SUTM

UNIVERSITI TEKNOLOGI MALAYSIA

SCHOOL OF COMPUTING
FACULTY OF ENGINEERING

SECJ2013-06 STRUKTUR DATA DAN ALGORITMA
(DATA STRUTURE AND ALGORITHM)

MINI PROJECT:
HOSTEL MANAGEMENT SYSTEM

Group Name: Group 8

Members:
Name Matric No
Aum Jeevan A/L Aum A20EC0017
Nirangkar
Brendan Dylan Gampa anak | A20EC0021
Joseph Dusit@Dusit
Hafiy Hakimi Bin Saiful A20EC0040
Redzuan

Lecturer’s Name: Ts Dr Johanna bintt Ahmad

Submission Date: 27" JANUARY 2022
Video presentation link: https://youtu.be/pk28oloBbe0

https://youtu.be/pk28oloBbe0

1. INTRODUCTION
1.1 Synopsis Project

In mini project, our group has been assigned to create a Hostel Management System.
The designed system is made specially for student book their rooms in college and admin
to view the student details of the room booking.

The system has implemented data structure concepts such as linked list, quick sort,
stack, searching and queue. Each concept is applied to perform different functions on the
system. There are a total of 10 classes that we have implemented such as login, college
registration, check in, payment and view student details. Before the students can select their
desired room number, they need to select which college they want to enroll in as well as
including their personal information. Room number is based on the format of wing
building, floor and then the number. Staff is allowed to sort, delete, and view the data of
student details. As for students, they can register their self-details, room booking, and
retrieve receipt to pay the rents. The stack implementation is based on managing the room
number where the staff can delete the past check in and check out dates of the room details.
The queue meanwhile is to view and delete past student’s personal details based on the
FIFO (First In First Out) concept.

1.2 Objectives of the Project

¢ Provide centralized hostel management system.

e Provide staff with an easier view of booking details done by students.

e Prevent data loss by storing students’ booking details in the system.

e Allow an efficient engagement from the students to navigate through the system
while input necessary data for hostel booking.

e Enable staff to manage the check in and check out dates of the room booking.

e Provide staff with an easier algorithm of view and delete student personal details.

2. SYSTEM ANALYSIS AND DESIGN (USE CASE, FLOWCHART AND CLASS

DIAGRAM)

2.1 System Requirements [CLASS DIAGRAM]

The system target groups are students and staff (admin).

Target Group

Tasks

Students

Students are in charge to fill in personal details, choose
desired college, select room number as well as check in and
check out dates. Students will be given total amount to be
paid for room renting and an automated receipt that display
their details. Students are also eligible to view the details

inputted earlier by key-in their matric number.

Staff

Staff is responsible to view the whole student’s details and
perform sorting on student’s matric number. Staff can also
view the details of a single students by inputting student’s
matric number. The staff has the rights to view and delete the
past room details which includes the student’s personal

details.

Table 1: Target groups with respective tasks

The system implements 10 main classes with respective purposes based on the class
diagram in Figure 1.

Class Task

Login() Students and staff login into the system by entering their

username and password.

RegistrationCollege() | Students fill in personal details and select desired college.

CollegeRoom() College room list displayed, and students choose room number.

CheckInOut() Students set check in and check out dates which includes days

interval in between.

Payment() System set total payment based on the days stayed.

Receipt() Display automated receipt to students.

StaftfView() Staff view all student list at output data file and sort matric
number.

StaffSearch() Students and staff search a student’s details via matric number.

RoomStack() Staff view and delete past room details.

MatricQueue() Staff view and delete student’s personal details.

