UNIVERSITI TEKNOLOGI MALAYSIA

SECJ2203: Software Engineering

System Documentation (SD)

One Touch FYP System

Version 2

16 June 2022

School of Computing, Faculty of Engineering

Prepared by: Group 9 <DRAMA QUEEN>

Felicia Chin Hui Fen A20EC0037

Goh Yitian A20EC0038
Gui Yu Xuan A20EC0039

Revision Page

a. Overview
The current document includes an introduction to the One Touch FYP System, a
description of the overall functionalities and the specific requirements of the system. The
specific requirements include external interface requirements, system features,
performance, other requirements, design constraints, and software system attributes of the
system.
b. Target Audience
The target audiences for this project are UTM’s students, coordinators of the School of
Computing, industrial supervisor and UTM’s lectures.
c. Project Team Members
List the team members in a table by stating their roles and the status for each assigned
task e.g. by sections for this SD version (complete, partially complete, incomplete). If the
assigned tasks are not done and have been assigned to other team members, state
accordingly.
Member Role Task Status
Name
Goh Yitian Group 1. Use Case Diagram For All Methods Completed
Leader 2. Use Case <RegisterUser> Completed
3. Use Case <SubmitProject> Completed
4. Use Case <ChatBetweenUser> Completed
5. Activity Diagram <RegisterUser> Completed
6. Activity Diagram <SubmitProject> Completed
7. Activity Diagram <ChatBetweenUser> Completed
8. Sequence Diagram <RegisterUser> Completed
9. Sequence Diagram <SubmitProject> Completed

10. Sequence Diagram <ChatBetweenUser> Completed
11. Identify the Definitions, Acronyms and Completed
Abbreviations
12. Overview of the System Completed
13. User Interface for Register Users Completed
14. User Interface for Submit Project Completed
15. User Interface for ChatBetweenUser Completed
16. Specify the Hardware Interface Completed
17. Determine the Design Constraints Completed
18. Complete Package Diagram Completed
19. Overview of Interface Completed
20. Details Description for Project Subsystem Completed
21. Package Diagram for Project Subsystem Completed
22. Class Diagram for Project Subsystem Completed
23. Table of Methods for Project Subsystem Completed
24. Sequence Diagram for <Post and View Forum Completed
Scenario>
25. Sequence Diagram for <Set up Notification Completed
Scenario>
26. Sequence Diagram for <Manage and Fill Form Completed
Scenario>
27. Sequence Diagram for <Submit Project Completed
Scenario>
Felicia Group 1. Draw the general activity diagram Completed
Chin Hui Fen | Member | 2. Use Case < LoginUser> Completed
3. Use Case <MeetingBetweenUser> Completed
4. Use Case <SetUpNotification> Completed
5. Activity Diagram < LoginUser> Completed
6. Activity Diagram <MeetingBetweenUser> Completed
7. Activity Diagram <SetUpNotification> Completed
8. Sequence Diagram < LoginUser> Completed
9. Sequence Diagram <MeetingBetweenUser> Completed
10. Sequence Diagram <SetUpNotification> Completed

11. Check and Correct the Use Case Diagram and Completed
Domain Model
12. Purpose Completed
13. User Interface for Login Users Completed
14. User Interface for Calendar Completed
15. User Interface for Online Meeting Completed
16. Software interface Completed
17. Performance and other requirements Completed
18. Component Model Completed
19. Check Component Model and Complete Package | Completed
Diagram
20. Details Description for Communication Completed
Subsystem
21. Package Diagram for Communication Completed
Subsystem
22. Class Diagram for Communication Subsystem Completed
23. Table of Methods for Communication Completed
Subsystem
24. Sequence Diagram for <Online Meeting Completed
scenario>
25. Sequence Diagram for <Chatting scenario> Completed
Gui Yu Xuan | Group 1. Domain Model For All System Completed
Member | 2. Use Case <FillingForm> Completed
3. Use Case <EvaluateProject> Completed
4. Use Case <PostingForum> Completed
5. Activity Diagram <FillingForm> Completed
6. Activity Diagram <EvaluateProject> Completed
7. Activity Diagram <PostingForum> Completed
8. Sequence Diagram <FillingForm> Completed
9. Sequence Diagram <EvaluateProject> Completed
10. Sequence Diagram <PostingForum> Completed
11. Identify Scope of the System Completed
12. User Interface for Filling Form Completed

13. User Interface for Evaluate Project Completed
14. User Interface for Posting Forum Completed
15. Specify the Communication Interface Completed
16. Determine Software System Attribute Completed
17. Check Component Model and Complete Package | Completed

Diagram
18. Architecture Style and Rationale Completed
19. Details Description for Project Evaluation

Subsystem Completed
20. Package Diagram for Project Evaluation

Subsystem Completed
21. Class Diagram for Project Evaluation Subsystem
22. Table of Methods for Project Evaluation Completed

Subsystem Completed
23. Sequence Diagram for <Evaluate Project

Scenario> Completed
24. Table of Methods for another method used in the

system (Login and Register) Completed
25. Sequence Diagram for <Login Scenario> Completed
26. Sequence Diagram for <Register Scenario> Completed

d. Version Control History
Version | Primary Author(s) Description of Version Date
Completed
1.0 All team members 1. Completed Chapter 1 and 5 June 2022

Chapter 2, Section 1.

2. All team members discuss
together to discuss the details
of this system.

3. All team members work
together to produce the

requirements.

2.0

All team members

1.

Completed Chapter 3, Chapter
4, Chapter 5 and Chapter 6,
Section 1.

All team members discuss
together the details of the
component models and the
interface.

Make corrections in Chapter 1

and Chapter 2, Section 1

16 June
2022

Note:

This System Documentation (SD) template is adapted from IEEE Recommended Practice for
Software Requirements Specification (SRS) (IEEE Std. 830-1998), Software Design
Descriptions (SDD) (IEEE Std. 1016-1998 1), and Software Test Documentation (IEEE Std.
829-2008) that are simplified and customized to meet the need of SECJ2203 course at School
of Computing, UTM. Examples of models are from Arlow and Neustadt (2002) and other

sources stated accordingly.

Table of Contents

1 Introduction

1.1

1.2

1.3

1.4

1.5

Purpose

Scope

Definitions, Acronyms and Abbreviations

References

Overview

2 Specific Requirements

2.1

2.2

23

24

2.5

External Interface Requirements

User Interfaces

Hardware Interfaces

Software Interfaces

Communication Interfaces

2.1.1

2.1.2

2.13

2.14

System Features
221 uCo01:
222 ucCo002:
223 uCo003:
224 UCo004:
225 UCo00s:
226 uCo006:
227 uco07:
228 UCo008:
229 uUCo009:

Use Case <RegisterUser>

Use Case <LoginUser>

Use Case <SetUpNotification>
Use Case <PostingForum>

Use Case <EvaluateProject>

Use Case <FillingForm>

Use Case <MeetingBetweenUser>
Use Case <SubmitProject>

Use Case <ChatBetweenUser>

Performance and Other Requirements

Design Constraints

Software System Attributes

3-7

3-5

8-56

8-11

11-12

12-14

14

15-25

26-28

29-31

32-34

35-37

38-40

41-44

45-48

49-51

52-54

55

56

56

System Architectural Design
3.1 Architectural Style and Rationale
3.2 Component Model
Detailed Description of Components
4.1 Complete Package Diagram
4.2 Detailed Description
4.2.1 POO1: <Project> Subsystem

422 P002: <Project Evaluation> Subsystem

423 P003: <Communication> Subsystem
Data Design
5.1 Data Description

5.2 Data Dictionary
Interface Design

6.1 Overview of Interface

57-59

57

58-59

60-96

60

61-71

72-76

77-96

97-101

97

98-101

102-103

102-103

1. Introduction

1.1 Purpose

This system documentation (SD) describes how the system, One Touch FYP System works
which aims to help the users to complete the final year project’s task. The system
documentation will provide an overview for the users to understand how the platform in the
system interacts with each other. The intended audience for the system documentation (SD)

are students, supervisor, coordinator and the evaluator.

Besides that, the software requirement specification (SRS) will help to show and describe
how the system will do and how it will be expected to perform for the users. It also describes

the functionality that the system will perform to help in the final year project process.

Furthermore, the purpose of the software design document (SDD) is to show the overall
design and architecture of the system and explain how the system will be built to meet a set

of technical requirements.

Lastly, the software test description (STD) will show the test preparation, test cases and test

procedures to be used to test the system, One Touch FYP System.

1.2 Scope

The software product that our group will be producing is One Touch FYP System. It is a
platform that allows different users, such as undergraduate students, supervisors and
committees of the School of Computer to communicate and share tasks or information about
final year projects. By using this system, every activity that should be done will be more
efficient and effective without wasting materials, time, or energy. Students able to complete
the form that are needed in completing their final year project directly in the system,
supervisor and evaluators able to view the students’ final year projects and evaluate it directly
in the system, communication and online meeting become easier as it can be done in the
system and coordinators able to see all the progress via the system.

The scope of the system includes:

Forum
1. For coordinators
ii. To share the news and information such as news, PSM calendar, PSM presentation

schedule and list of lecturers and their area of expertise for students.

Chat Box
i. For students, supervisors, coordinators and evaluators.
ii. Coordinators act as customer services to answer student’s questions about the system.

iii. Enable students to communicate with supervisors and evaluators.

Meeting Platform

i. For coordinators, students, supervisors and evaluators.

ii. Coordinator brief on suitable topics, lecturer and his/her area
iii. Students meeting with supervisor to discuss the project

iv. Students make presentations on this platform.

Submission platform
1. For students.

ii. Students submit their project.

Form Platform

i. For students.

ii. Students fill the forms that are needed to be submitted.

iii. Project Proposal Form, Meeting logbook, Project Evaluation Form, Draft Report
Submission Form and Changing Project Title Form are the forms provided in the

System.

Evaluation Platform
i. For supervisors and evaluators.

ii. Students’ PSM report will be received and able to make the evaluation

Calendar
1. For students and coordinators.

ii. Coordinators set the important dates to remind students.

iii. Students are able to set the date on their own for alert purposes.
The main goal of the proposed system, the One Touch FYP System is to simplify the
communication and interaction between users. It is different from the current system where
third parties must be used for other purposes. Every activity is able to be done directly via the
system which is able to save materials, users time and energy. In addition, a calendar created
for this system will be able to notify and remind users by preventing them from forgetting
important dates. To conclude that, the proposed system is able to ease the use of users,
simplify the interaction between different users and increase the efficiency and effectiveness

of the system.

1.3 Definitions, Acronyms and Abbreviation

Definitions/ Acronyms/ Abbreviation Meaning

PSM Project Sarjana Muda

FYP Final Year Project

Coordinator The person who manages the FYP program

and students in this system

Supervisor The user who will supervise the student's
progress

Evaluator The user who will evaluate the students’
project

14 References

i. ManageEngine. (n.d.). Network Protocols. Retrieved on 31 May 2022, from
https://www.manageengine.com/network-monitoring/network-protocols.html.

ii. Sommerville, 1., Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2019).

Edition: Software Engineering. Instructor.
iii. How to write a software design document (SDD). (n.d.). Retrieved 1 June 2022, from

https://www.nuclino.com/articles/software-design-document

iv. Lutkevich, B. (2022, February 25). What is software documentation? definition, types
and examples. SearchSoftwareQuality. Retrieved 1 June 2022, from

https://www.techtarget.com/searchsoftwarequality/definition/documentation

v. Editor. (2019, December 9). Technical documentation in software development: Types,
best practices, and Tools. AltexSoft. Retrieved 1 June 2022, from

https://www.altexsoft.com/blog/business/technical-documentation-in-software-

development-types-best-practices-and-tools/

vi. Rsameser. (n.d.). Getting started with Windows IOT Enterprise. Microsoft Docs.

Retrieved 1 June 2022, from https://docs.microsoft.com/en-us/windows/iot/iot-

enterprise/getting_started

vil. What is software testing? definition of software testing, software testing meaning. The
Economic Times. (n.d.). Retrieved 1 June 2022, from

https://economictimes.indiatimes.com/definition/software-testing

viil. The Essential Tool for Mathematics. Maple. (n.d.). Retrieved 1 June 2022, from

https://www.maplesoft.com/products/Maple/

https://www.manageengine.com/network-monitoring/network-protocols.html
https://www.nuclino.com/articles/software-design-document
https://www.techtarget.com/searchsoftwarequality/definition/documentation
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/getting_started
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/getting_started
https://economictimes.indiatimes.com/definition/software-testing
https://www.maplesoft.com/products/Maple/

1.5 Overview

This system documentation consists of specific requirements for the One Touch FYP System
which are the external interface, hardware interface, software interface, user interface, and
communication interface. In the system features, domain model, use case, use case

description, sequence diagram, and activity diagram of each feature in the system will be

described.

