

# CHAPTER 7

(Part 2)

# Regression Analysis



#### Introduction to Regression Analysis

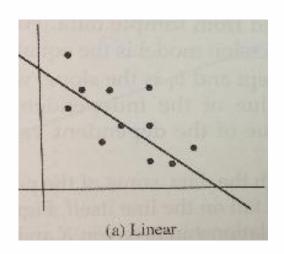
- Regression analysis is used to:
  - Predict the value of a dependent variable based on the value of at least one independent variable.
  - Explain the impact of changes in an independent variable on the dependent variable.
- Dependent variable: the variable we wish to explain.
- Independent variable: the variable used to explain the dependent variable.

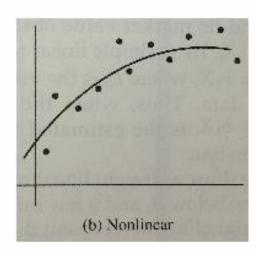


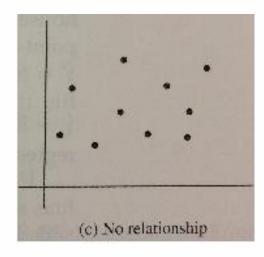
- A regression model that involves a single independent variable is called simple regression.
  - Example: Imagine that your company wants to understand how past advertising expenditures have related to sales in order to make future decisions about advertising. The dependent variable in this instance is sales and the independent variable is advertising expenditures.
- Usually, more than one independent variable influences the dependent variable.
- A regression model that involves two or more independent variables is called multiple regression.
  - Example: Sales are influenced by advertising as well as other factors, such as the number of sales representatives and the commission percentage paid to sales representatives



- Regression models can be either linear or nonlinear.
- A linear model assumes the relationships between variables are straight-line relationships, while a nonlinear model assumes the relationships between variables are represented by curved lines.









- The most basic type of regression is that of simple linear regression.
- A simple linear regression uses only one independent variable, and it describes the relationship between the independent variable and dependent variable as a straight line.
- This chapter will focus on the basic case of a simple linear regression.

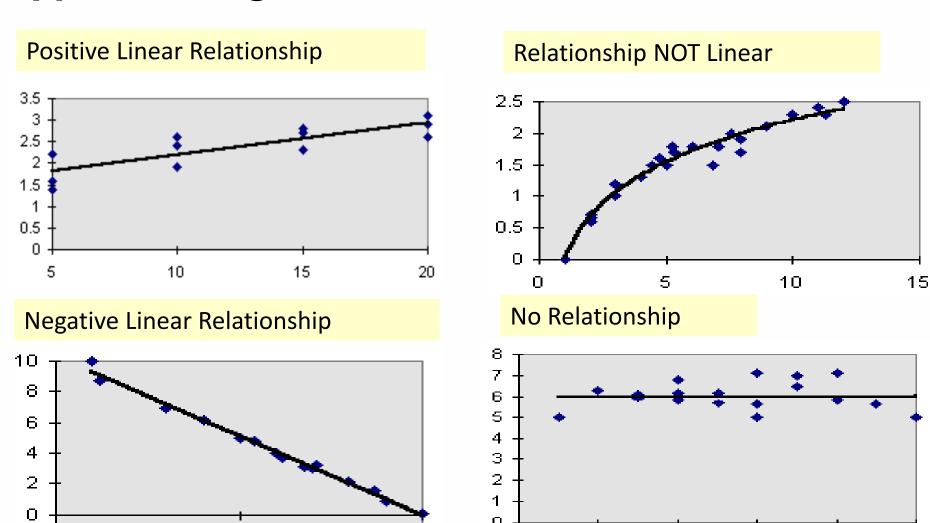


#### Simple Linear Regression Model

- Only one independent variable, x.
- Relationship between x and y is described by a linear function.
- Changes in y are assumed to be caused by changes in x.



