

CHAPTER 8

Analysis of Variance (ANOVA)

Outline

- Introduction
- One-Way ANOVA with Equal Sample Sizes.
- One-Way ANOVA with Unequal Sample Sizes.
- Two-Way ANOVA.

Not covered in this syllabus

Introduction

- ANOVA is a method of testing the equality of three or more population means by analyzing sample variances.
- The purpose of ANOVA is to test for significant differences between means.
- Elementary concepts provide a brief introduction to the basics of statistical significance testing.

One-Way ANOVA with Equal Sample Sizes

• We assume that the populations have normal distribution and same variance (or standard deviation), and the samples are random and independent of each other.

ANOVA Notation:

```
n = \text{size of each sample}
```

k = number of populations or treatments being compared

 $S_{\overline{X}}^2$ = variance sample means

 S_P^2 = pooled variance obtained by calculating the mean of the sample variances

■ Test statistic:
$$F = \frac{\text{variance between sample}}{\text{variance within sample}} = \frac{nS_{\overline{X}}^2}{S_P^2}$$

Variance between sample:

- Also called variation due to treatment
- \circ An estimate of the common population variance σ^2 that is based on the variability among the sample means.

Variance within sample:

- Also called variation due to error.
- \circ An estimate of the common population variance σ^2 based on the sample variances.

■ The critical value of *F*:

- \circ numerator degrees of freedom = k-1
- \circ denominator degrees of freedom = k(n-1)
- $\circ k$ = number of population or treatments being compared.
- $\circ n$ = sample size

Example 1

Table below lists the head injury to car crash test dummies for four different types of cars. Use a 0.05 significance level to test the null hypothesis that the different types of car have the same mean.

No. of head injury					
Subcompact Cars	Compact Cars	Midsize Cars	Full-Size Cars		
681	643	469	384		
428	655	727	656		
917	442	525	602		
898	514	454	687		
420	525	259	360		

Example 1- Solution

Step 1: Define the hypothesis statement.

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

H₁: at least one mean is different.

• Step 2: For each category, find n, \bar{x} and s

Category 1: (Subcompact Cars)

Category 2: (Compact Cars)

Category 3: (Midsize Cars)

Category 4: (Full size Cars)

Step 3: Find variance between samples

Step 3a: Find mean between samples

$$\overline{\overline{x}} = \frac{668.8 + 555.8 + 486.8 + 537.8}{k = 4} = 562.3$$

Step 3b: Find standard deviation between samples

$$s_{\bar{x}} = \sqrt{\frac{(668.8 - 562.3)^2 + (555.8 - 562.3)^2 + (486.8 - 562.3)^2 + (537.8 - 562.3)^2}{4 - 1}}$$

$$= 76.779$$

Step 3c: Find variance between samples

$$ns_{\bar{x}}^2 = 5(76.779)^2 = 29475.1$$

Step 4: Find variance within samples

$$s_p^2 = \frac{(242.0)^2 + (91.0)^2 + (167.7)^2 + (154.6)^2}{k = 4}$$
$$= 29717.4$$

Step 5: Calculate test statistic, F

$$F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{ns_{\bar{x}}^2}{s_p^2}$$
$$= \frac{29475.1}{29717.4}$$
$$= 0.992$$

- Step 6: Calculate numerator and denominator degree of freedom
 - \circ Numerator = k 1 = 4 1 = 3
 - \circ Denominator = k(n-1) = 4(5-1) = 16
- Step 7: Find critical value with $\alpha = 0.05$ from *F*-distribution table
 - *F*-critical value = 3.2389

- Step 8: Test the claim and state the conclusion.
 - \circ Since $F_{\rm test\ statistic}$ < $F_{\rm critical\ value}$ (0.992 < 3.2389), we fail to reject the null hypothesis.
 - There is sufficient evidence to claim that the different types of cars have the same mean for head injury.

Example 2

Table below lists the chest deceleration to car crash test dummies for four different types of cars. Use a 0.05 significance level to test the null hypothesis that the different types of car have the same mean.

Subcompact Cars	Compact Cars	Midsize Cars	Full-Size Cars
n = 5	n = 5	n = 5	n = 5
s = 6.69	s = 4.64	s = 3.35	s = 7.11
$\bar{x} = 50.4$	$\bar{x} = 53.0$	$\bar{x} = 48.8$	$\bar{x} = 46.0$

Example 2- Solution

Step 1: State the hypothesis.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: at least one mean is different.

- Step 2: (Done refer table).
- Step 3: Find variance between samples

Step 3a: Find mean between samples

$$\overline{\overline{x}} = \frac{50.4 + 53.0 + 48.8 + 46.0}{4} = 49.55$$

Step 3b: Find standard deviation between samples

$$s_{\bar{x}} = \sqrt{\frac{(50.4 - 49.55)^2 + (53.0 - 49.55)^2 + (48.8 - 49.55)^2 + (46.0 - 49.55)^2}{4 - 1}}$$

$$= 2.93$$

Step 3c: Find variance between samples

$$ns_{\bar{x}}^2 = 5(2.93)^2 = 42.92$$

Step 4: Find variance within samples

$$s_p^2 = \frac{(6.69)^2 + (4.64)^2 + (3.35)^2 + (7.11)^2}{4}$$
$$= 32.02$$

Step 5: Calculate test statistic, F

$$F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{ns_{\bar{x}}^2}{s_p^2}$$
$$= \frac{42.92}{32.02}$$
$$= 1.34$$

- Step 6: Calculate numerator and denominator degree of freedom
 - \circ Numerator = k 1 = 4 1 = 3
 - \circ Denominator = k(n-1) = 4(5-1) = 16
- Step 7: Find critical value with $\alpha = 0.05$ from *F*-distribution table
 - F critical value = 3.2389
- Step 8: Test the claim and state the conclusion.
 - \circ Since $F_{\text{test statistic}} < F_{\text{critical value}}$ (1.34 < 3.2389), we fail to reject the null hypothesis.
 - There is sufficient evidence to claim that the different types of cars have the same mean for chest deceleration.

Exercise

Table 1 (see next page) lists the body temperatures of 5 randomly selected subjects from each of 3 different age groups. Informal examination of the 3 sample means (97.940, 98.580, 97.800) seems to suggest that the 3 samples come from populations with means that are not significantly different. Test the claim that the 3 age-group populations have the same mean body temperature. Use α = 0.05.

Table 1: Body Temperature (°F) Categorized by Age

18-20	21-29	30 and older
98.0	99.6	98.6
98.4	98.2	98.6
97.7	99.0	97.0
98.5	98.2	97.5
97.1	97.9	97.3

n ₁ =5	n ₂ =5	n ₃ =5
Mean: $x_1 = 97.940$	$x_2 = 98.580$	$x_3 = 97.800$
Std. Dev: S ₁ =0.568	s ₂ =0.701	s ₃ =0.752