After that, performance and other requirements, as well as design constraints, will be
specified in Chapters 2.3 and 2.4. Lastly, the software system attributes explain the attributes

that will be used in this system.

This system documentation is being organized by all the team members of the One Touch
FYP System. All the system features and the chapters in this documentation are discussed
and done together in order to produce a system software that can ease the process while

undergoing PSM.

2. Specific Requirements

2.1 External Interface Requirements
2.1.1 User Interfaces

RegisterUser Interface

The registration interface has a form for users to fill in their information details such as name,
email address, gender, and contact number. A unique userID is also required. The system will
compare the userID entered by the user with the UTM database. The user can only register
successfully if the userID exists in the UTM database. This is to ensure only UTM’s students
and staff as well as the company that has UTM students interning in it can use the system. If
the userID is matched, the system will add the new user information into the system. After
registering successfully, the system will display a registration successful message and the
user can now use the username and password created to log in to the system. If the userID
does not exist, the system will display an error message and the user is unable to register and

login into the system.

Login Interface

The login interface provides an option for users to login in the system. It provides a place for
users to enter username and password in the system. The user chooses the “login” option in
the login interface and fills in their username and password. The system will check the
validity of the username and password. If the username and password is valid, the user will
redirect to the system home page. Else, the system will display an error message to the user.
The user needs to re-enter the username and password if they want to access the system. The
user who is able to enter the system can view their personal information in the system. If the
user does not have an account in the system, they can choose the “Register” option in the

login interface to register in the system.

Calendar Interface

The calendar interface provides a notification setting for coordinator or students to remind the
student or themselves of the upcoming students activity in the system. Firstly, the coordinator

needs to set up the student’s activity in the system. Then, the students need to fills their email

address when they register in the system. In order to set up the notification in the system,
users need to click on the “settings option” in the calendar interface. If the user is a student,
the system will display the event that was set by the coordinator. The student selects the
activity and sets the date and time they wish to notify for themselves. If the user is the
coordinator, the system will display a list of student events for the coordinator. The
coordinator selects the student’s activities and sets the date and time to remind the student.
After the settings, the user clicks the save option to save it in the system. The system will

notify the student based on the time and date via the student’s email.

PostingForum Interface

First, the user must log in to the system. Then, on the user profile page, there will be a
navigation bar that the user can click to select different functions. The user clicks the
"Forum" button. After the user clicks, they will be directed to the forum interface. In the
forum interface, there will be a "Post" button that allows users to post new posts, with
previously posted content displayed below the button. If the user wishes to publish a new post,
click the "Post" button. After that, a form will be displayed. Users can type information into
the form. If the user wishes to upload a file, the user can click the "Upload File" button and

upload the file. Otherwise, the user can click the "Submit" button to submit the post.

EvaluateProject Interface

First, the user must log in to the system. Then, on the user profile page, there will be a
navigation bar that the user can click to select different functions. The user clicks the
"Evaluation" button. After the user clicks, it will jump to the evaluation interface. In the
Evaluation interface, there will be a list of students' projects. Each project will have a "View"
button that allows the user to view the project and an "Evaluate" button to enter grades. If the
user chooses to view the student's project, the project file will be displayed on the screen. If
the user chooses to evaluate the item, an evaluation form is displayed. Then, the user can

enter the marks in the evaluation form.

FillingForm Interface

First, the user must log in to the system. Then, on the user profile page, there will be a
navigation bar that the user can click to select different functions. The user clicks the "Form"
button. After the user clicks, it will be directed to the filling form interface. In the filling form

interface, there will be a navigation bar showing the different forms available in the system.

Users can choose whether to fill in the Project Proposal Form, Meeting Log, Evaluation Form,
Draft Report Submission Form, and Change Project Title form. After clicking on any form,
the relevant form is displayed on the screen, and the user can then enter information and
submit. If the user wishes to submit the file while filling out the form, the user can click the

"Upload" button to upload the file.

MeetingBetweenUser Interface

Online meeting interfaces provide a platform for users to meet together virtually. The user
clicks on the “Meeting” button to access the meeting room interface. Then, users need to
select the way to start the meeting. If the user has the meeting room id, user select the “Enter
meeting room ID” option to enter the meeting room id. Then the system will find the matched
meeting room based on the meeting room id. If the meeting room id entered is invalid, the
system will display an error message to the user. Otherwise, the system will redirect the user
to the meeting room.

For the user who does not have a meeting room id and wants to meet online, they can choose
the “open a new room” option in the meeting room interface. The system will assign the user
to an empty room with a meeting room id. The user can share the meeting room id by
clicking on the settings option and copy the id. In the virtual meeting room, the user can use
the meeting room’s functions such as microphone, slideshare and “start video”. If the user
wants to record the meeting, they can click the “record” button to start the recording. The
system will record the meeting and save it. After the meeting ends, the user can click the
“leave” button to leave the meeting room. Then, the system will automatically generate and
save it in the system database. A URL link that links to the recorded video will be sent to the

user’s email.

SubmitProject Interface

Firstly, the user must log in to the system. Then, on the user profile page, there will be a
navigation bar that the user can click to select different functions. The user clicks the
“Submission” button. After clicking, the user will be directed to the project submission
interface. On this page, there is a form that allows the user to upload files. In the form, an
“upload” button is present on the left side, after the user clicks the “upload” button, a “choose
file” button will be shown. After clicking it, the user’s file explorer will pop up and the user
can choose the file he/ she wants to upload. After clicking on the file he/ she chooses to

upload, the system will upload the file. If the file uploaded successfully, the system will

10

display the fileName and fileID that user uploaded. Else if upload fails, the system will
display an error message and the user needs to upload again. After that, the user can click the

“save changes and submit” button and the file will be submitted and saved to the system.

ChatBetweenUser Interface

Firstly, the user must log in to the system. The “Conversation” button will be displayed on
the bottom right side of the page. The user can click on it to start the conversation. After
clicking the “conversation” button, a list of the name will pop up and the user can choose the
name he/ she wishes to chat with. After choosing the name, the user can start the conversation
by typing the message and clicking the “send” button on the right side of the textbox after
finishing typing.

If the user received a message, the chat box will pop up and display the message received.
The user can reply by typing the message in the textbox and clicking the “send” button to
send it.

If the user wishes to find the customer service, the user clicks on the “Conversation button”
and the “Student Care” will be the first in the name list. The user can choose “Student Care”

and send the message with the question he/ she wishes to get help.

2.1.2 Hardware Interfaces

Our proposed system should be accessed through a personal computer. Some input and
output devices supported by the system are:

> Mouse - to click on the function button such as register, submit, etc

> Keyboard - to input data such as personal information when register and type message for
conversation

> 4GB HD space required for a typical live system with 1000-2000 events.

> Recommended minimum CPU - Pentium 4.3.2GHz

> Recommended 1GB RAM for a Central Server with 3 nodes.

> Network Card

Our system will be running on a website, therefore, using the standard port numbers 80 for

HTTP. Besides that, as the user needs to upload a file to submit their project, File Transfer

11

Protocol (FTP) and port 21 will be used. Moreover, Transmission Control Protocol (TCP)
and port 3306 will be used for the MySQL database.

Our system supported most operating systems including Windows, Mac OS, and Linux.
Therefore, most of the devices could access our system. The users are required to use a

modern web browser such as Mozilla Firefox 1.5, Internet Explorer 6 and Google Chrome to

use our web-based system.

2.1.3 Software Interfaces

a. Data management system

php
aEe

Rucat | Fnoriee

Databases . SQL (§ Status = Useraccounts & Expert [Import Seltings Replication ¥ More

& New
+ Server: 127.0.0.1 via TGP/P

* Server type: MariaDB

$-id demo = Server connection collation: &
+ demot
infarmation_schema « Server connection: SSL (s not being used &
mysql + Server version: 10.4.24-MarlaDB - mariadb.org
performanca_schema binary distribution
phpmyadmin « Protocol version: 10
tast R 5 « User. root@lacalhost

z S « Server charset: UTF-8 Unicade (uifBmb4)

& Language & English v
jTheme pmahomme v Viewal
+ Apache/2 4 53 (Win64) OpenSSLI1.1.1n PHP/8.16
« Database client version: ibmysgl - mysaind 8 16

« PHP extension: mysali & curl g mbstring &
« PHP version: 8.1.6

= Console

Figure 1: phpMyAdmin dashboard

b. Name: phpMyAdmin
i. Mnemonic: phpMyAdmin
ii. Specification number: N/A
iii. Version number: phpMyAdmin 5.2.0

1v. Source: https://www.javatpoint.com/phpmyadmin

In our system, we use phpMyAdmin for database management. This is because phpMyAdmin
can run on any server or operating system. It can easily manage the database, relation, tables,
columns, users, and so on in MySQL. It can also perform administrative functions like

database creation and query execution.

12

https://www.javatpoint.com/phpmyadmin

c. Operating system

i. Name: Windows 10 Internet of Things Enterprise
ii. Mnemonic: Windows 10 IoT Enterprise
iii. Specification number: N/A
iv. Version number: LTSC (Long-Term Servicing Channel) 2021

v. Source:https://docs.microsoft.com/en-us/windows/iot/iot-

enterprise/getting_started

We will use Windows Internet of Things Enterprise as our operating system. This is due to
the fact that it is a productive system that is capable of building and managing Windows IoT
Enterprise devices using powerful tools and technologies to unlock data and drive digital
transformation. Apart from that, it is saved to protect our devices, data, and users' identities.

Last but not least, it can connect devices to a network and the cloud.

d. Mathematical package

B 2 ¥

oh
L i i
ERS ESER
Tk Mot b apr
o

gty . e ve

Figure 2: A Google image of what Maple is capable of.
i. Name: Maple

ii. Mnemonic: Maple

iii. Specification number: N/A

13

https://docs.microsoft.com/en-us/lifecycle/products/windows-10-iot-enterprise-ltsc-2021
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/getting_started
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/getting_started

iv. Version number: Maple 2022

V. Source:https://www.maplesoft.com/products/Maple/

The system will use Maple for the mathematical package. Maple is a math programme that
combines the world's most powerful math engine with an interface that makes analysing,

exploring, visualizing, and solving mathematical problems easier.

2.1.4 Communication Interfaces

The network protocols used are based on OSI models in which the communication process
will be splitted into 7 layers. Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are used for data transmission. Both protocols are useful as they will provide
error correction while transmitting data and control the flow of the transmission. TCP is
mainly used for transmitting large datagram messages while UDP is used for transmitting

short datagram messages.

File Transfer Protocol (FTP) also used in the system as it enables the transferring of files. It is
important in this system as users need to upload their project report into the system. Besides
that, HyperText Transfer Protocol (HTTP) is also used in this system. HTTP is an application
layer protocol designed to transfer information between networked devices. This means that
the information entered by the user is saved on the server and can be shared with other users.
Hence, the communication between students, coordinators, supervisors and evaluators can be

easier as they will be able to share over the web.

14

https://www.maplesoft.com/products/Maple/

2.2 System Features

The system features include Use Case Diagram, Activity Diagram of System, Domain Model,
Use Case Description, Activiti Diagram of every use case and sequence diagram. The
features include in Use Case Description are <RegisterUser> for students and supervisors,
<LoginUser>, <SetUpNotification>, <MeetingBetweenUser> and <ChatBetweenUser> for
coordinators, evaluators, students and supervisors, <PostingForum> for coordinators,
<EvaluateProject> for supervisors and evaluators, <FillingForm> , <SubmitProject> for

students.

Use Case Diagram

(\

Submit Project Posting Forum || ’j
———— . Set Up o

- Notification

\ —

Coordinator

S .

- e

= -
S S Evaluator

Figure 2.1: Use Case Diagram for <One Touch FYP System>

15

Student Supervisor Coordinator Evaluator

a the
system

register in the
s¥stem

register in the
system

login into the
system

login into the
system

login into th
login into the & the [orum

set notification for
student view post in
forus

view post in
forum

post in
forum
fill required form

set notificaton for their
activity

[want meeting| else

meeting room
terface

disscuss about

project in chatbox

disscuss about

project in meeting
room

student submit
project

evaluiaror and
coordinator evaluate

project

exit the system

Figure 2.2: Activity Diagram for <One Touch FYP System>

16

Evaluate

Evaluate 1.1

View

notify

View

Submit

Chat

Supervise

Acquire

Manage

Figure 2.3: Domain Model for <One Touch FYP System>

Classes and Relationship explanation

a. Student

The attributes involved are:

i. studName : Name of student

ii. studentIC : Unique IC number of student
iii. userID : Unique identification of student in the system
iv. studMatricNo : Matric number of student

v. studentEmail : Email of student

vi. supervisorName : Supervisor name of the student
vii. subjectCode : Subject taken by the student
viii. username : Unique username of student for login in the system

ix. password : Unique password of student for login in the system

17

Relationship of the class

il.