# **Types of Regression Models**



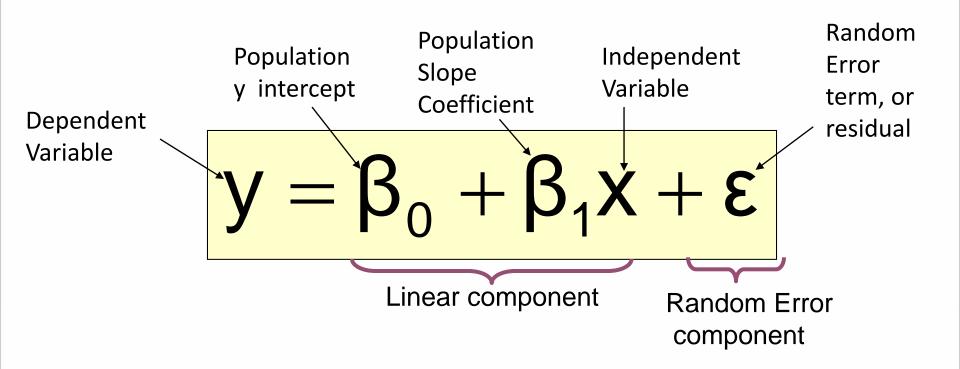
О

10



### **Population Linear Regression**

The population regression model:

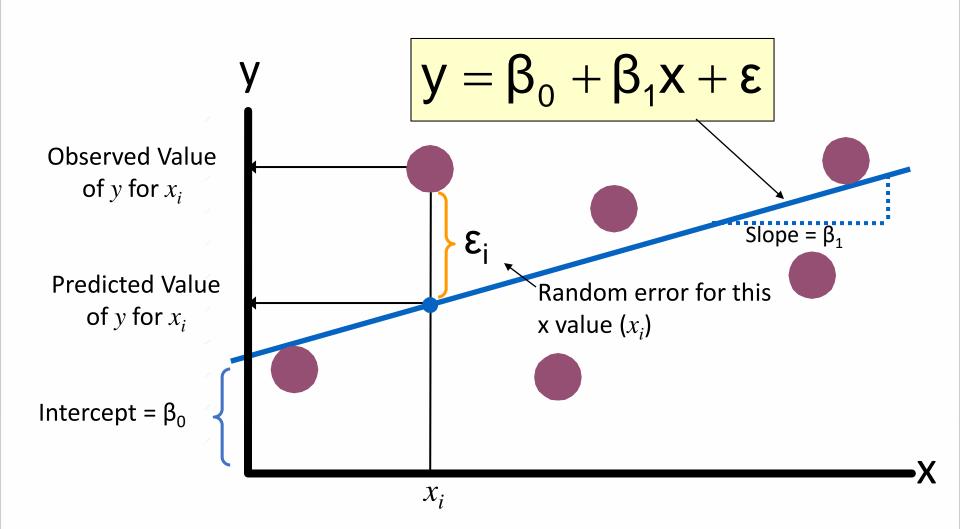




#### **Linear Regression Assumptions**

- Error values (ε) are statistically independent.
- Error values are normally distributed for any given value of x.
- The probability distribution of the errors is normal.
- The probability distribution of the errors has constant variance.
- The underlying relationship between the x variable and the y variable is linear.

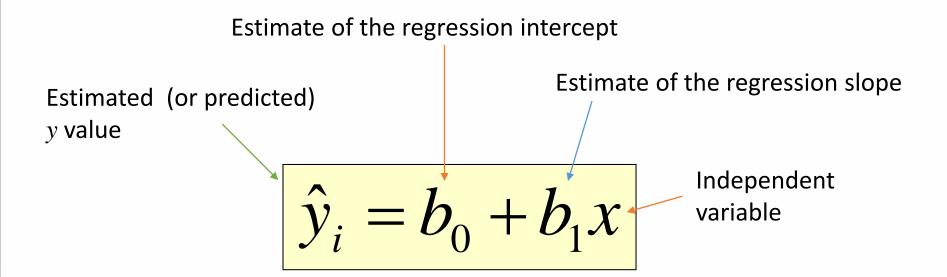






# **Estimated Regression Model**

The sample regression line provides an estimate of the population regression line



The individual random error terms  $e_i$  have a mean of zero.



# **Least Squares Criterion**

•  $b_0$  and  $b_1$  are obtained by finding the values of  $b_0$  and  $b_1$  that minimize the sum of the squared residuals:

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$

$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

#### Note:

**residual** is the difference between the observed value and the **mean** value that the model predicts for that observation.



# The Least Squares Equation

• The formulas for  $b_1$  and  $b_0$  are:

$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

algebraic equivalent:

$$b_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$



## Interpretation of the Slope and the Intercept

- b<sub>0</sub> is the estimated average value of y when the value of x is zero.
- b<sub>1</sub> is the estimated change in the average value of y as a result of a one-unit change in x.