Table 2: Classes implemented in the system with respective tasks

Class Diagram

Receipt

~displayPayment(): void

1
~finalpayment fioat
1.4 ~temppay: float
—rate: int

+Payment()
+calcpay(&finalpayment float): void
+displayPayment(): void

StaffView

-sv: fstream

~StaffViewOutpul(fullname() : string, matric] - int, coursef] - string,

+ cod[5]: char
+mat: int
+ next1: struct QNode *

MatricQueue

+front1: struct QNode *
+reart: struct QNode*
~temp1: struct QNode*
+vaLint

+code [5] - char
+Queuelnsert(matric [Lint,

+QueueDelete(): void
+QueueDisplay(): void

course ['string, sizearay int). void

Figure 1: Class diagram of Hostel Management System

11 t 4
college(] - string, room(] - string, inf] - string, out(] string, duration(] - int
payl] - float, sizearray: int). void ! 1.1 RoomStack
-top:int
12 roomdata [5]: string
11 -indata [5] string
11 -outdata [5]: string
CheckinQut _ _
+isFulyint
1‘ - tempin - string 11 +isEmpty(yint
- - tempout : string ~stackpushiroomNo [| string, chiin [I: string,
Login - duration : int J11 chikout []: string)
- tempdur - int +stackpop(): void
~usemame: siring p—— CollegeRoom +stackdisplay (). void
- passwiord: string +CheckinOul - § .
 identification: char +retumnduration() - int :zmlf?f .
+5tudCheckinOut(&indate : string, “aceupled(3] int 11
&ouldate - siring, &duration - int): void 7wmggw B
+Login() +displayCheckinOut) - void ~collegeNamels]: sting
~getDelails(u: string, p - it i - char) : void _roomhold: string
~SetUser(i - char) : void
+FillCredentials(p - int) - bool +CollegeRoom0)
+seiCollegeBuiding(¢ - siring): siring | ,
s +readCollege(): void ~
+displayCollege(): void
11 +assignroom(): void Node
+displayRoomy): void
RegistrationCollege +returnroom(): string g:: mme‘
-mame: string
-Iname: string .
1y | uliname: string o 11 R
-course: string ! 11
~college: string
-matricNum: int Staffsearch
-digit: int 11
~gender. char R
List
+RegistrationCollege() 11 + searchStudent{ fullname{] - string, matric[] - int, 1 ~ root- Node *
+studRegister(&fname - string, &matNum : int, course [] : string, college [] - string, roem [] siring, ~head: Node *
&cou : siring, &tempcollege ; string, 8sizearray : int): void in [] string, out [] - string, duration { I: int, pay [: float,
+RegStudOutput(): void sizearray []: int) void + List(void)
prrm— ~List (void)
QNode 11 +IsEmpty(): bool

+InsertNode(head : Node™

item int): void
+arrayToList(matric [} int.
sizearray: inf) - Node *
+FindNode(matriccnoose: int): bool

2.2 System Design [FLOWCHART]

Flowchart 1: Login (Filled by students)

Start

h 4

void getDetails

¥
usemame = u
password = p
idenfification =i

h 4

void SetUser

End

Figure 2: Flowchart for Login

Above flowchart is for students to log into the system. It will prompt the students to fill in their
username, password and identification through void getDetails() function. Next, the system
will proceed with void SetUser() function according to their identification.

By: Hafiy Hakimi bin Saiful Redzuan

Flowchart 2: Student registration (Filled by students)

Start

Y

void
studRegister
Display number of
students End
registered v

A cin=>fname;
cin=+Iname;

sizearray++

v

A

cin=>=matric;

Display invalid

cin=>gender: number of digits
cin==course; for matric
i - number
cin==college; while (digit-3
4 TRU | digit = 4)

FALSE

Figure 2: Student registration flowchart

The data structure applied for this flowchart is array only. The class RegistratiCollege
functions to get input from students about their name, matric number, gender, course, and
college desired. By having each item are inputted correctly, the array size will be
incremented by and notify the number of students registered. Validation process occur on
the matric number where the system validates the number of digits for matric number.

By: Brendan Dylan Gampa anak Joseph Dusit@Dusit

Flowchart 3: College room registration (Filled by students)

+ to_string(floor);

Start room =
to_string({roomNo) Display room
+"-" + wingBuild number

string
setCollege
Building

FALSE

FALSE
temp++)

if (room-=1
|| room =30)

TRU Display there arg TRUE
only 30 rooms

FALSE TRUE

Display college
desired is not in
the system

iflc==
collegeName
[temp]

End

cin=>roomMo

TRUE

Display the
college
desired is
available.

void
assignroom

Figure 3: Flowchart for college room registration

This flowchart only applies array for the data structure. This is because this flowchart
requires to determine the room number of students based on their desired college. If their
desire college name is available in function string setCollegeBuilding(), it will prompt user
to input their desired room number in function void assignroom(). Since there are only 30
rooms available for each college, room number can only be included within that range. If
user input other integer beyond 30, system will prompt error message and user needs to
key-in the room number again. There are no limits for the validation. Once room is selected,
system will display the room number based on the floor and wing building where the room
is located.

By: Brendan Dylan Gampa anak Joseph Dusit@Dusit.