1il.

1v.

Vi.

Vil.

b.

Student and Project: Student submits the project that has the mandatory relationship
with the multiplicity one to one (1..1 : 1..1)

Student and Notification: Student sets the notification of their activity that has the
mandatory relationship with the multiplicity of many to many (1..* : 1..*)

Student and Forum: Student views the post in the forum that has the mandatory
relationship with the multiplicity of many to many (1..% : 1..%)

Student and OnlineMeeting: Student meets with other users with mandatory
relationships with the multiplicity of many to many (1..* : 1..*)

Student and Chatbox: Student chats with other users by using the chat box with the
optional relationship with the multiplicity of many to many (0..* : 0..%)

Student and Supervisor: Student that are supervised by their supervisor that they have
a mandatory relationship with the multiplicity of minimum of 1 up to maximum of 4

students and minimum of 1 up to maximum of 2 supervisors (1..4:1..2)

Student and Form: Student fills the form that is provided in the system that has the

mandatory relationship with the multiplicity of many to many (1..* : 1..*)

Supervisor

The attributes involved are:

1.
il.
1il.
1v.
V.
Vi.
Vil.

Viii.

supervisorName : Name of supervisor

supervisorIC : Unique IC number of supervisor
supervisorEmail : Email of supervisor

studName : Supervised Student Name

areaOfInterest : The area of interest of supervisor

userID : Unique identification of supervisor in the system
username : Unique username used for login in the system

password : Unique password used for login in the system

18

Relationship of the class

il.

1il.

1v.

Supervisor and Project : Supervisor evaluates the project with the mandatory
relationship with the multiplicity of one to many (1..1 : 1..*)

Supervisor and Chatbox : Supervisor chats by using the chat box with an optional
relationship with the multiplicity of many to many (0..* : 0..%)

Supervisor and OnlineMeeting : Supervisor meets with other users with mandatory
relationships with the multiplicity of many to many (1..* : 1..*)

Supervisor and Forum : Supervisor views the forum with a mandatory relationship

with the multiplicity of many to many (1..* : 1..%)

Supervisor and Student : Supervisor supervises students with a mandatory relationship
with the multiplicity of minimum of 1 up to maximum of 2 supervisors and minimum

of 1 up to maximum of 4 students (1..2 : 1..4)

Coordinator

The attributes involved are

1.

1l.

1il.

1v.

Vi.

coordinatorName : Name of coordinator

coordinatorIC : Unique IC number of coordinator
coordinatorEmail : Email of coordinator

userID : Unique identification of coordinator in the system
username : Unique username used for log in

password : Unique password used for log in

Relationship of the class

1l.

1il.

Coordinator and Chatbox : Coordinator chats by using the chat box with an optional
relationship with the multiplicity of many to many (0..* : 0..%)

Coordinator and OnlineMeeting : Coordinator meets with other users with mandatory
relationships with multiplicity of many to many (1..* : 1..%)

Coordinator and Notification : Coordinator sets the notification of important events

with a mandatory relationship with the multiplicity of many to many (1..* : 1..¥)

19

iv. Coordinator and Forum : Coordinator posts the forum with a mandatory relationship

with the multiplicity of many to many (1..* : 1..%)

v. Coordinator and Form : Coordinator manages forms with a mandatory relationship

with the multiplicity of many to many (1..* : 1..%)

d. Evaluator
The attributes involved are:
1. evaluatorName : Name of evaluators
ii. evaluatorIC : Unique IC number of evaluators
iii. evaluatorEmail : Email of evaluators
iv. userID : Unique identification of evaluator in the system
v. username : Unique username used for log in

vi. password : Unique password used for log in

Relationship of the class

1. Evaluator and Chatbox: Evaluator chats by using the chat box with an optional
relationship with the multiplicity of many to many (0..* : 0..%)
ii. Evaluator and OnlineMeeting: Evaluator meets with other users in the online meeting
with a mandatory relationship with the multiplicity of many to many (1..* : 1..%)
iii. Evaluator and Forum: Evaluator views the forum with the mandatory relationship

with the multiplicity of many to many (1..* : 1..%)

iv. Evaluator and Project: Evaluator evaluates the project with a mandatory relationship

with the multiplicity of one to many (1..1 : 1..*)

20

e.

Notification

The attributes involved are:

1.

il.

iil.

1v.

userEvent: The list of event of the student in the system

userAcitivity: The selected student activity to be notified, it consists of the detailed

information of the activity of the student.
remindTime: The time to be notify the student
remindDate: The date to be notify the student

userEmail: Student email

Relationship of the class

1l.

f.

Notification and Student: The notification will notify students of their activity with a
mandatory relationship with multiplicity of many to many (1..* : 1..%)
Notification and Coordinator: The notification will be set up by the coordinator with

a mandatory relationship with multiplicity of many to many (1..* : 1..*)

Forum

The attributes involved are:

1.

il.

1il.

1v.

forumlInfo : The content of the forum
forumFileID : The file uploaded from computer devices

errorMessage : Error messages return by the system if the uploading of file and

submitting the forum is failed

forumID : The forum which contains the content and with or without files that are

submitted by coordinators.

21

Relationship of the class

il.

1il.

1v.

g.

Forum and Evaluator: Forum can be viewed by evaluators with the mandatory
relationship with multiplicity of many to many (1..* : 1..%)

Forum and Supervisor: Forum can be viewed by supervisors with the mandatory
relationship with the multiplicity of many to many (1..* : 1..%)

Forum and Coordinator: Forum can be posted by coordinators with a mandatory
relationship with the multiplicity of many to many (1..* : 1..%)

Forum and Student : Forum can be viewed by students with the mandatory

relationship with multiplicity of many to many (1..* : 1..%)

Online Meeting

The attributes involved are:

1.

1l.

1il.

1v.

meetingRoomld: unique Meeting room Id for the user
recordLink: recorded meeting video URL link
userEmail: Email of the user that use the meeting room

errorMssg: error message displayed to the user when the user enters the wrong

meeting room Id.

Relationship of the class

1l.

iil.

1v.

Online meeting and Evaluator: Online meetings where evaluators and other users
meet have the mandatory relationship with multiplicity many to many (1..* : 1..*)
Online meeting and Supervisor: Online meetings where the supervisor and other
users meet have the mandatory relationship with multiplicity many to many (1..* :
1..%)

Online meeting and Coordinator: Online meetings where the coordinator and other
users meet have the mandatory relationship with multiplicity many to many (1..* :
1..%)

Online meeting and Student: Online meetings where student and other users meet

have the mandatory relationship with multiplicity many to many (1..* : 1..%)

22

h. Chatbox

The attributes involved are:
i. studentCare : The customer service of the system
ii. senderName : The user who send the message
iii. receiverName : The user who received the message

iv. chatMsg: The content of the message

Relationship of the class

i. Chatbox and Evaluator: Chatbox where evaluators can chat with other users or find
Student Care has the optional relationship with multiplicity many to many (0..* : 0..%)
it. Chatbox and Supervisor: Chatbox where supervisor can chat with other users or find
Student Care has the optional relationship with multiplicity many to many (0..* : 0..%)
iii. Chatbox and Coordinator: Chatbox where coordinator can chat with other users or
find Student Care has the optional relationship with multiplicity many to many (0..* :

0..%)
iv. Chatbox and Student: Chatbox where students can chat with other users or find
Student Care have the optional relationship with multiplicity many to many (0..* :

0..%)
i Project

The attributes involved are:
1. fileID : Project report of students
ii. subDateTime : project submission date and time

iii. errorMsg : Error messages return by the system if the uploading of file and

submitting the project is failed

iv. evaluateFormID : Evaluation form that filled by students will be sent to evaluators

and supervisors to enter marks

v. marks : Marks given by supervisors and evaluators

23

Relationship of the class

il.

1il.

1v.

je

Project and Supervisor : Project evaluated by supervisors have the mandatory
relationship with multiplicity of one to many (1..1 : 1..%)

Project and Evaluator : Project evaluated by evaluators have the mandatory
relationship with multiplicity of one to many (1..1 : 1..%)

Project and Student : Project submitted by the student have the mandatory
relationship with multiplicity of one to one (1..1: 1..1)

Project and Form : Project is a composition of Form having a relationship with

multiplicity of one to one (1..1: 1..1)

Form

The attributes involved are:

1.

1l.

1il.

1v.

Vi.

Vil.

Viii.

iX.

xi.

Xil.

formID : Unique identification of the forms that had been filled by students
proposallD : Unique identification of the proposal form

proposallnfo : The content of the proposal form

logBookID : Unique identification of the meeting log book
logBookInfo : The content of the meeting log book

evaluateFormID : Unique identification of the evaluation form
evaluateIlnfo : The content of the evaluation form

changeFormID : Unique identification of the change project title form
changeFormlInfo : The content of the change project title form
draftID : Unique identification of the draft submission report form
draftInfo : The content of the draft submission report form

reportFilelD : Unique identification of the students’ project

24

Relationship of the class

1.

ii.

1il.

Form and Project : Evaluation form will be acquired by Project is a composition
relationship with multiplicity of one to one (1..1: 1..1)

Form and Student : Form filled and submitted by student have the mandatory
relationship with multiplicity of many to many (1..* : 1..%)

Form and Coordinator : Forms managed by coordinators with mandatory relationship

with multiplicity of many to many (1..* : 1..%)

25

2.2.1 UCO001: Use Case <RegisterUsers>

Table 2.1: Use Case Description for <RegisterUser>

Use case: RegisterUser

ID: UC001

Actors:

1. Student

2. Supervisor

Preconditions:

1. The users had accessed the system.

2. Coordinator and evaluator had registered into the system.

Flows of Events:
1. The user clicks on the “Register” option in the login interface.
2. The user fills in the required information for registration in the
register interface.
3. The system verifies the user id by comparing it with UTM’s user
database.
3.1. If the user id is valid, the system displays a success
message to the user.
3.2. The system accepts the information and saves the
username and password of the user.
4. FElse, the system will display an error message and the user may
need to register again.

5. The user goes back into the login interface.

Postconditions:

The registered user in the system is able to login into the system.

26

Activity Diagram

access login interface

—
} choose "Register"
\ option

—

N

| fill in required personal
information

Else >

Display error message

[userID exist in
UTM database]

system accepts the user)

information and
approved the user

) ~
system add user into
system

back to login interface

V

0

Figure 2.4: Activity diagram for RegisterUser use case

27

Sequences Diagram

M

/

1. Student
2. Supervisor UsiE Diita
| |
| |
A |
M |
——click[register| ——»| |
register(personalInfo, userID)-| |
verifyUser(userID)}—— | :
R verificationResult()------———--— |
= e [
] I
(Alt_J - — |
; ddNewUser()
[1f user valid] ' saveData(personallnfo)—»
A sendSuccessMsgQoerreremerd| [sendSuccessMsg()-—-—---
<-----displaySuccessMsg()------1 - !
= I I
_____________________ i s i e i e i s i e e i i S e i i i]
[Else] } : :
— | |
| |
(mmmm -displayErrorMsg()------- | |
| |
T | |
| |
1 |
| |
| |
| |
| |
| |

Figure 2.5: Sequence diagram for RegisterUser use case

28

2.2.2 UC002: Use Case < LoginUser>

Table 2.2: Use case description for LoginUser

Use case: LoginUser

ID: UC002

Actors:

1. Student

2. Supervisor

3. Coordinator

4. Evaluator

Preconditions:

1. The users had accessed the login interface of the system.
2. The users had registered in the system.

Flows of Events:
1. The user clicks on the “login” option in the login interface.
2. The user fills in the username and password.
3. The system checks the validity of the username and password of the
user.
3.1. If the username and password is correct, the user enters the
system home pages.
3.2. Else, error messages are displayed and the user re-keyln the
username and password again.

4. The system displays the user’s personal information.

Postconditions:
1. The users are able to access and view their personal information in

the home page of the system.