### Finding the Least Squares Equation

- The coefficients  $b_0$  and  $b_1$  will usually be found using computer software such as R, Excel or SPSS.
- Other regression measures will also be computed as part of computer-based regression analysis.



# **Example**

A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet). A random sample of 10 houses is selected.

- Dependent variable (y) = house price in \$1000s
- Independent variable (x) = square feet





| House Price in \$1000s (y) | Square Feet (x) |
|----------------------------|-----------------|
| 245                        | 1400            |
| 312                        | 1600            |
| 279                        | 1700            |
| 308                        | 1875            |
| 199                        | 1100            |
| 219                        | 1550            |
| 405                        | 2350            |
| 324                        | 2450            |
| 319                        | 1425            |
| 255                        | 1700            |



# **Example - Solution**

| У       | x         | ху           | X <sup>2</sup>          |
|---------|-----------|--------------|-------------------------|
| 245     | 1400      | 343000       | 1960000                 |
| 312     | 1600      | 499200       | 2560000                 |
| 279     | 1700      | 474300       | 2890000                 |
| 308     | 1875      | 577500       | 3515625                 |
| 199     | 1100      | 218900       | 1210000                 |
| 219     | 1550      | 339450       | 2402500                 |
| 405     | 2350      | 951750       | 5522500                 |
| 324     | 2450      | 793800       | 6002500                 |
| 319     | 1425      | 454575       | 2030625                 |
| 255     | 1700      | 433500       | 2890000                 |
| Σy=2865 | Σx= 17150 | ∑xy= 5085975 | $\Sigma x^2 = 30983750$ |



$$b_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$



$$b_1 = \frac{5085975 - \frac{(17150)(2865)}{10}}{30983750 - \frac{(17150)^2}{10}}$$
$$= \frac{172500}{1571500} = 0.109767737$$

$$b_0 = \overline{y} - b_1 \overline{x}$$



$$b_0 = 286.5 - 0.109767737(1715)$$
$$= 98.24832962$$



#### Output from software R:

```
x < -c(1400, 1600, 1700, 1875,
    1100, 1550, 2350, 2450, 1425,
3
    1700)
    y \leftarrow c(245, 312, 279, 308, 199,
    219, 405, 324, 319, 255)
    model <- lm(y~x)
    model
10
11
    > model
12
13
     Call:
14
     lm(formula = y \sim x)
15
16
     Coefficients:
17
18
     (Intercept)
19
                         0.1098
        98.2483
20
21
22
       \hat{y} = 98.2483 + 0.1098x
```



### Output from software SPSS:

Coefficients

|       |            | Unstandardized<br>Coefficients |    |            | Standardi<br>zed<br>Coefficien<br>ts |       |      |
|-------|------------|--------------------------------|----|------------|--------------------------------------|-------|------|
| Model |            | В                              | U. | Std. Error | Beta                                 | t     | Sig. |
| 1     | (Constant) | 98.248                         |    | 58.033     |                                      | 1.693 | .129 |
|       | SQR_FT 📏   | .110                           |    | .033       | .762                                 | 3.329 | .010 |

a. Dependent Variable: H\_PRICE

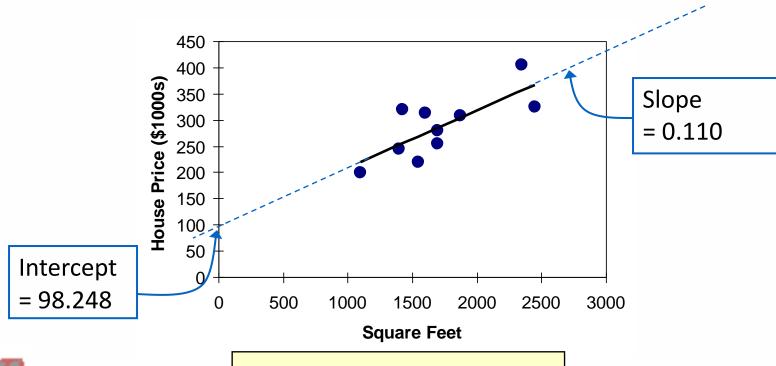
The regression equation is:

$$\hat{y} = 98.248 + 0.110x$$



# **Graphical Presentation**

House price model: scatter plot and regression line





$$\hat{y} = 98.248 + 0.110 x$$



$$\hat{y} = 98.248 + 0.110x$$



- b<sub>0</sub> is the estimated average value of y when the value of x is zero (if x = 0 is in the range of observed x values)
- Here, no houses had zero square feet, so  $b_0$  = 98.248 just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet.



