

PROJECT 2: INFERENTIAL STATISTICS

By : Spongebob & Jojo

Team Member:

Wong Li Jie A21EC0238

Ng Qian Hui A21EC0212

Toh Kang Lun A21EC0234

Ho Wei Chun A21EC0184

Hypothesis Testing using

one sample

Test statistic:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

t = test statistic

x = sample mean

 μ = population mean

s = standard deviation

n = number of observations

Hypothesis Testing using single sample:

Statement: The average monthly income is greater than USD 800.

Significance level, $\alpha = 0.05$

 $H_0: \mu = \text{USD } 800$

 $H_1: \mu > \text{USD } 800$

Degree of freedom = 10 - 1 = 9

$$t_{0.05,9} = 2.262$$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{1292.02 - 800}{1486.06 / \sqrt{10}} = 1.046$$

- Smaller than critical value = 2.262
- Not enough evidence to support that average monthly income of 10 different countries is greater than USD 800

Fail to reject H0 since 1.046 < 2.262 📮

Correlation

Sample correlation coefficient:

$$r = \frac{\sum xy - (\sum x \sum y)/n}{\sqrt{[(\sum x^2) - (\sum x)^2/n][(\sum y^2) - (\sum y)^2/n]}}$$

r = sample correlation coefficient,

n = 10,

x = GDP per capita,

y = Brain drain rate.

X 🖹 🗌

- r = -0.9490472
- Negative relationship between the GDP per capita and brain drain rate
- Strong negative relationship, -1 < r < -0.8

Relationship between GDP per capita and brain drain rate

Significance Test for Correlation:

Significance level, $\alpha = 0.05$

 $H_0: \rho = 0$ (no linear correlation)

 $HA: \rho \neq 0 \; (linear \; correlation \; exists)$

$$t_{0.025.8} = \pm 2.306$$

$$t = \frac{r}{\sqrt{\frac{1-r^2}{r^2}}} = \frac{-0.9490472}{\sqrt{\frac{1-(-0.9490472)^2}{r^2}}} = -8.51799$$

Reject H0 since -8.518 < -2.306

REGRESSION

Estimated Regression Model:

Y = b0 + b1 X

Y = Estimated (or predicted) Y value b0= Estimate of the regression

intercept

b1= Estimate of the regression slope

X= Independent variable

$$Y = 39373 - 664411 x$$

R2 = 0.2647. Since, 0 < R2 < 1, shows weaker linear relationship between x and y

The coefficient of determination:

$$R^2 = \frac{SSR}{SST} = \frac{sum \, of \, square \, explained \, by \, regression}{total \, sum \, of \, squares}$$

Test Statistical of Regression

 $H_0: \beta_1 = 0$ (non linear relationship)

 $H_1: \beta_2 \neq 0$ (linear relationship)

Test statistic,
$$t = \frac{b_1 - \beta_1}{S_{b_1}}$$
$$= -1.69699$$

Degree of freedom = 10-2=8

Where:

 b_1 = Sample regression slope coefficient

 β_1 = Hypothesized slope

 S_{b_1} =Estimator of the standard error of the slope

Fail to reject H0. Since P-value is 0.1281 is more than significance level 0.05, there's sufficient evidence that a non-linear relationship exists between inflation rate and GDP per capita.

***Line is shwoing non-linear relationship

Chi-Square Test of Independence

$$x^2 = \sum_{E} \frac{(O-E)^2}{E}$$

$\times \Box -$

Test hypothesis:

HO: Unemployment rate is independent with the countries status

H1: Unemployment rate is dependent with the countries status

By using,

Degree of freedom= 4

Significance level= 0.05

Result:

Test statistic= 4.22222

Critical Value= 16.91898


```
> # output critical value
> print(x.alpha)
[1] 16.91898
> # output the chi-square value
> output$statistic
X-squared
 4.222222
> # output the parameter of degree of freedom
> output$parameter
df
> # output the observed value table
> output$observed
        Developed Developing Least developed
  0 < x < 2
  2<x<4
  4<x<6
> # output the expected value table
> output$expected
        Developed Developing Least developed
  0<x<2
              0.6
                         0.4
              1.8
                         1.2
  2<x<4
                         0.4
              0.6
  4<x<6
```

Since the test statistic value < critical value, we fail to reject the null hypothesis.

Therefore, there is sufficient evidence that status of countries and unemployment rate are dependent.

Conclusion

Prepare data set

-Fulfill the objective of performing data analysis test

Data pre-processing stage

-Data cleaning and data transforming

Hypothesis testing

-There is not sufficient evidence to prove that the average monthly income of 10 countries is greater than USD 800

Correlation test

-There is a linear relationship exists between GDP per capita and brain drain rate

Regression test

-There exists a non-linear relationship between inflation rate and GDP per capita

Chi-square test of Independence

-Conclude that the status of 10 countries and unemployment rate are dependent