29

Activity Diagram

[user access login interface]

user choose "login"
option

user fillls in username andw

password J

system check the validity of
the user's username and
password

[correct username
and password] else

display error
message

user access system
home page

Figure 2.6: Activity diagram for LoginUser use case

30

Sequences Diagram

1. Student Login Manager
2.Supervisor
3. Coordinator
4. Evaluator

[Click login]
login(username, password) sendLogin(username, password) verifyLogin(username, password) [|

-
|
|
|
|
I
|
|
|
|
|
|
I
I
|
|
L
|
|
|
|
|

verifyResul) | o verifyResul)
PRV, .2 iy MR
1 L
alternative] | |
| |
if dorrrect username and password] : }
access
T t
| |
| |
] l
|
4 | ——_———— . il -
1 I |
1 [|
fels I } |
display(errorMssg) : | :
,,,,,,,,,,,,,,,,, |
| ! I
I ! |
\ ‘[I
! | |
| |
| I |
' '

Figure 2.7: Sequence diagram for LoginUser use case

31

2.2.3 UCO003: Use Case <SetUpNotification>

Table 2.3: Use case description for SetUpNotification

Use case: SetUpNotification

ID: UC003

Actors:

1. Student

2. Coordinator

Preconditions:

1. The users had accessed the “calendar” interface of the system.
2. The students had filled in his/her email account in the system.
3. The coordinator had set the student’s activity.

4. The coordinator had set a due date for the student’s activity.

Flows of Events:
1. The user clicks on the “settings” option in the calendar interface.
2. If the user is a student, the system displays a list of events the student has.
2.1. The student selects the activities they wish to be notified of.
2.2. The student sets the date and time they wish to be notified.
3. Else, the system will display a list of student events for the coordinator.
3.1. The coordinator selects the student’s activities they wish to notify the
students.
3.2. The coordinator sets the date and time they wish to notify the students.
4. The user clicks the “save” option to save the notification settings.

5. The system saves the notification settings of the user.

Postconditions:
1. The system will remind the user about the specific activity based on the time

date that the user set up via email.

32

Activity Diagram

users accessed the 7
calendar interface of
the system

user clicks on the
settings option

[user is a student]

[else]

R

‘The system displays
a list of events the
student has.

The system displays a
list of student’s

events

student selects Y
activities need to user selects student's
be notified of activities need to
notify for the students

student sets the date

X 2 user sets the date and
and time wished to be

notified of

time wished to notify
the students

N
S

user clicks the
save option

The system saves the
notification settings of
the user

O

Figure 2.8: Activity diagram for SetUpNotification use case

33

Sequences Diagram

1. Student
2. Supervisor
3. Coordinator Calendar Manager System Controller User data
4. Evaluator
T
1
| ; \
— o 4 e
Click [settings]
getEvent()
getEvent()
= = o
| | |
A m ™
” sendEvent(userEvent)
sendEvent(userEvent)
display(userEvent) ORI i L i
Attt -
=T e o |
| | |
| |
| | ‘
—
A A
setNotification{userActivity, remindDate, remindTime)
setNosificatlon(user Activity, remindDate, remindTine)
saveNotification(userActivity, remindDate, remindTine, userEmail) |
—
[If wser {s a student]
setNotification(studentActivity, remindDate, remindTime)
ivity, remindDate,
saveNotific {ivity, remindDat i
[Else]
setNotification(studentActivity,remindDate, remindTime)
eiNotific
bt y dDate, remindTime,
—J
i
|
|
|
]
sendNotify(userActivity)
notifyUser(userActivity) K e e
(____________________ T
|
|
|
|

T
|
|
|
I
i

Figure 2.9: Sequence diagram for SetUpNotification use case

34

2.2.4 UC004: Use Case <PostingForum>

Table 2.4: Use case description for PostingForum

Use case: PostingForum

ID: UC004

Actors:

1.

Coordinator

Preconditions:

1.

User has logged into the system.

Flows of Events:

1.

Users click on the “Forum” button.

. Users click on the “Post” button.

2
3.
4

Users typing the information that wish to be shown in the forum.
If users want to attach files
4.1. Users select “Upload File” options to upload files.
4.2. If the uploading files is success
4.2.1. System will display it on the screen.
4.3. Else, the system displayed an error message.
4.4. Users upload the files again.
Users click on the “Submit” button.
If the posting is success
6.1. System saves the information.
Else, the system displays an error message.
7.1. Users need to check for the error and correct the content.

7.2. Users click on the “Submit” button.

Postconditions:

1. The post will be uploaded to the Forum template.

35

Users access to Forum
Interface

L

Users click on "Post"
button

|

Users enter the
information to be post

[attach files]

[else]

|

[else]

Users click on "Upload
File" button

l

Users upload file

Error messages will be
displayed by system

[uploading success]

Users click on "submit™

[posting success]

System saves
information

©,

System displays on the
screen

36

Figure 2.10: Activity diagram for PostingForum use case

Error messages will be
displayed by system

l

Users correct error

/

Forum Manager Forum Controller Forum Data
Coordinator
— } x
getForum ()] ;
getPost() I :
insertForumContent {forumInfo)
Alternative
click [Upload] ' '
) .
[if attach files] verifyFile (forumFileD) o !
- ! verifyForumFileResult () :
-
: — :
Alternative H
[if uploading file is < endvalidFile (forumpileiD) s
success] :
< " displayValidFile (forumFilelD) | i
[else] !
< displaylnvalidFile (errorMessage) | = i
— i !
click [submit] ; '
o |
verifyForum (forumID) :
; ==
: | verifyForumResult) !
! e
| a—
Alternative
L saveForum (forumID)
[if submitting post is
success] i
; S endtoram (oruiD) |
L
e sendForum (forumID)
<- displayForumPost (forumID)
[else] £
S postinvalid (forumID)
-
<77E.777777’T 77777777
isplayPostInvalid (errorMsg)
| —
J

Figure 2.11: Sequence diagram for PostingForum use case

37

2.2.5 UCO005: Use Case <EvaluateProject>

Table 2.5: Use case description for EvaluateProject

Use case: EvaluateProject

ID: UCO005

Actors:
1. Supervisor

2. Evaluators

Preconditions:

I. Students had submitted their project report and evaluation form.

Flows of Events:
1. Users click on the “Evaluation” button.
Lists of the student’s projects will be displayed by system.
Users choose one of the projects.
Users click on the “View” button.
The content of the project will be displayed by system.
Users click on the “Evaluate” button.
The evaluation form entered by the users will be displayed by the system.

Users can enter the marks in the “Marks” section.

o ®» N bk WD

If the entering the marks is success,
9.1. System will display the marks on the screen.
10. Else, system display error message
10.1. Users reenter the marks.
11. Users click on the “submit” button.
12. If submit is success
12.1. System saves the information.
13. Else, the system displays an error message.

13.1. Users correct the error and submit again.

Postconditions:

1. The evaluation form will be sent and displayed at the students’ page.

38

Users access to
Evaluation Interface

Students' project list
displayed by system

Users choose one of
the project

Users click on
"View" button

Project's content will be
displayed by system

Users click on
"Evaluate" button

Evaluation form will
be shown by system

Users enter marks

[success to enter mark] i
System display error

message

System displays the
marks on the screen.

[success to submit]

Users click on System saves the ©
"Submit" button information

System display error
message

Users correct error

Figure 2.12: Activity diagram for EvaluateProject use case

39

1. Coordinator Evaluation Manager Evaluation Controller Forum Data

2. Supervisor
getEvaluation ()
isp roject (fileID, jonFormiD)
elick [view]
retrieveProjectFile (filelD)
< sendProjectFile (filelD)
getProjectFile (filelD) L
i e R e S e
click [evaluate]
retriveEvaluateForm (evaluateFormID)
sendEvaluateForm (evaluateFormID)
—————————
< SndEvsimatTor (cvatiieorm -
== TdigplayEvaluateForm (formiD) |
evaluateMark (marks) _
verifyMark (marks)
1 VerifyMarkResult ()
Alternative)
Fenter AR
[if entering mark success]
e e T T T
felse] < i e]
<= TdisplayinvalidMark (errorMsg) |
click [submit]
verifyEvaluation (evaluateFormiD)
- A
| verifyEvaluationResult
-
Altemative)
saveEvaluation (evaluateFormiD)
[if submit success] ‘
(€ v uatin (vwaeFormi) ‘L
(< g vatuation vatiaterorai)
< T itk (s
[else] <
TSendlnvalidEvaiuation {errorMsg) |
<—- " displayinvalidEvaluation (errorMsg)
L
L J

Figure 2.13: Sequence diagram for EvaluateProject use case

40

2.2.6 UC006: Use Case <FillingForm>

Table 2.6: Use case description for FillingForm

Use case: FillingForm

ID: UC006

Actors:

1. Student

Preconditions:
1. Students had discussed the project with supervisors.

2. Supervisors approved the basic proposal done by students.

Flows of Events:

1. Users click on the “Form” button.

2. Users choose which form they want to fill in.

3. Ifusers wish to fill in the project proposal form,

3.1. Users click on the “Project Proposal Form™ button.
3.2. Users fill in the information needed in the form.

4. FElse if users wish to fill in the meeting log book.

4.1. Users click on the “Meeting Log Book™ button.

4.2. Users fill in the information needed in the form.
5. Else if users wish to fill in the evaluation form.

5.1. Users click on the “Evaluation Form” button.

5.2. Users fill in the information needed in the form.

6. Else if users wish to fill in the draft report submission form.
6.1. Users click on the “Draft Report Submission Form™ button.
6.2. Users fill in the information needed in the form.

6.3. Users click on the “Upload” button to upload the draft report.
6.4. If the uploading is success,

6.4.1. The system displays it on the screen.
6.5. Else, the system displays error messages.

6.5.1. Users check for the error and correct it.

41

Else
7.1. Users click on the “Change Project Title Form” button.
7.2. Users fill in the information needed in the form.
Users click on the “submit” button.
8.1. If the submission is successful,
8.1.1. The system will save the information.
8.2. Else, the system displayed an error message.
8.2.1. Users check for the error and correct it.

8.2.2. Users click on the “submit” button.

Postconditions:

1.

Project Proposal Form, Meeting Log Book, and Change Project Title
Form will be sent to the coordinator for further purposes.

Evaluation Form and Draft Report Submission Form will be sent to the
evaluators and supervisors for evaluation and sent to the coordinator for

further purposes.

42

p
‘ Users access to Form

interface

PR (S

Users choose which
form to be filled

W

System displayed error
el message

Users correct the error

ﬁjsers click on "Project Users fill in the [Users click on "Submit”
[project proposal form] ’t’mposal Form" button information button
[submit successfully]
[else] 3 System save the

information

[Users click on "Meeting|
Tmeeting Iog book] Log Book” button

[else]
(m
"Evaluation Form"
[evaluation form] butten
[else]

Users click on "Change
[draft report submission form]

Project Title" button

[uploading success]

> System save files

[else]

Users click on "Draft
> Report Submission
Form" button

Users fill in the [Users click on "Upload"|
information button to upload file

Telse]
System displayed error

message

Users correct the error

Figure 2.14: Activity diagram for FillingForm use case

43

7
\

Form Manager

Fotm Controller

Form Data

Figure 2.15: Activity diagram for FillingForm use case

44

Student
getForm ()
chooseForm ()
Alternative J
[project progosal form] prop D,
[Elsc if meeting
meetingLogBook (logBookiD, logBookinfo)
[Else if evaluation form]
(evaluateFormiD,
[Else if change project fittle form]
changeProjectTitle (changeFormiD, changeForminfo) i
[Else] :
draftSubmission (draftiD, draftino)
uploadFile {reportFlielD) verifyFile (reportFilelD)
[_—~_](| verifyFileResult ()
Atemative | :
[1f upload file success] getValidFiile (reportFilelD)
getvalidFiile (reportFlieiD)
[Else]
getinvalidFiile (errorMsg)
splayinvalidFiile (errorMsg) =
click[submit]
verifyForm (formiD) L
i verifyResult ()
Alierative
[1f submit success] saveForm (formID)
eemenean e e e n et cnnenennas
- sendForm (formiD)
sendForm (formiD)
getForm (formiD)
[else]
getlnvalidForm (errorMsg)
displaylnvalidMessage(errorMsg)

2.2.7 UC007: Use Case <MeetingBetweenUser>

Table 2.7: Use case description for MeetingBetweenUser

Use case: MeetingBetweenUser

ID: UC007

Actors:
1. Student
Supervisor

2
3. Coordinator
4

Evaluator
Preconditions:
1. Users have logged into the system.
2. Users have filled in the email information in the system.

Flows of Events:
1. User clicks on the “Meeting” button.
2. User access meeting room interface, user choose a way to start the
meeting.
3. [If the user has the meeting room id
3.1 User chooses the “Enter Meeting Room ID” option.
3.2 User enters the meeting room id in the “meeting room id box”.
3.3 System tries to find the matched meeting room id.
3.3.1 If the meeting room id invalid, the system displays an
error message to the user.
3.3.1.1 User direct to the meeting room interface.
3.3.2 FElse, the system will direct the user into a virtual meeting
room compatible with the room id.
4. Else, the user does not have a meeting room id.
4.1 User chooses “open a new room”.
4.2 System will assign the user to an empty room with a meeting

room id.