Flowchart 4: Check-in and check-out (Filled by students)

void
studCheckinOut

)

cin>>indate
cin>>outdate
cin>>duration

void

displayCheckinOut|

l

/Display check in, check out and dur‘ation/

4

End

Figure 4: Flowchart for check-in and check-out

The flowchart above aims to provide the check in, check out and duration details for the student.
It starts off by prompt user to input the check in date, check out data and duration in the void
studCheckInOut(). Afterwards, it will go to void displayCheckInOut() where it will display the
check in date, check out date and duration of stay in a well-organized way.

By: Aum Jeevan A/L. Aum Nirangkar

Flowchart 5: Payment (Filled by students)

Start

void calcpay

/
finalpayment=chkinout.returnduration()*rate
temppay=finalpayment

A

void

displayPaymen

Display receipt

Figure 5: Flowchart for payment

The flowchart above aims to calculate the payment needed to be done by the student and display
the receipt. It starts off in void calcpay() where it will calculate the payment needed by using
the formula finalpayment=chkinout.returnduration()*rate. = Afterwards, in void
displayPayment(), it will display the receipt to the user. The receipt states the rate per day as
well as the final amount needed to be paid.

By: Aum Jeevan A/L Aum Nirangkar

Flowchart 6: Receipt (Filled by students)

Start

A 4

void

displayPayment

A 4

/ Display automated receipt /

A 4

End

Figure 6: Flowchart for receipt

This flowchart aims to display the automated receipt. In void displayPayment(), it will display
the information such as registered college, college room, check in and check out details,
payment details, and so on. This helps the user to see all the output from other processes in one
receipt. Thus, helping them reassure no errors taking place.

By: Aum Jeevan A/L. Aum Nirangkar

Flowchart 7: Staff View (Accessed by staft)

wvoid Open
StaffiViewQutput studentregistered txt

True E
Ffile not open display D:iaa\f:;?;‘t file is not
Qutput all student data to
studentregistered txt

Input choice /msplay “Do you want o sori the data based un/

ASCENDING matric no (Y/N)?"

void quickSort

/éumut sorted data to studentregistered tt

display unsorted matric no based on matric no

display “Sorry! There is not enough
elements to be sorted
Output unsorted data to studentregistered.txt
based on matric no

display sorted matric no

Figure 7: Flowchart for Staff View

The flowchart above shows the display function for staff. It will start with void
StaffViewOutput() function that will prompt the system to open studentregistered.txt file. Next
it will go through a condition where if the file didn’t managed to be opened, the system will
display “Data output file is not available” while if the file is opened, it will proceed to output
all data into the file and display “Do you want to sort the data based on ASCENDING matric
no (Y/N)?” which prompt the staff to give an input. If the staff wants the data to be in ascending
order and if the data is more than 3, it will run void quickSort(), display sorted matric no and
output the data into student file. Otherwise the unsorted data will be displayed and kept in the
student file.

By: Hafiy Hakimi bin Saiful Redzuan

Flowchart 8: Search specific student details based on matric number. (Accessed by Staff)

void
[SearchStudent

temp = new List
code = matric Number

temp -=
arrayToList(matric,
sizearray)

FALSE:

for (i=0;
izsizearray; i++

for(int i=0;
i=sizearray; i++)

if(temp->

FindNode(code)) TRUE—

TRUE—

if (matric [i]
== code)

FALSE

InsertMode(&root “head = temp

matric{i])

FALSE

TRUE

FALSE

display
"No data of the
following student

getalls’ Display student

details
1
Display list not
N [End b

(pir-=next

1= NULL TRUE empty

"V";:’f;t = pir = pir-=next

empty
Figure 9: Flowchart for staff search

The data structure applied for this flowchart is singly linked list. The arguments of students
details are passed from main() to void SearchStudent in class StaffSearch. This class
functions to search a single specific student’s details by matric number. Elements in the
array of matric number are sent to the calling function arrayToList() which passed each
element of matric number into the nodes. Every time the elements are being inputted into
the node, the pointer p#r points to next pointer to input the next element. Once node
insertion is completed, the system goes through IsEmpty() function which displays that the
linked list is not empty if there are nodes in the linked list. Function FindNode() is evaluated
by comparing the desired matric number with the matric number in the linked list. If the
result is true, then the program will display the student details based on the student’s matric
number. Else, an error message will be prompted.