### Interpretation of the Slope Coefficient, $b_1$

$$\hat{y} = 98.248 + 0.110x$$

- b<sub>1</sub> measures the estimated change in the average value of y as a result of a one-unit change in x.
- Here,  $b_1 = 0.110$  tells us that the average value of a house increases by 0.110(\$1000) = \$110, on average, for each additional one square feet of size.



# **Least Squares Regression Properties**

- The sum of the residuals from the least squares regression line is  $0 \left( \sum (y \hat{y}) = 0 \right)$
- The sum of the squared residuals is a minimum (minimized  $\sum (y-\hat{y})^2$ )
- The simple regression line always passes through the mean of the y variable and the mean of the x variable.
- The least squares coefficients are unbiased estimates of  $\beta_0$  and  $\beta_1$



## **Explained and Unexplained Variation**

Total variation is made up of two parts:

$$SST = SSE + SSR$$

Total sum of Squares

Sum of Squares Error

Sum of Squares Regression

$$SST = \sum (y - \overline{y})^2$$

$$SSE = \sum (y - \hat{y})^2$$

$$SSR = \sum (\hat{y} - \overline{y})^2$$

where:

 $\overline{y}$  = Average value of the dependent variable

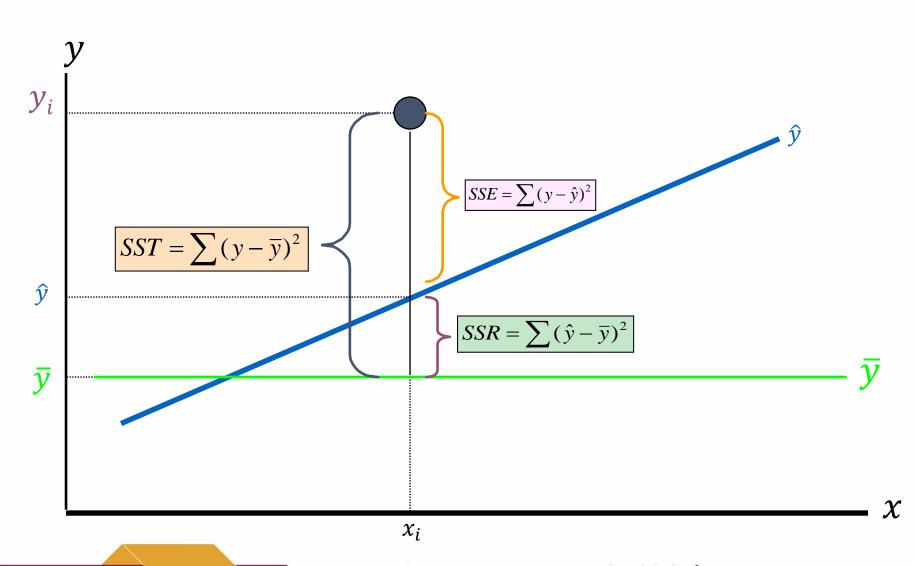
y =Observed values of the dependent variable

 $\hat{y}$  = Estimated value of y for the given x value



- SST = total sum of squares
  - Measures the variation of the  $y_i$  values around their mean y
- SSE = error sum of squares
  - Variation attributable to factors other than the relationship between x and y
- SSR = regression sum of squares
  - Explained variation attributable to the relationship between x and y







# Coefficient of Determination, $R^2$

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable.
- The coefficient of determination is also called R-squared and is denoted as R<sup>2</sup>

$$R^2 = \frac{SSR}{SST}$$

where

$$0 \le R^2 \le 1$$



$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\text{sum of squares explained by regression}}{\text{total sum of squares}}$$

Note: In the single independent variable case, the coefficient of determination is