45

4.3 User clicks on the settings icon, and then chooses the share
option.
4.4 User copies the meeting room id and then can share it with other
users.
5. User starts the meeting in the meeting room.
6. Users can use the microphone, “start video” and the slideshare function
by clicking the icon button in the meeting room.
7. Ifusers want to record the meeting
7.1 user clicks the “Record* button.
7.2 System will record the meeting and will save it.
8. After the meeting ends, the user clicks the “leave” button.

9. Users back to the home page.

Postconditions:

1. User left the meeting room.

2. Recorded video will be auto-generated and saved in the system database.
3. A URL link of the recorded video will send the link to the user’s email.

4. Users can view the meeting back when they received the recorded

meeting via their email.

46

Activity Diagram

user access to meeting
room interface

user clicks on
"Meeting"" button

user chooses a way to start
the meeting

[else]

[have meeting room id]

l

[cheose "open a new room”

option

user chooses "Enter
Meeting Room TD"
option

System assigns user to an
empty meeting room with a
meeting room id

User enters the meeting,
room id in the "meeting
room Id box"

user clicks on
seeting icon and
choose share option

Imeeting room id invalid| Else

User copies the meeting
room id and then can
share it with other users

System dis;
messages to the user

System direct the user into a
virtual meeting room that
compatible with the room id

User starts the

meeting in the
meeting room

Users can use the microphane,
“start video” and the slideshare
function by clicking the icon button
in the meeting room.

[want to record meeting]

User clicks the
“Record” button

System will record the
meeting and will save
it.

After the meeting ends.
the user clicks the
“leave” button.

Users back 1o
the home page

Figure 2.16: Activity diagram for MeetingBetweenUser use case

47

Sequence Diagram

[meetingData l

MeetingRoom]

ingRoomManager meetingRoomController
- Student

2. Supervisor T ¥ "
3. Coordinator | | I
4. Evaluator | | } }
| |
I I
. 1 M - [
Click[Meeting] ;
chooseMeetingWay() |
(fhade meeting room id] :
enterMeetRoomId(meetingRoomId) |
|
ndMe)
|
matchResult() ‘
e e] |
|
|
[1f meeting room Id invalid] |
P getResult(errorMssg) |
display{errorMssg) |
=== |
I S | — S |
[Else] le getMectingRoom(mectingRoomld) |
= | |
direct{meetingRoomlId) :
|
t
- [!
0] L SOV [R [‘
[TEhsel | |
newRoom() | |
sctMectingRoom() |
setMeetingRoom() |
|
|
getNewRoom(meetingRoomId) |
getNewRoom(meetingRoomId) }
|
|
direct(meetingRoomId
L
|
| |
| |
I I
b
useMeetingFunction() ‘L
!
|
|
|
| 100 SR - e
|
|
aliernaive f
if want record meeting] |
click|Record] setRecord(y setRecord() }
o saveRecord()
| N
|
|
|
|
1
click[Leave]
LJ)
endMeetin,
S, ..o BD o i i e
l sendRecord(recordLink, userEmail)

-——1

Figure 2.17: Sequence diagram for MeetingBetweenUser use case

48

2.2.8 UC008: Use Case <SubmitProject>

Table 2.8: Use case description for SubmitProject

Use case: SubmitProject

ID: UCO008

Actors:

1.

Student

Preconditions:
1.
2.

Students have logged into the system.

Students have done the project given.

Flows of Events:

1.

Users click on the “submission” button to go to the submission interface.

2. Users click the “upload” button.
3.
4

Users choose the file to upload from the device.
If upload success,
4.1. The system will display the fileName and fileID that uploaded
successfully
Else, if the upload failed
5.1. System will display error message

5.2. User repeat steps 2-4.

. Users click the “submit” button.

If the submission success
7.1. System will save the submitted file.
7.2. System will show the time and date of submission.
Else, if the submission failed
8.1. System displays an error message “Sorry! Your submission is not
successful! Please submit again.”

8.2. Users repeat flows 2 to 5.

49

Postconditions:
1. Users submitted the file successfully.

2. The evaluator and supervisor can view it from the system.

Arcess ba submission
isterlace
= Click

P

‘atiatinl]

"Upload™ §-
'\
Chease the file o
uploa
|File uplasd suwccesshal]
System dusplay
fileMane acd
filelD
Chick "Sohmic®

[Submission successfull
Else

L
Ly=em send the file to
. evaluaier and supervisar
Svialein display : ¥

Else

.| Swstern ésplay
=| eTrer message

LN

Sy=tem save saamitied fife
amel display date and tme
ol dibmissial

N

BTl Mersage

®

Figure 2.18: Activity diagram for SubmitProject use case

50

FileManager

ile Controller

Students
. 4 |
M s
P AHleID) D) VerifyUpl D)
) 2
U | } verifyResult()
L M — o
Alt_J
[IE file ke sendValidFile (fileID) — — — — — — — —
uploaded
successful [<— -displayValidFile(fileID, fileName). — — — — -
[[
|<— —— — getFileInvalid(errorMsg)- — — — — — — — |
{<— — -displayInvalidFile(errorMsg)- — — — — — -{ -
|
! -
M i
u ifyFile(fileID) VerifySubmitStatus()
|
|
|
(Al 5
[If submission success] }
| D).
|
M [—sendFile (fileID)- — — — — — — — — — — — 4
ko= sendFile (fileID). — — — — — — — — —]
ke ———— displayFile (filelD) — — — — — — — —
|<— — — —getDateTime(subDateTime) — — — — — — —
displayDateTime(subDateTime)
=07 T 1
K= ———— fileInvalid(fileID) — — — — — — — — — 4
|<— — -displayInvalidFile(errorMsg) — — — — — -

Figure 2.19: Sequence diagram for SubmitProject use case

51

2.2.9 UC009: Use Case <ChatBetweenUser>

Table 2.9: Use case description for ChatBetweenUser

Use case: ChatBetweenUser

ID: UC009

Actors:

1. Student

2 Supervisor

3. Coordinator

4 Evaluator

Preconditions:

l. User has logged into the system.

Flows of Events:
1. If the users wish to start the conversation
1.1. Users click on the “Conversation” button.

1.2. Chat Box will appear.

1.3. Users choose the person they wish to communicate with.
1.4. Users send messages to that person to start the conversation.
1.5. Users close the chat box.
2. Else if users wish to communicate with Student Care (customer service)
2.1. Users click on the “Conversation” button.
2.2. Users choose the “Student Care” at the bottom right side of the
chatbox
2.3. Users send the problems they wish to ask for help
2.4. Users waiting for the reply
3. Else if the users received the message
3.1. Chat Box will pop out, and the message and the username who sent
the message will be shown.
3.2. Users reply to the messages.
3.3. Users close the chat box.

52

4. Users close the chat box and leave the conversation.

Postconditions:

1. Users close the chat box and leave the communication session.

user access
conservation platform

[start a new message]
Click
SN . Choose the name to Send messages
‘Conversation' i 2
communicate with

student ¢ Vi i

[sadest e soyices Click "Conversation” Click "Student Care" Send the problems T @

y se cahtho

that need helps
else
Received Chatbox pop
Reply message

message up e

Figure 2.20: Activity diagram for ChatBetweenUser use case

53

User

chatBox

chatData

Alt

[If user wants to start
the conversation]

[Else if user wants to
find Student Care]

[Else if user received
message]

——click[conversation] ——

selectName(receiverName)——|
——writeMessage (senderName)—|

= — — — - messagelsSent()- — — — — -
< displayMessage()———

——click[conversation] ———»
———selectName(StudentCare)——]
——writeMessage (senderName)—s»|

K= — — — messagelsSent()- — — — — 4
displayMessage()

_________________ 55

l«———displayMessage()
eplyMessage()

(= — — — -] messagelsSent()- — — — — -

—————sendChatMessage()—— |
I saveChatMessage()}—— |

————sendChatMessage()————
—————saveChatMessage()———
[messagelsSent()- — — — — — -

I sendChatMessage()———»

—————saveChatMessage()———

(= — — — —] messagelsSent()- — — — — — -

Figure 2.21: Sequence diagram for ChatBetweenUser use case

54

23 Performance and Other Requirements

a. Speed
e The average loading time for the system must be less than 500 milliseconds except if
the user is facing an internet connection error.
e The system must save and update the changes done by the users in their accounts
within 10 seconds.
e The system must send the notification set by the user within 30 seconds to the user’s

email when it is triggered.

b. Portability
e Users can access the system using different types of devices as long as there is an

internet connection.

c. Usability
e The system will use the English language as the main communication language as it
is the universal language.
e The settings option will represent the icon with a real-life metaphor so that users can

understand the function of the option when they see it.
d. Efficiency

e The system provides easy and clear steps for users to perform any operation in the

system.

55

24

Design Constraints

One of the design constraints is we need to connect to the UTM database for the registration

function. To register in our system, the user must have a unique id that matches and exists in

the UTM database. This is to ensure only UTM students, staff, and companies that hired our

students can use the system.

Besides that, in the meeting function, the user cannot directly share the meeting room id with

other users. They need to copy the id themselves and share it with other users by themselves.

Lastly, the notification function of our system also has some limitations. As our system is a

web-based system, the notification can only be sent via email and will not pop up directly to

the user.

2.5

Software System Attributes

Maintainability
1. Software is able to be updated and evolved to meet the changing needs of

users.

Efficiency

i. The processing time should be faster and more responsive quickly.

Usability

i. The system developed should be easy to understand and easy to use by users.

Reliability

i. The mistakes for the system should be reduced as much as possible.

Effectiveness
i. The system needs to complete program maintenance, modification, and
resource consumption in a short time, so that high user satisfaction can be

obtained.

56

3. System Architectural Design

3.1. Architecture Style and Rationale

The architecture style used in the One Touch FYP System is layer architecture. The
layered architecture was chosen because it divides the system into layers, each with its own
set of functions. There are three layers applied in the system. The lowest layer represents the
basic services that may be used throughout the system, as each layer provides services to the

layer above it.

The presentation layer is the first layer and is responsible for all the graphical user
interface (GUI) and browser communication logic. It is a user interface layer that allows
people to interact with the system. This layer will display information in a specific format

that users will be able to interact with by viewing or clicking through the interface.

Second layer is business logic which accepts user requests from the browser, processes
them, and determines data access paths. The business layer contains the workflow that guides

data and requests through the backend.

The database layer is the central location that receives all data calls and provides access
to the application's persistent storage. Since the database layer is tightly coupled to the
business layer, the logic knows which database to communicate with, further simplifying the

data fetching process.

For further explanation, the user must log in before access to the One Touch FYP System.
The presentation layer will display the login form for the user to enter their ID and password.
Then, business logic will determine the sequence of events that happens during login. Lastly,
the database layer will compare the ID and password entered by the user and pass the

verification result back to the presentation layer.

The One Touch FYP system applies a layered architecture because it already has an
existing system. Therefore, it is more appropriate to add new facilities to an existing system
by using a layered architecture. In addition, the multi-layer architecture can replace the entire

layer while preserving the interface, reducing the cost of replacing the user interface. The

57

One Touch FYP system may require external redundancy features such as user form ID, so

applying a layer architecture is able to increase system reliability.

3.2. Component Model

<<subsystem>> project g |

manageForm

setNotify

Present_Project

adviseProject

Meeting

,,,,,,,,,,,,,,,,,,, My

adviseProject

‘Chatbox

Figure 3.1: Component Diagram of <One Touch FYP System>

There are three high-level subsystems in the One Touch FYP System, which are

Project, Project Evaluation and Communication subsystems.

In the Project subsystem, there are six components, which are Coordinator, Forum,
Calendar, Student, Form and Submission. The Coordinator can PostForum in the Forum
component. When a user wants to viewForum, they can view the post in the Forum
component. Furthermore, the Coordinator can also setNotify in the Calendar component by

receiving the activity list of students from the Calendar component. The Calendar

58

component will notify the Student. For the Student, they can FillingF'orm provided by the
Form component. The Coordinator manageForm provided by the Form component. If the
Student has finished their project, they can SubmitProject in the Submission component .
The Submission component will AcquiredEvaluatedForm from the Form component. The
Submission component has a relationship with the Project Evalaution subsystem. The
Submission component will SendForm_ Report to the Form_Project component in the

Project_Evaluation subsystem as input.

In the Project Evaluation subsystem, there are three components, which are
Evaluator, Form_Project and Supervisor. The Form_Project component will provide the
input to the Evaluator and Supervisor to EvalauteProject. The Form_Project component
has a relationship to the Communication subsystem. After the Evaluator and Supervisor
have evaluated the project, they can watch the Present Project in the OnlineMeeting

component.

