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What is Correlation?

 The word Correlation is made of Co- (meaning "together"), and Relation, 
and it can be defined as a measure of the statistical relationship 
between two comparable variables or quantities(bivariate data).

 When two sets of data are strongly linked together we say they have a 
high correlation.

 Correlation is positive when the values increase together.

 Correlation is negative when one value decreases as the other 
increases.

 No correlation – the value does not tend to either increase or decrease 
as the other increases. 
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Scatter Plots

 A scatter plot (or scatter diagram) is used to show the 
relationship between two variables.

 One variable is on the X-axis, one on the Y-axis.

 The pattern of data is indicative of the type of relationship 
between two variables:

o positive relationship

o negative relationship

o no relationship

o curvilinear relationship
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Examples – Scatter Plot
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Correlation Analysis

 Correlation analysis is used to measure strength of the association
(linear relationship) between two variables.

o Only concerned with strength of the relationship.

o No causal effect is implied.

 A correlation coefficient is a numerical assessment of the strength of
relationship between the x and y values in a set of (x,y) pairs.

 The population correlation coefficient, ρ (rho) measures the strength
of the association between the variables.

 The sample correlation coefficient, r is an estimate of ρ and is used
to measure the strength of the linear relationship in the sample
observations.
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Properties of r

 The value of r does not depend on the unit of measurement for either variable.

 The value of r does not depend on which of the two variable is considered x.

 The value of r is between -1 and 1.

 The value of r is a measure of the extent to which x and y are linearly 
related.

 Number represents the strength of the relationship.

 Sign (+ or -) represents the direction of the relationship (positive or 
negative)

o Positive values denote positive linear correlation.

o Negative values denote negative linear correlation.

o A value of zero denotes no linear correlation.

Example:

Correlation of -0.87 is considered stronger than correlation of 0.56
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 The correlation coefficient r =1 only when all the points in a 
scatterplot of the data lie exactly on a straight line that 
slopes upward. (Perfect positive correlation)

 Similarly, r = -1 only when all the points lie exactly on a 
downward-sloping line. (Perfect negative correlation)

 Coefficient usually not “perfect”. 

 The closer to -1, the stronger the negative linear 
relationship.

 The closer to 1, the stronger the positive linear relationship.

 The closer to 0, the weaker the linear relationship.
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• Measure the strength of a linear relationship.

-1 -0.5 0 0.5 10.8-0.8

strong strongmoderate moderateweak
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No correlation

 The correlation coefficient is a measure of linear relationship 
and thus look at the scatterplot of the data before concluding 
that there is no relationship between two variables when r is 
close to 0. 

 There could be a curvilinear relationship. For example in the 
following scatterplot which implies no (linear) correlation 
however there is a perfect quadratic relationship. 
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Positive Correlation

 Relationship shows a high score on one variable is related 
to a high score on another variable. Or,

 Relationship shows a low score on one variable is related to 
a low score on another variable.

 Correlation coefficient is greater than 0
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What is the relationship between the number of hours spent per week 
studying and GPA?

Students Study
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It can be seen that the GPA increases as the hours increases. A scatter plot and correlation 

analysis of the data indicates that there is positive relationship between the number of hours 

spent   per week  studying and GPA.

Example:

r = 0.884
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Negative Correlation

Relationship shows that a high score on one 
variable is related to a low score on the second 
variable.

Correlation coefficient is less than 0
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• What is the relationship between the number of hours spent per week 
watching TV and GPA?

Students TV GPA

S1

S2

S3

S4

S5

S6

S7

S8
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31

35

16

26

39

19

1.8
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3.7

3.0

2.4

3.4

It can be seen that the GPA decreases as the hours increases. A scatter plot and correlation 

analysis of the data indicates that there is negative relationship between the number of hours 

spent per week  watching TV and GPA. 
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Example:

r = - 0.892
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Correlation Types

 The two most popular correlation coefficients are: 

oPearson's product-moment correlation coefficient. 

oSpearman's rho rank correlation coefficient

 When calculating a correlation coefficient for ordinal data, 
select Spearman's rho technique. 

 For interval or ratio-type data, use Pearson's technique.
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Pearson's product-moment correlation coefficient

where:
r = Sample correlation coefficient
n = Sample size
x = Value of the independent variable
y = Value of the dependent variable
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Formula to calculate the sample correlation coefficient, r:
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• Assumes normality in both variables (bivariate normally 
distributed). 

• There needs to be a linear relationship between the two 
variables.

• Two variables should be measured at the interval or ratio
level.