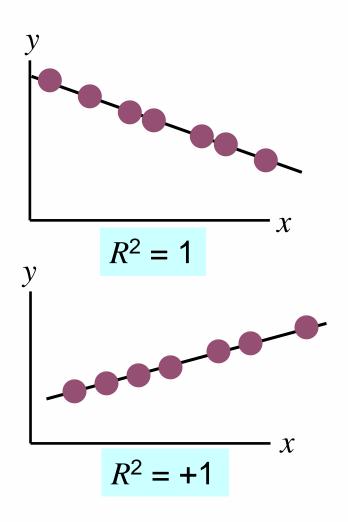
$$R^2 = r^2$$

where:

 $R^2$  = Coefficient of determination r = Simple correlation coefficient



### Examples of Approximate $R^2$ Values



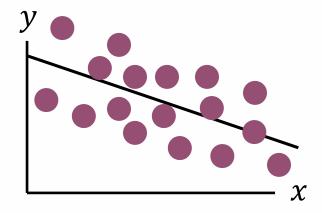
$$R^2 = 1$$

Perfect linear relationship between x and y:

100% of the variation in y is explained by variation in x

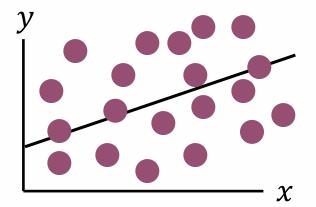


#### Examples of Approximate $R^2$ Values





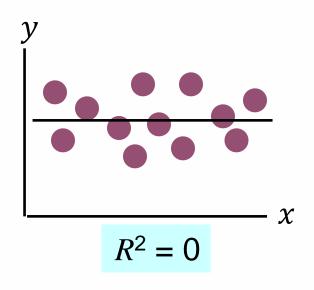
Weaker linear relationship between x and y:



Some but not all of the variation in y is explained by variation in x



### Examples of Approximate $R^2$ Values



$$R^2 = 0$$

No linear relationship between *x* and y:

The value of y does not depend on x. (None of the variation in yis explained by variation in x)



# Example – R Programming

```
> summary(model)
Call:
lm(formula = y \sim x)
Residuals:
   Min 1Q Median 3Q Max
-49.388 -27.388 -6.388 29.577 64.333
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.24833 58.03348 1.693 0.1289
       0.10977 0.03297 3.329 0.0104 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 41.33 on 8 degrees of freedom
Multiple R-squared: 0.5808, Adjusted R-squared: 0.5284
F-statistic: 11.08 on 1 and 8 DF, p-value: 0.01039
```

58.1% of the variation in house prices is explained by variation in square feet.



# Example - SPSS

$$R^2 = \frac{SSR}{SST} = \frac{18934.935}{32600.5000} = 0.581$$

#### Model Summary

| <br>  | П     |             | Adjusted | Std. Error of |
|-------|-------|-------------|----------|---------------|
| Model | K     | /R Square ↑ | R Square | the Estimate  |
| 1     | .762ª | .581        | .528     | 41.3303       |

a. Predictors: (Constant), SQR FT

58.1% of the variation in house prices is explained by variation in square feet

#### ANOVA

| Model |            | Sum of<br>Squares | df | Mean Square | F      | Sig.  |
|-------|------------|-------------------|----|-------------|--------|-------|
| 1     | Regression | 18934.935         | 1  | 18934.935   | 11.085 | .010ª |
|       | Residual   | 13665.565         | 8  | 1708.196    |        |       |
|       | Total      | B2600.500         | 9  |             |        |       |

a. Predictors: (Constant), SQR\_FT

b. Dependent Variable: H\_PRICE



# Standard Error of Estimate

The standard deviation of the variation of observations around the regression line is estimated by

$$s_{\varepsilon} = \sqrt{\frac{SSE}{n - k - 1}}$$

Where

SSE = Sum of squares error

n = Sample size

k = number of independent variables in the model



### The Standard Deviation of the Regression Slope

• The standard error of the regression slope coefficient  $(b_1)$  is estimated by

$$S_{b_1} = \frac{S_{\varepsilon}}{\sqrt{\sum (\mathbf{x} - \overline{\mathbf{x}})^2}} = \frac{S_{\varepsilon}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}}}$$

#### where:

 $S_{b_1}$  = Estimate of the standard error of the least squares slope

$$S_{\varepsilon} = \sqrt{\frac{SSE}{n-2}}$$
 = Sample standard error of the estimate