Lastly, for the Communication subsystem, there are six components, which are
OnlineMeeting, Student, Coordinator, Supervisor, Evaluator and Chatbox. When the
user needs to have a meeting, they can use the OnlineMeeting component. Otherwise, the
user can use the Chatbox component to chat with each other. Besides that, Student
discussProject in the OnlineMeeting component or in the Chatbox component. While for
the other users, they can adviseProject to the Student in the OnlineMeeting or Chatbox
component. The OnlineMeeting component have relationship with the Project Evaluation
subsystem, when the Evaluator and Supervisor have evaluated the project, they can watch

the Present_Project by the Student in the OnlineMeeting component.

59

4. Detailed Description of Components

4.1.

Complete Package Diagram

Project
Forurr Report
Form Student
Coordinatar

T
]
]
i
]
i [
l :
i L
i :
] [
i L
l i
i :
I' "

Data Access Layer [i
W W

User data

Form Data

T

orum Data

Mesting Dats

Ewvaluation Data

Chat Data

Figure 4.1: Package Diagram for <Name of the System>

60

[

Project_Evaluation

Evaluste

Supervisor

Coordinator

Evaluator

T 0

i '

] 1

' '

i '

P '

']

i .

]]

]]

) '

] L]

'

'

'

'

'

'

'

'

'

'

'

'

'

Communication “fl."
Online Meeting Chat box
Supervisor Student

Coordinator Ewvaluator

4.2.

4.2.1. P001: <Project> Subsystem

Project Subsystem

Detailed Description

View Layer

Data Access Layer

UserPage

MestingLogBook

Foruminterface

ChangeTitheForm

Forminterface

Submitinterface

ProposalFarm

ProjectReport

EvaluateForm

Domain Layer

Forun Report
Foarm Student

User datz

Form Data

Forum Data

Ewvaluation Data

61

Figure 4.2: Package Diagram for <Project> Subsystem

4.2.1.1. Class Diagram

Student

- studName : string

- studentEmail : sfring

- supervisorName - sfring
- userlD : sfring
- username - string
- password : string

+ getForm (formiD) : Form

+ sendForm (formID) : Form

+ chooseForm () : Form
+fillForm () - Form

+ displayForm () - Form

+ uploadFile (filelD) . Submission
+ sendFile (filelD) : Submission
+ getDateTime . Submission

+ viewForum() : Forum

+ displayForumPost () : Forum

+ getPost () : Forum

+ setNotification (studentActivity, remindDate. remindTime) : Notification

+ sendNotification (studentActivity, remlndD%ug remindTime, studentEmail) : Notification

Forum

- foruminfo : string

- forumiD : string

- forumFilelD : string
- errorMessage © string

+ getPost() : string

+ insertForumContent (foruminfo)

+ sendForum (forumiD)

+ displayForumPost (foumiD, foruminfo)

- formiD : string

- proposallD : string

- proposalinfo : string

- logBooklD : string

- logBookinfo - string

- evaluateFormID - string
- evaluatelnfo : string

- changeFormiD : string
- changeForminfo - string
- reporiFilelD . string

11

Submission

- filelD : string
- subDateTime : datefime
- errorMsg : string

+getDateTime ()

+ displayProject (filelD, subDateTime)
+uploadFile (fleiD)

+sendFile (filelD)

+ getForm (evaluateFormID) : Form

+ getForm () : string
+sendForm (formiD)
+ chooseForm ()
+fillForm ()

+ displayForm ()

1.7 g it

Coordinator

- coordinatorName : string
- userlD : string

- usemame : string

- password : string

- coordinatorEmail: sfring

+getPost () : Forum

+ insertForumContent (foruminfo) : Forum

+ displayForumPost () : Forum

+manageForm ()

+sendEvent ()

+ getEvent ()

+ setNotification (studentActivity, remindDate, remindTime) : Notification

+ sendNofify (studentActivity, remindDate, remindTime, studentEmail) - Notification

Notification

- studentEvent:string
- studentAcitivity:string 1

- remindTime: time
-remindDate: date
- studentEmail:string

+ getEvent () : string

+ sendEvent (userEvent)

+ display (userEvent)

+ setNofification (studentActivity, remindDate. remindTime)

+ sendNotify (studentActivity, remindDate, remindTime, studentEmail)

Figure 4.3: Class Diagram for <Project> Subsystem

List of Methods from the Class Diagram for <Project> Subsystem

Entity Name

Notification

Method Name

1. getEvent

. sendEvent

2
3. display
4

setNotification

62

5. sendNotify
Input -
Output Send notification to student via email.
1. Start.
2. Users choose the “calendar” button.
3. Users choose the “setting” option in the calendar interface.
4. If the user is the coordinator, the system will display a list
of student events for the coordinator.
4.1 The coordinator selects the student’s activities they
wish to notify the students.
Algorithm 4.2 The coordinator sets the date and time they wish to
notify the students.
5. Else, the system displays a list of events the student has.
5.1 The student selects the activities they wish to be
notified of.
5.2 The student sets the date and time they wish to be
notified.
1. End.
Entity Name Forum
1. insertForumContent.
2. getPost.
Method Name]
3. displayForumPost.
4. End.
Input -
Output The post will be displayed by the system.

63

1. Start.
Users choose the “Forum” button.

The system will display a list of posts.

el

If the user is a coordinator,
3.1 User clicks on the “Post” button.

3.2 User creates the content to post on the forum.

Algorithm 3.3 If the user upload post success,
3.3.1 System display the post.
3.4 Else, the user reposts the post.
5. Else, the user chooses the post wish to view.
6. The system will display the post chosen by the user for
view.
7. End.
Entity Name Submission
1. uploadFile
Method Name 2. sendFile
3. getDateTime
Input -
Output The file will be submitted and saved to the system.
1. Start.
2. Users choose “Submission”.
3. Users click the “Upload” button.
4. Users choose the file to upload.
Algorithm)
5. [If the file is uploaded success,

5.1 The system will display the uploaded file.
6. Else, the users need to reupload the file.
7. Users click the “Submit” button.

64

8. If the file is submitted success,
8.1 The system will save the file and display the submitted
filename.

9. Else, the users need to resubmit file.

10. The system will display the date and time of success

submitted.
11. End.
Entity Name Form
1. getForm
2. displayForm
Method Name 3. chooseForm
4. fillForm
5. sendForm
Input -
Output The system will display the form filled by the user.
1. Start.
2. Users choose the “Form” button.
3. The system will display a list of forms to be chosen.
4. Users choose the form to fill in.
Algorithm 5. Users click “Submit” after filling in.
6. If submitted success,

5.1 System will display the form submitted.
7. Else, users need to resubmit the form.

&. End.

65

Entity Name Student
1. getForm
2. chooseForm
Method Name
3. sendForm
4. displayForm
Input -
Output The student will fill in the form and submit
1. Start.
2. Users choose the “Form” button.
3. Users select the form to fill.
Algorithm
4. Users fill in the form.
5. Users click the “Submit” button.
6. End.
Entity Name Student
1. uploadFile
Method Name 2. sendFile
3. getDateTime
Input -
Output The file will be uploaded to be submitted.
1. Start.
2. Users choose the “Submission” button.
Algorithm 3. Users select the file to upload.
4. Users click the “Submit” button.
5. End.

66

Entity Name Student
1. viewForum
Method Name 2. getPost
3. displayForumPost
Input -
Output The post in the forum will be displayed.
1. Start.
2. Users choose the “Forum” button.
Algorithm)
3. Users select the forum post to view.
4. End.
Entity Name Student
1. displayEvent
2. sendEvent
Method Name))
3. setNotification
4. sendNotify
Input Activity set by the coordinator.
Output System will send notification to student through email
1. Start
2. Users choose “Calendar”.
3. Users choose “Setting”.
Algorithm .
4. Users select the activity.
5. Users set the date and time that wish to be notified.
6. Users click “Save” to save the setting.

67

7.

End.

Entity Name Coordinator
1. displayEvent
2. sendEvent
Method Name))
3. setNotification
4. sendNotify
Input -
Output The system will send notification to student by email
1. Start.
2. Users choose “Calendar”.
3. Users choose “Setting”.
Algorithm 4. Users set the event for the student.
5. Users set the date and time that wish to be notified.
6. Users click “Save” to save the setting.
7. End.
Entity Name Coordinator
1. insertForumContent
Method Name 2. getPost
3. displayForumPost
Input -
Output Post with content will be uploaded to the forum.

68

Start.

Users choose the “Forum” button.
Users click the “Post” button.
Algorithm)
Users insert the forum content to the post.
Users click submit.

End.

NS w N

4.2.1.2. Sequence Diagram

O

Coordinator <<Views> <<View>> <clnterface>>
Student Profile Page Forum Page Forum Manager Forum Controller Forum Data
Supervisor
Evaluator b T T T T
i i i |
1 | i |
— — s !
login (username, password) |
= click [Forum] H 1
i |
| e
i
| display list of post {
77 R e e s b O
| —
Alternati
emative | dick [Post]
[If user is coordinator] > insertForumContent (forumlnfo)
elick [submit] | verify post
i
Alternativk
Y system save past
UL submit success]
L]
| [Else] . repost the content
T 1 S I TR oot RO
|
|
—————————————————————————— et et e e B B s B e B
[Else] T 1
|
click {View] M i
i
—
getPost 0 {
|
getpost 0 |
displayForumPost() i
view by user ‘ i
J ! J
i | 1
| 1
T T T
— | i |

Figure 4.4: Sequence Diagram for <Post and View Forum Scenario>

69

A

e
n Ioamiusemame. password) o A

N~ [I cick{setting] B . ﬂ

smseaican ommics AMPRIRON . S

—
Fi 4.5: S Di for <Set Up Notification S io>
igure 4.5: Sequence Diagram for <Set Up Notification Scenario
-

O

A <<View>>
/ \ <<View>> o <<interface>> <<lnterface>> <<lnterface>> getDateTime
\ Profile Page Face File Manager File Controller File Data
L. SR S
Student | | | | | |
— | | | | |
login (username, password) sicio ’ = ! _L } }
click [Submission]
click [Upload] I |
ploadFile (fileID)——» ! !
| ! == ! !
I | | Verify Upload Status I |
| A | [§——-~ | |
| - - | |
display uploaded file
: 0t ile === b= i e ! }
uploaded | |
: successful] | - | }
| |
| ~ ‘ A= | :
|
| | |
I I !
! |
| | |
| | |
| |
|
| | |
| | |
i I }
| sendFile (fileID) I |
I L 4 I
| 0 verify submit status | |
: ! A }
| i |
| Tt file } |
| submitted savethe |
| successful] ! |
|
| P B N T sl [S T PRSPPI SRR |
| [Else] ! |
Iresubmit file |
| oo o jresubmife]
| | |
: ‘ l
| | i i
| | I
I | I |
: ” 1 . getDateTime() L
I
|
1 |
|
|
|
|
|
|
|
|
|
i

Figure 4.6: Sequence Diagram for <Submit Project Scenario>

70

displayForm ()

sendForm (formlD)

<<Views> <<View>> <clnterface>> <clnterface>> <<lnterface>>
Profile Page Form interface Form Manager Form Controller Form Data
Student p
Coordinator |
A —
login (username, password) i
click [Form]
Alternatt]
[1f user is coordinator] ManageForm()
e
r I
[Else] } getForm() N
| displayForm()
‘ o
| chooseForm()
| J
| J
|
|
| —
} click [Submit]
i sendForm ()
|
| verify submit status
|
[Altematik }
If submit success] |
system save form
I ~|
|
|
|
]
|
I

Figure 4.7: Sequence Diagram for <Manage and Fill Form Scenario>

71

4.2.2. P002: <Project_Evaluation> Subsystem

Project Evaluation

Wiew Layer

Evaluationinierface

EwaluationForm

ProjectReport

MeetingInterface

Data Access Layer

Us=er daia

Faorm Data

Ewvaluation Data

File Dats

Domain Layer

Ewaluation Supervisor

Coordinator

Figure 4.8: Package Diagram for <Project_Evaluation> Subsystem

4.2.2.1. Class Diagram

Ewvaluation

- filelD : string

- subDateTime : Date

- evaluationFormlD - string
- marks : double

- evaDateTime : Date

-+ enterMark ()

getDate () - Date

calcTotalMarks (marks)

displayProject (filelD, subDateTime)

displayEvaluateForm (evaluationFormlID, marks, evaDateTime)

1?‘ 1T1

444

1.1 1.2
1 1

Evaluator Supervisor
- evaluteMame : string
- ewvaluatorlC : string

- evaluatorEmail : string
- useriD : string

- username : siring

- password : string

- supervisorMame : string
- supervisorlC : string

- supervisorEmail : string
- studName : string

- areaOfinterest - string
useriD : string

username : string

+ enterMark () . Evaluation password : siring

+ displayProject () : Evaluation

+ enterMark () : Evaluation
+ displayProject () - Evaluation

Figure 4.9: Class Diagram for <Project_Evaluation> Subsystem

72

List of Methods from the Class Diagram for <Project_Evaluation> Subsystem

Entity Name Evaluator
1. enterMark
Method Name . i
2. displayProject
Input -
Output The marks will be displayed by the system.
1. Start.
2. Users choose the “Evaluation” button.
3. Users select one of the student’s projects.
4. Users click the “View” button.
5. The content of the project will be displayed by the system.
6. Users click on the “Evaluate” button.
Algorithm
7. Users enter marks.
8. If enter marks success,
a. System save marks.
9. Else, users re-enter marks.
10. Users click the “Submit” button.
11. End.
Entity Name Supervisor
1. enterMark
Method Name)]
2. displayProject
Input -
Output The marks will be displayed by the system.
1. Start.
Algorithm 2. Users choose the “Evaluation” button.
3. Users select one of the student’s projects.

