNum2, eax

mov eax, hexaNum1 ; calculation for NOT operation
XOR eax, hexaNum2

mov edx, offset value ; print out the result
call WriteString
call WriteHex
call crlf
call main

ret ; return from procedure

opXor ENDP

END main

21