• It is sensitive to outliers (can have a very large effect on the 
line of best fit and the Pearson correlation coefficient, 
leading to very difficult conclusions regarding the data).
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Example:

Tree 

Height

Trunk 

Diameter

y x xy y2 x2

35 8 280 1225 64

49 9 441 2401 81

27 7 189 729 49

33 6 198 1089 36

60 13 780 3600 169

21 7 147 441 49

45 11 495 2025 121

51 12 612 2601 144

=321 =73 =3142 =14111 =713
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r = 0.886 → relatively strong positive 
linear association between x and y
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Spearman's rho rank correlation coefficient

 Denote by rs for sample data (with r used to denote that it is a
correlation coefficient, and the subscript s to denote that it is named
after the statistician Spearman.)

 The linear correlation coefficient between the ranks of data on variable x
and y

where

di = yi – xi (difference in ranks)

n = sample size 

 It is less sensitive to bias due to outliers

 It is applied to ordinal variables. 
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• As an example, let us consider a musical (solo vocal) talent contest
where 10 competitors are evaluated by two judges, A and B.

• Usually judges award numerical scores for each contestant after
his/her performance.

• Spearman Rho Rank Correlation Coefficient can indicate if judges
agree to each other’s views as far as talent of the contestants are
concerned (though they might award different numerical scores) – in
other words if the judges are unanimous.

• Suppose that scores of the judges (out of 10 were as follows):

Example:

Contestant No. 1 2 3 4 5 6 7 8 9 10

Score by Judge A 5 9 3 8 6 7 4 8 4 6

Score by Judge B 7 8 6 7 8 5 10 6 5 8
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 In order to compute Spearman Rank Correlation Coefficient, it is necessary that 

the data be ranked.

 Ranks are assigned separately for two judges either starting from the highest or 

from the lowest score. Here, the highest score given by Judge A is 9.

 If we begin from the highest score, we assign rank 1 to contestant 2 

corresponding the score of 9.  

 The second highest score is 8 but two competitors have been awarded the 

score of 8. In this case both the competitors are assigned a common rank which 

is the arithmetic mean of ranks 2 and 3 => (
2+3

2
= 2.5)

 In this way, score of Judge A can be converted into ranks. 

 Similarly, ranks are assigned to the scores awarded by Judge B and then 

difference between ranks for each contestant are used to evaluate 𝑟𝑠.
 For the example, ranks are as follows:

Contestant No. 1 2 3 4 5 6 7 8 9 10

Ranks of scores by Judge A 7 1 10 2.5 5.5 4 8.5 2.5 8.5 5.5

Ranks of scores by Judge B 5.5 3 7.5 5.5 3 9.5 1 7.5 9.5 3
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Contestant 

No.

Ranks of scores 

by Judge A

Ranks of scores 

by Judge B di di
2
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• Hypotheses:

H0: ρ = 0 (no linear correlation) 

HA: ρ ≠ 0 (linear correlation exists)

• Test statistic:

2n

r1

r
t

2






Significance Test for Correlation
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Significance Test for Correlation• Select the significance level, 

• Find the critical value of t with n-2 degrees of freedom from t
distribution table (Table A-3:Triola Table)

• If the test statistic in the critical region, reject H0. Otherwise fail 
to reject H0

Reject H0Reject H0 -tα/2,n-2

Fail to reject H0 tα/2,n-2

There is a significant linear 

correlation There is not sufficient evidence 

to conclude that there is  linear 

correlation 

There is a significant linear 

correlation 
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Example:
Is there evidence of a linear relationship between tree height and trunk 

diameter at the .05 level of significance?

i) State the hypothesis statement:

H0: ρ = 0    (No linear correlation)

H1: ρ ≠ 0    (linear correlation exists)

4.68

28

.8861

.886

2n

r1

r
t

22
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




iv) State the conclusion:
Since 𝑡 = 4.68 > 𝑡+0.025,6 = 2.4469, reject 𝐻0.
There is sufficient evidence of a linear relationship between tree height 
and trunk diameter at the 5% level of significance.

ii) Find the critical value: 𝛼 = 0.05, 𝑑. 𝑓 = 8 − 2 = 6; 𝑡 Τ𝛼 2=0.025,6 = ±2.4469

iii) Calculate the test statistic: 
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Exercise #1
The data represent x = score on a measure of test anxiety and y = exam 
score for a sample of n = 9 students:

Higher values for x indicate higher levels of anxiety.

a) Construct a scatter plot, and comment on the features of the plot.

b) Does there appear to be a linear relationship between the two 
variables? How would you characterize the relationship?

c) Compute the value of the correlation coefficient. Is the value of r
consistent with your answer to part (b)?

d) Is it reasonable to conclude that test anxiety caused poor exam 
performance? Explain.

x 23 14 14 0 17 20 20 15 21

y 43 59 48 77 50 52 46 51 51
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The data represent x = the amount of catalyst added to accelerate a 
chemical reaction and y = the resulting reaction time:

a) Calculate r. Does the value of r suggest a strong linear relationship?

b) Construct a scatter plot. From the plot, does the word linear really 
provide the most effective description of the relationship between x and 
y? Explain.

x 1 2 3 4 5

y 49 46 41 34 25

Exercise #2