## Example - R Programming

```
s_{\rm e} = 41.33
> summary(model)
Call:
lm(formula = y \sim x)
Residuals:
   Min 1Q Median 3Q Max
-49.388 -27.388 -6.388 29.577 64.333
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.24833 58.03348
                                        0.1289
                                                       s_{b_1} = 0.033
                                3.329 0.0104 *
            0.10977
                      0.03297
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 41.33 on 8 degrees of freedom
Multiple R-squared: 0.5808, Adjusted R-squared: 0.5284
F-statistic: 11.08 on 1 and 8 DF, p-value: 0.01039
```



# Example - SPSS

 $s_{\varepsilon} = 41.3303$ 

#### **Model Summary**

|       |       |          | Adjusted | Std. Error of |
|-------|-------|----------|----------|---------------|
| Model | R     | R Square | R Šquare | the Estimate  |
| 1     | .762ª | .581     | .528     | 41.3303       |

a. Predictors: (Constant), SQR\_FT

#### Coefficients

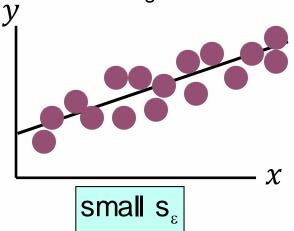
|       |            | Unstandardized<br>Coefficients |            | Standardi<br>zed<br>Coefficien<br>ts |       |      |
|-------|------------|--------------------------------|------------|--------------------------------------|-------|------|
| Model |            | В                              | Std. Error | Beta                                 | t     | Sig. |
| 1     | (Constant) | 98.248                         | 58.033     |                                      | 1.693 | .129 |
|       | SQR_FT     | .110                           | .033       | .762                                 | 3.329 | .010 |

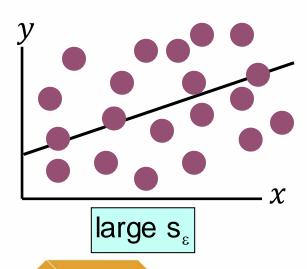
a. Dependent Variable: H\_PRICE

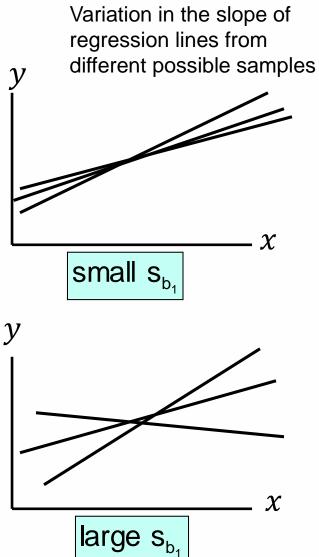


## **Comparing Standard Errors**

Variation of observed y values from the regression line









#### Inference About The Slope: t -test

- Is there a linear relationship between x and y?
- Null and alternative hypotheses:

 $H_0$ :  $\beta_1 = 0$ 

(no linear relationship)

 $H_1$ :  $\beta_1 \neq 0$ 

(linear relationship does exist)

Test statistic

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

$$d.f. = n - 2$$

where:

 $b_1$  = Sample regression slope coefficient

 $\beta_1$  = Hypothesized slope

 $s_{h1}$  = Estimator of the standard error of the slope



| House Price in<br>\$1000s<br>(y) | Square Feet<br>(x) |
|----------------------------------|--------------------|
| 245                              | 1400               |
| 312                              | 1600               |
| 279                              | 1700               |
| 308                              | 1875               |
| 199                              | 1100               |
| 219                              | 1550               |
| 405                              | 2350               |
| 324                              | 2450               |
| 319                              | 1425               |
| 255                              | 1700               |

#### **Estimated Regression Equation:**

$$\hat{y} = 98.248 + 0.110x$$

The slope of this model is 0.110

Does square footage of the house affect its sales price?