73

. Users click the “View” button.

. Users click on the “Evaluate” button.

. Users enter marks.

0 9 N n K~

. If enter marks success,
8.1 System save marks.

9. Else, users re-enter marks.

10. Users click the “Submit” button.
11. End.

Entity Name

Evaluation

Method Name

A S

enterMark
getDate
calcTotalMarks
displayProject

displayEvaluateForm

Input

—

Evaluation Form entered by students.

Students’ project reports.

Output

The marks will be displayed by the system.

The date and time evaluating the marks will be displayed by

the system.
The total students’ project marks will be displayed by the

system.

Algorithm

[T N U R O

. Start.

. Users choose the “Evaluation” button.

. Users select one of the student’s projects.
. Users click the “View” button.

. The content of the project will be displayed by the system.

74

. The content of the project will be displayed by the system.

6. Users click on the “Evaluate” button.
7. Users enter marks.
8. If enter marks success,
8.1 System save marks.
9. Else, re enter marks.
10. Users click the “Submit” button.
11. System gets the current date and time from the getDate method.
12. System gets the total marks of students’ projects by calculating
the sum of marks entered by supervisors and evaluators.

13. End.

4.2.2.2. Sequence Diagram

.........

Figure 4.10 : Sequence Diagram for <Evaluate Project Scenario>

75

4.2.3.

Communication

P003: <Communication> Subsystem

View Layer

Meelinglntarface

Meeting room Interface

ChattingBox

Diata Access Layer

User data

Meeting Data

Ewvaluation Data

Chat Data

Domain Layer

Omnlime Meeting Chat box
Supervisor Student
Coordinator Evaluator

Figure 4.11: Package Diagram for <Communication> Subsystem

76

4.2.3.1.

Class Diagram

Student

- studName : string

- studentEmail : string

- supervisorName : string
- userlD : string

- username : string

- password - string

+enterMeetRoomld(): OnlineMeeting
+newRoom(): OnlineMeeting
+ useMeetingFunction(): OnlineMeeting
+ display(errorMssg):OnlineMeeting
+ selectName(receiverName). Chatbox
+ selectName(StudentCare): Chatbox

T

1.:*

1.

v

+ chooseMeetingWay(): OnlineMeseting |0, *

—1.."— + selectName(StudentCare) Chatbox

OnlineMeeting

- meetingRoomld: string
- recordLink : string
- userEmail : string
- errorMssg - string

+ chooseMeetingWay(): Onlir)
+ enterMeetRoomld()

+ sendMeetRoomld({meetingRoomld)
+ matchMeetingRoom(meetingRoomld)
+ getResult(errorMssg): string

+ display(errorMssg)

+newRoom()

+ setMeetingRoom()

+ getNewRoom():string

+ useMeetingFunction()

+ setRecord(meetingRoomid)

+ setEndMeeting(meetingRoomid)

+ getRecord() string

+ sendRecord(userEmail recordLink)

G ;

1.* 1.

Supervisor

- supervisorName - string
- supervisorEmail: string
- userlD : string

- username : string

- password : string

+ chooseMeetingWay(): OnlineMeating
+ enterMeetRoomld(): OnlineMeeting
+ newRoom(): OnlineMeeting

+ useMeetingFunction(): OnlineMeeting
+ display(errorMssg):OnlineMeeting

+ selectName(receiverName): Chatbox

+ writeMessage(senderName)
+ displayMessage(). Chatbox
+ replyMessage()

0.”
0 0.
| |

Chatbox

- studentCare : string

- senderName : siring
- receiverName : string
- chatMsg: string

+ selectName(receiverName)
+ writeMessage(senderName)
+ sendChatMessage()

1.2

I
Evaluater

- evaluatorName : string

- userlD : string
- username - string
- password : string

+ chooseMeetingWay(): OnlineMeeting
+enterMeetRoomld(): OnlineMeeting
+newRoom(): OnlineMeeting

+ useMeetingFunction(): OnlineMeeting
+ display(errorMssg) OnlineMeeting

+ selectName(receiverName): Chatbox
+selectName(StudentCare): Chatbox
+writeMessage(senderName)

+ displayMessage(). Chatbox
+replyMessage()

- evaluatorEmail - string 0.."

77

+ displayMessage()
+ selectName(StudentCare)
+ replyMessage()
1.
0.*
1.2 1.7

Coordinator

- coordinatorName : string
- coordinatorEmail - string
- userlD - string

- username : string

- password - string

+ chooseMeetingWay(): OnlineMeeting
+ enterMeetRoomld(): OnlineMaeting
+newRoom(): OnlineMeeting

+ useMeetingFunction(): OnlineMeeting
+ display(errorMssg):OnlineMeeting

+ selectName(receiverName): Chatbox
+ selectName(StudentCare): Chatbox
+ writeMessage(senderName)

+ displayMessage(). Chatbox

+ replyMessage()

Figure 4.12: Class Diagram for <Communication> Subsystem

List of Methods from the Class Diagram for <Communication> Subsystem

Entity]]
Online Meeting
Name
1. chooseMeetingWay
2. enterMeetRoomld
Method
3. sendMeetRoomld
Name)
4. matchMeetingRoom
5. display
Input -
Output -
1. Start
2. User chooses the enter meeting room id option.
3. Read the way the user wants to start the meeting.
4. Read the meeting room id of the user entered.
5. Find the matched meeting room based on the id
Algorithm
5.1. If meeting room id not found,
5.1.1. Display error message to the user
5.2. Else
5.2.1. the user direct to the meeting room
6. End
1. chooseMeetingWay
Method 2. newRoom
Name 3. setMeetingRoom
4. getNewRoom
Input -

78

Output 1. User get a new room id
1. Start
2. User choose “new meeting room” option
3. Read the way the user wants to start the meeting
Algorithm)))
4. Assign a new meeting room id to the user
5. User get the new meeting room id
6. End
Method])
1. useMeetingFunction
Name
Input
Output
1. Start
Algorithm | 2. User choose the meeting room function in the online meeting platform
3. End
1. setRecord
Method 2. getRecord
Name 3. sendRecord
4. setEndMeeting
Input
Output 1. User get the URL link of the meeting recorded video
1. Start
Algorithm | 2. User choose “record” option

3. System generate URL link of the meeting recorded video to the user

79

4. System send the recorded video URL link based on the user’s email

5. End

Method]
1. setEndMeeting
Name
Input -
Output -
1. Start
2. User choose “leave” option
Algorithm
3. System end the meeting
4. End
Enti
v Chatbox
Name
1. selectName
Method 2. writeMessage
Name 3. sendChatMessage
4. displayMessage
Input -
1. message successfully sent
Output))
2. display the message write by the user
1. Start
Algorithm 2. User select to start the conservation with other user

3. User write the message

80

Message is sent

5. The message is displayed
6. End
1. selectName
Method 2. writeMessage
Name 3. sendChatMessage
4. displayMessage
Input -
1. message successfully sent
Output))
2. display the message write by the user
1. Start
2. User select to chat with customer service
3. User write the message
Algorithm)
4. Message is sent
5. The message is displayed
6. End
1. displayMessage
Method
2. replyMessage
Name
3. sendChatMessage
Input
1. message successfully sent
Output

display the message write by the user

81

1. Start
2. Display the received message to the user
Algorithm | 3. User write the reply message
4. Message is sent
5. End
Entity
Student
Name
Method)
1. chooseMeetingWay
Name
Input -
Output -
1. Start
Algorithm 2. User select meeting way
3. End
Method 1. enterMeetRoomld
Name 2. display
Input -
Output -
1. Start
2. User enter meeting room id
Algorithm 3. If valid meeting room id

3.1.
4. End

view error message

82

Method 1. newRoom
Name
Input -
Output -
1. Start
Algorithm 2. User choose new room option
3. End
Method)]
1. useMeetingFunction
Name
Input -
Output -
1. Start
Algorithm 2. User choose meeting room function option
3. End
1. selectName
Method)
2. writeMessage
Name]
3. displayMessage
Input -
Output User views the displayed message
1. Start
Algorithm

2. User select the other user to start conservation

83

3. User write the message
4. The message is displayed
5. End
1. selectName
Method]
2. writeMessage
Name)
3. displayMessage
Input -
Output User views the displayed message
1. Start
2. User select customer service
Algorithm 3. User write the message
4. The message is displayed
5. End
Method 1. displayMessage
Name 2. replyMessage
Input -
Output User views the displayed message
Start
User receives a message
Algorithm User writes the reply message

A

The message is displayed
End

84

Entity

Supervisor
Name
Method)
1. chooseMeetingWay
Name
Input -
Output -
1. Start
Algorithm 2. User select meeting way
3. End
Method 1. enterMeetRoomld
Name 2. display
Input -
Output -
1. Start
2. User enter meeting room id
Algorithm 3. If valid meeting room id
3.1. view error message
4. End
Method
1. newRoom
Name
Input -
Output -
Algorithm 1. Start

85

2. User choose new room option

3. End
Method]]

. useMeetingFunction

Name
Input -
Output -

1. Start
Algorithm 2. User choose meeting room function option

3. End

selectName
Method)
. writeMessage
Name]
displayMessage

Input -
Output User views the displayed message

1. Start

2. User select the other user to start conservation
Algorithm 3. User write the message

4. The message is displayed

5. End

1. selectName
Method Name

2. writeMessage

86

3. displayMessage

Input -
Output User views the displayed message
1 Start
2. User select customer service
Algorithm 3. User write the message
4. The message is displayed
5 End
1. displayMessage
Method Name Y s
2. replyMessage
Input -
Output User views the displayed message
1. Start
2. User receives a message
Algorithm 3. User writes the reply message
4. The message is displayed
5. End
Entity Name Coordinator
Method Name | 1. chooseMeetingWay
Input -
Output -

87

1. Start

Algorithm 2. User select meeting way
3. End
1. enterMeetRoomld
Method Name)
2. display
Input
Output
1. Start
2. User enter meeting room id
Algorithm 3. Ifvalid meeting room id
3.1. view error message
4. End
Method Name 1. newRoom
Input
Output
1. Start
Algorithm 2. User choose new room option
3. End
Method Name 1. useMeetingFunction
Input
Output

88

1. Start
Algorithm 2. User choose meeting room function option
3. End
1. selectName
Method Name 2. writeMessage
3. displayMessage
Input -
Output User views the displayed message
1. Start
2. User select the other user to start conservation
Algorithm 3. User write the message
4. The message is displayed
5. End
1. selectName
Method Name 2. writeMessage
3. displayMessage
Input -
Output User views the displayed message
Start
User select customer service
Algorithm User write the message

1
2
3.
4
5

The message is displayed
End

89

1. displayMessage

Method Name
2. replyMessage
Input -
Output User views the displayed message
1. Start
2. User receives a message
Algorithm 3. User writes the reply message
4. The message is displayed
5. End
Entity Name Evaluator
Method Name | 1. chooseMeetingWay
Input -
Output -
1. Start
Algorithm 2. User select meeting way
3. End
1. enterMeetRoomld
Method Name i
2. display
Input -
Output -

90

Start

User enter meeting room id

Algorithm If valid meeting room id
3.1. view error message
End
Method Name . newRoom
Input
Output
Start
Algorithm User choose new room option
End
Method Name . useMeetingFunction
Input
Output
Start
Algorithm User choose meeting room function option
End
selectName
Method Name . writeMessage
. displayMessage
Input

91

Output User views the displayed message
1. Start
2. User select the other user to start conservation
Algorithm 3. User write the message
4. The message is displayed
5. End
1. selectName
Method Name 2. writeMessage
3. displayMessage
Input -
Output User views the displayed message
1 Start
2. User select customer service
Algorithm 3. User write the message
4. The message is displayed
5 End
1. displayMessage
Method Name Py s
2. replyMessage
Input -
Output User views the displayed message
1. Start
Algorithm 2. User receives a message