### Example – R Programming

$$H_0$$
:  $\beta_1 = 0$   
 $H_A$ :  $\beta_1 \neq 0$ 

```
> summary(model)
Call:
lm(formula = y ~
                             S_{b_1}
Residuals:
   Min 1Q Median
                                  Max
-49.388 - 27.388 - 6.388 29.577
                               64.333
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.2483 58.03348 1.693
                                        0.1289
           (0.10977) (0.03297) (3.329)
                                       0.0104 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 41.33 on 8 degrees of freedom
Multiple R-squared: 0.5808, Adjusted R-squared: 0.5284
F-statistic: 11.08 on 1 and 8 DF, p-value: 0.01039
```



# Example – SPSS

 $H_0$ :  $\beta_1 = 0$   $H_A$ :  $\beta_1 \neq 0$ 

|       |            | b      | 1                     | $S_{b_1}$                            | t     | ,    |
|-------|------------|--------|-----------------------|--------------------------------------|-------|------|
|       |            |        | ıdardized<br>ficients | Standardi<br>zed<br>Coefficien<br>ts |       |      |
| Model |            | В      | Std. Erro             | Beta                                 | t     | Sig. |
| 1     | (Constant) | 98.248 | 58.033                |                                      | 1.698 | .129 |
|       | SQR_FT     | .110   | .033                  | .762                                 | 3.329 | .010 |



|       |            | Unstandardized<br>Coefficients |            | Standardi<br>zed<br>Coefficien<br>ts |       |      |
|-------|------------|--------------------------------|------------|--------------------------------------|-------|------|
| Model |            | В                              | Std. Error | Beta                                 | t     | Sig. |
| 1     | (Constant) | 98.248                         | 58.033     |                                      | 1.693 | .129 |
|       | SQR_FT     | .110                           | .033       | .762                                 | 3.329 | .010 |

#### Test Statistic: t = 3.329

d.f. = 10-2 = 8;  $\alpha = .05$ 

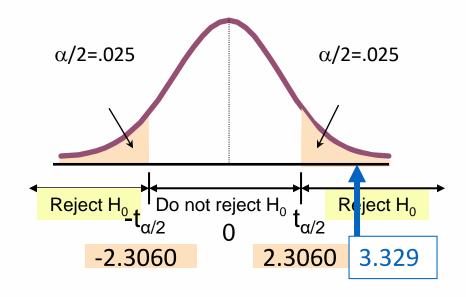
 $t_{\alpha/2}$  = 2.3060 (refer to table)

**Decision:** Reject  $H_0$ 

**Conclusion:** There is sufficient

evidence that square footage affects

house price





### Exercise #1

Representative data on x = carbonation depth (in millimeters) and y = strength (in megapascals) for a sample of concrete core specimens taken from a particular building were obtained from a particular survey.

| Depth, x    | 8    | 20   | 20   | 30   | 35   | 40   | 50   | 55  | 65  |
|-------------|------|------|------|------|------|------|------|-----|-----|
| Strength, y | 22.8 | 17.1 | 21.1 | 16.1 | 13.4 | 12.4 | 11.4 | 9.7 | 6.8 |

- i. Construct a scatterplot. Does the relationship between carbonation depth and strength appear to be linear?
- ii. Find the equation of the least-square line.
- iii. What would you predict for strength when carbonation depth is 25 mm?
- iv. Explain why it would not be reasonable to use the least-square line to predict strength when carbonation depth is 100 mm.



### Exercise #2

The following data (next page) on sale, size, and land-to-building ratio for 10 large industrial properties appeared in the paper "Using Multiple Regression Analysis in Real Estate Appraisal" (Appraisal Journal [2002]: 424-430):

- i. Calculate and interpret the value of the correlation coefficient between sale price and size.
- ii. Calculate and interpret the value of the correlation coefficient between sale price and land-to-building ratio.
- iii. If you wanted to predict sale price and you could use either size or land-to-building ratio as the basis for making predictions, which would you use? Explain.
- iv. Based on your choice (iii), find the equation of the least-square regression line you would use for predicting y = sale price.



| Property | Sale Price<br>(millions of<br>dollars) | Size (thousands<br>of sq. ft.) | Land-to-Building<br>Ratio |
|----------|----------------------------------------|--------------------------------|---------------------------|
| 1        | 10.6                                   | 2166                           | 2.0                       |
| 2        | 2.6                                    | 751                            | 3.5                       |
| 3        | 30.5                                   | 2422                           | 3.6                       |
| 4        | 1.8                                    | 224                            | 4.7                       |
| 5        | 20.0                                   | 3917                           | 1.7                       |
| 6        | 8.0                                    | 2866                           | 2.3                       |
| 7        | 10.0                                   | 1698                           | 3.1                       |
| 8        | 6.7                                    | 1046                           | 4.8                       |
| 9        | 5.8                                    | 1108                           | 7.6                       |
| 10       | 4.5                                    | 405                            | 17.2                      |