3. User writes the reply message

92

4. The message is displayed
5. End

4.2.3.2. Sequence Diagram

Sequence Diagran

"] <
= v— | << Canudllers> T
2 2 :mectingData teetingRoom
Student T H T
2. Supervisor 0) 1 |
3. Coordinator 1 | 1 [
4. Evaluator ! I 1 !
1 i ! i
M " | : 1 !
login 1 I !
| 1
ek Meeu ce - i
Click Meeiing] ™ K
chooseMeetingWor(d |
T
oo) !
enterhdeet Ronmld(meetihgRoomid) sendMeetRoomld(meetingRoomld)

sendMeetRoomld{meetingRoomid)

matchResult

0 selectngRoun,

e getNewRoom(meetingRoomid)

direce to new meeting room i

=

useMeetinglunerion(y

ser meeting roam function

i
|
|
i
I
i
meeting reom Function feedback

clicki Recoud |

setRecord{meetingRoomrd)

staut cecord the meeting

saveRecnrd

click|Leave]

setlndMectingineetingRovmld),

end the mesting

=
Lif got recnrd mesting]

felReroid()

e

Figure 4.13 : Sequence Diagram for <Online Meeting Scenario>

93

<<View>> << View> << Controller>> :chatData
Profile Page :chattingBox
I
User | I |
It 1
If user wants to start the conversation| |
I
Logi !
Login |
lick[cy on} i
(receiverName; .]
| 5
} writeMessage (senderName] y save chat message
|
|
|
1 oo loplayMeicagel) .. i
View the message | |
T ! :
! g : }
Yy e 4‘********************* *********
! |
[Else if user wants to find Student Care] ™ ; |
Login | :
|
lick[conversation]————— | :
1 1
| |
Cth tudentCare)- T |
|
I
| {——writeMessage (senderName! sendChatMessage() !
|] save chat message
|
| L)
|
| f—————4 message is saved- — — — — —
|
| |
| send message 1o receiver |
I I
|
View message from the student care } le— — — — displayMessage(}- — — — — |
| !
| T | |
______________________________________ e e e e
] " | 1 |
[Else if user received message] ! | ;
Login M displayMessage() L |
lick[pop out message}——— }
View received message | i
T |
| foi z
| T
| ——————sendChatMessage(save chat message
|
I
| g
| (=== message issaved_ _ _ _ _ _
|
| message is sent (o receiver send message to receiver
1 , T
y I
close the chatbox |]
T
T
I
|
I
|
I

(-
I
I
I
I
P

-
I
I
I
I
I
I
'

Figure 4.14 : Sequence Diagram for <Chatting Scenario>

Another Methods Used in System

1. Coordinator
2. Student
Entity Name)
3. Supervisor
4

. Evaluator

94

Method Name 1. login
Input 1. Entered username and password.
1. Success to login the system.
Output ‘ ‘
2. Profile page will be displayed.
1. Start
2. Users click on the “Login” button.
3. Users enter their username.
Algorithm 4. Users enter their password.
5. Users click on the “Sign In” button.
6. System check for validity.
7. End.
Method Name 1. register
Input 1. Users enter personal information, username and password.
1. Users will be registered successfully.
Output)
2. UserID will be returned to the users.
1. Start
2. Users click on the “Register” button.
3. Users enter their information and userID (matricNo).
4. System verify userID.
Algorithm o
5. IfuserID is in UTM Database
5.1 System will add new users.
6. Else, users unable to register.
7. End.

95

1. Coordinator

2. Siudent wiew evievis «controllers cinterfaces
i u Datab:

3. Supervisor :Main Window Login Interface :System Controller ser Database :Profile Page

4. Evaluator

Enter to One Touch FYP System Website

-

click [Login]

Enter username and password
[|

Verify user valid

return verify result

Intsraction’ heading]

[if correct usermname and passwor

display Profile Page

Users reenter username and password
[else]

Figure 4.15 : Sequence Diagram for <Login Scenario>

wievs wviews «manage» «controllers Ao— «
1. Student Main Window :Register Interface Register Manager Register Controller : Login Interface
2. Supervisor
Users enter One Touch FYP System Website H H
[Register] :
Users enter personal information
Users enter useriD
verify userlD
L | return verity resuit
actioni heading
save users information
[if userID is valid]
feise] display error message and return to main window

display login interface
| display logininterface |

Figure 4.16 : Sequence Diagram for <Register Scenario>

96

5. Data Design

5.1. Data Description
The major data or systems entities are stored into a relational database named as One

Touch FYP Database, processed and organized into 11 entities as listed in Table 5.1.

Table 5.1: Description of Entities in the Database

No. Entity Name Description
1. Coordinator e [t will store the coordinator’s information in the user
database.

e Data will be used for validation in the login process.
e Data will be displayed in the profile page.

2. Supervisor e [t will store the coordinator’s information in the user
database.

e Data will be used for validation in the login process.

e Data will be displayed in the profile page.

3. Evaluator e It will store the coordinator’s information in the user
database.

e Data will be used for validation in the login process.

e Data will be displayed in the profile page.

4. Student e [t will store the coordinator’s information in the user
database.

e Data will be used for validation in the login process.

e Data will be displayed in the profile page.

5. Evaluation e It will acquire the student’s report and student’s
evaluation form from the file database and form
database.

e It will store the marks that had been given by the
supervisor and evaluators in the evaluation database.
e [t will calculate the total marks of the project.

6. OnlineMeeting e It will store the meeting data of the user into the
meeting database.

e The data stored include the meeting recorded video.

e The users can get the URL link of the meeting recorded
video when the video is saved in the meeting database.

7. Chatbox e It will store the chat data of the user into the chat
database.

e The data can be used for users to review their chat
history with other users.

8. Forum e [t will store the content uploaded by the coordinator
e The user can view the posts in the forum

97

9. Form

e [t will store the templates of different forms
e [t will store the forms filled by users

10. | Calendar

o It will store the student event and student activity set
by coordinator

e The coordinator and student can set the date and time
to notify student

e It will send notification to student by email

11. | Submission

e [t will store the file submitted by student
e [t will display the date and time of submission

5.2. Data Dictionary

5.2.1. Entity: <Student>
Attribute Name Type Description
studName string Name of student
studentIC string IC number of student
studentEmail string Registered email of student
userID string Unique identification used by student in the system
studMatricNo string Matric number of student
supervisorName string Name of the student’s supervisor
subjectCode string Code of the subject taken by the student
username string Used by student to login.
password string Used by student to login.

5.2.2. Entity: <Supervisor>
Attribute Name | Type Description
supervisorName string Name of supervisor
supervisorlC string IC number of supervisor
supervisorEmail string Email of supervisor
studName string Students who are under supervisor
areaOfInterest string Area of Interest of supervisor
userID string Unique identification used by supervisor in the system
username string Used by the supervisor to login.
password string Used by the supervisor to login.

98

5.2.3.

Entity: <Evaluator>

Attribute Name Type Description
evaluateName string Name of evaluator
evaluatorIC string IC number of evaluator
evaluatorEmail string Email of evaluator
userID string Unique identification used by evaluator in the system
username string Used by evaluator to login.
password string Used by evaluator to login.
5.2.4. Entity: <Coordinator>
Attribute Name Type Description
coordinatorName string Name of coordinator
coordinatorIC string IC number of coordinator
coordinatorEmail string Email of coordinator
userID string Unique identification used by the coordinator in
the system
username string Used by the coordinator to login.
password string Used by the coordinator to login.
5.2.5. Entity: <Forum>
Attribute Name Type Description
forumlInfo string Content of the forum post
forumID string Unique ID for forum post
forumFileID string Unique ID of the file uploaded in the forum
errorMessage string Message that is displayed by the system when
the post is uploaded/ submitted failed
5.2.6. Entity: <Notification>
Attribute Name Type Description
studentEvent string Event set by the coordinator
studentActivity string Activity
studentEmail string Registered email of student
remindTime time Time to notify student
remindDate date Date to notify student

99

5.2.7.

Entity: <Form>

Attribute Name Type Description
formID string ID of the form
proposallD string ID of the proposal form
proposallnfo string Information to be filled in proposal form
logBookID string ID of the log book
logBookInfo string Information to be filled in the log book
evaluateFormID string ID of the evaluation form
evaluateFormInfo string Information to be filled in the evaluation form
changeFormID string ID of the change project title form
changeFormInfo string Information to be filled in the change project
title form
reportFilelD string ID of the report file
5.2.8. Entity: <Submission>
Attribute Name Type Description
fileID string Unique ID of the file submitted
subDateTime datetime Date and time of submission
errorMsg string Message that is displayed by the system when
the file is uploaded/ submitted failed
5.2.9. Entity: <Evaluation>
Attribute Name Type Description
fileID string The project report submitted by students
subDateTime Date Project submission date and time
evaluationFormID string Evaluation Form filled by students
marks double Marks of students’ project
evaDateTime Date Project evaluate date and time
5.2.10. Entity: <OnlineMeeting>
Attribute Name Type Description
meetingRoomld string A set of alphabet and number that represent the

identification of the meeting room

100

recordLink

string The URL link of the meeting recorded video
userEmail string The user’s email
errorMssg string Error message when user enter invalid meeting room id
5.2.11. Entity: <Chatbox>
Attribute Name Type Description
studentCare string The name of student care service in the system
senderName string The sender’s name in the chat box
receiverName string The receiver’s name in the chat box
chatMsg string The chat message

101

6.Interface Design

6.1. Overview of Interface

When the user enters our system website, there is a main interface. The left side is a
brief about our system and the right side is the interface for users to log in or register to the
system. Before the user can use the system, the user needs to log in to the system. If the user
does not have an account, the user needs to register an account by using their personal

information such as name, IC number, email and userID at the register interface.

If the user has an account, they can login to the system using username and password.
After login to the account, the system will direct the user to the user profile page. Here, there
is a list of the navigation bar on the left side so the user can choose the function such as

Forum, Calendar, Form, Evaluation, Meeting, and Conversation.

When the user clicks the Forum, the system will redirect the user to the forum
interface. The forum interface will display a list of posts. Only the coordinator can create a
new post, the top of the interface has a “Post” button for the coordinator to create a new post.
Other users can only view the post here. When the coordinators wish to create the post, they
can type the content and/ or upload the file. After inserting the content, the coordinator needs

to click “Submit” to post it. After that, the post can be viewed by all users.

Next is the Calendar interface. Only the coordinator and student can set the
notification for the student. When the user clicks to enter the calendar interface, the system
will display a calendar. On the top right of the calendar is a gear-like setting button for the
user to set the notification. Below the calendar are the notifications that are set. In the
coordinator view, they can set the event by clicking on the “Setting” button on the top right of
the interface. Then, the coordinator can select the student’s event. After that, they can set the
date and time for the system for the notifications. The system will notify the students by their
email according to the date and time set. In the student view, the student can click on the
“Setting” button and choose the event set by the coordinator. The student can also set the
time and date for their activity. The system will notify them via their email according to the

date and time set.

102

In the form interface, there is a list of forms for students to choose. By clicking on the
form, the system will display the form and the student can fill in that form. After filling the
form, the student needs to click the “Submit” button to submit and save the form. The form
filled out by students will also be sent to the coordinator, supervisor, and evaluator for further

purposes.

There is an evaluation interface that is only accessible by the supervisor and evaluator.
A list of students’ names and submitted projects can be viewed here. At the bottom right of
each student list have a “View” button. By clicking the “View” button, the users can view the
full report submitted by students. There is an “Evaluate” button at the bottom right of the
students’ report. The supervisor and evaluator can click the “Evaluation” button to obtain the
Evaluation Form and enter the marks. After that, they need to click the “Submit” button to

save the marks.

The users can have an online meeting session in our system’s meeting room interface.
At the meeting interface, the users can choose to enter the meeting room id or open a new
room. If the room id entered exists, the system will redirect the user to the meeting room with
matched id. If the meeting room id entered is invalid, the system will display an error
message. If the user chooses to open a new room, the system will redirect the user to an
empty room and assign a meeting room id so the user can share the id with other users. In the
meeting room, there is a setting icon with three vertical dots. Users can click this icon to use
some functions such as record meeting and share the meeting link. The recorded meeting will

be sent to the user's email.

The last function is the conversation function. If the user wishes to start a message,
the user can click on the “Conversation” button and a list of the name will be shown. The
user can choose the person he or she wishes to chat with. Then, the chatbox will appear and
the user can enter the chat. After finishing typing, the user needs to click the “Send” button to
send the message. If the user wishes to find the Student Care, the user can click the
“Conversation” button and the Student Care is on the top of the list. After that, the user can
send the question they want to ask for help. If the user receives messages, the chatbox will
pop out and the message is shown. The user can reply to the message by typing in the chat

box and click the “Send” button.

103