By: Brendan Dylan Gampa anak Joseph Dusit@Dusit

Flowchart 9: View and delete room details with check in and check out data. (Accessed
by Staff)

Start

void stackpush|

FALsE—< It (isFull)) TRUE——»{ P1SP2) stack

[floption==1)

i<10; i++)

v
top =top+1
roomdata[i] = roomNoli]
indatali] = chkin [1]

outdatali] = chkout [i]
Display "the data
nas been inserted"
Ifloption==2>
TRUE

Display room No that o
has been deleted [¢——FALSE: TRUE—»| Dls‘flgr\h:::(* void
: stackdisplay

FALSE—

FALSE:

void stackpop

et\erlﬂetmgﬂ TRUE-»| check in and check
stack to be out dates

displayed”

FALSE
temproom = roomdata[top]
L] tempin = indata [top]
tempout = outdata [top]
top = top -1 m Display "no . Display room No
le—FALSE- TRUE—» A

Figure 10: Flowchart for manage room details

The data structure applied for this flowchart is stack. The array arguments of room number,
check in and check out dates are passed from the main() into the void stackpush() in class
RoomStack. This class functions to view the room details with its check in and check out
dates. By implementing LIFO (Last In, First Out), the last elements will be at top. If the
condition isFull() is false, then data from the array will be inputted as top is incremented
by 1. Option 1 means to delete the data at the top through function stackpop(). If staff
selects this option, program will delete the elements at top, which is the last element that
has been inputted. At the same time, the value top will be decremented by 1. Else if one
selects option 2, program will display the remaining data after the deletion and sorted based
on LIFO concept through function void stackdisplay(). The program exits and return to the
main menu if options selected are not equal to 1 or 2.

By: Brendan Dylan Gampa anak Joseph Dusit@Dusit

Flowchart 10: Insert matric number and course code. (Accessed by Staff)

for (i=0; i=sizearray,
++)

void Queuelnsert temp1=(struct QNode *)malloc(sizeof(struct

QNode))

_ N N rearl-=nexti=temp1
rear!=(struct O.N?]de d)n:‘la\loz(swzemtstruct temp1->queus=val
node’) temp1-=next1=NULL

rear1-=next1=NULL

reari-=queue=val reart=temp1

front1=rear1

/ display "All elements from matric array has been assigned fo the nodes” /

> End

Figure 11: Flowchart for Insert Matric Number and Course Code

The above flowchart shows the flow for insert matric number and course code that can be
accessed by staff members. The data structure for this function is queue. It begins with void
Queuelnsert() function and through a for loop to assign nodes to the matric numbers. While the
for loop is still true, it will check if rear]1=NULL, if it is true then the matric number will be
assigned to rearl and if it is false, it will be assigned to temp1. However if the for loop is false,
it will display “All elements from matric array has been assigned to the nodes”.

By: Hafiy Hakimi bin Saiful Redzuan

Flowchart 11: Delete and display matric number and course code. (Accessed by Staff)

N

False
if option=1

f option=2 e

display "You are about to return to the main menu”

void
QueueDisplay

QueusDelste

}—-{ temp1=front ‘

}—A‘ temp1=fronti

display “Oueve is empiy”

display "Queue is empty

i front1=NULL display "Underflow [e False
N T]
display queus
elements
vhie lempli=NULL >
a\ténu»qe;:u:mm temp=temp1-=nextt display element deleted from queve f——| N
h L

e o display queus /
—’WT|_—// demerts f
temp1=NULL

reari=NULL

/

/ display element deleted from queue

Figurel2: Flowchart for Delete and Display Matric Number and Course Code

Above flowchart is based on queue data structure. Functions QueueDelete and QueueDisplay is designed to remove and display matric number

and course code from the queue. It uses the same concept of dynamic memory allocation for queue delete and for display only designed to display
the data.

By: Hafiy Hakimi bin Saiful Redzuan

3. SYSTEM PROTOTYPE

LOGIN
WELCOME TO G8 MINI PROJECT HOSTEL MANAGEMENT SYSTEM !!

Select which user? U == student/guest, A == admin
Your choice : U

You are verified as user login.

Please enter your username and password
Username : hafiyhakimi

Password : 12345

Please confirm again your password : 12345

Successful login!

This screen shows the login function for the system. At first the system will ask the user to
choose whether they are students or admins to give access. Once they are verified, they are
prompted to fill in their username, password and they are asked to reconfirm their inserted
password. Once the process finished, the system will display successful login and will
display the next interface.

STUDENT REGISTRATION

WELCOME TO STUDENT REGISTRATION FOR COLLEGE SECTION !

Full mame (FIRST NAME AND LAST NAME ONLY example: John Doe) : Brendan Dylan
Matric No (PLEASE STATE LAST FOUR DIGITS ONLY) : 9821

Invalid number of digits for matric number. Please re-enter again.

Matric No (PLEASE STATE LAST FOUR DIGITS ONLY) ;3021

Gender (M = male, F = female) : M

Course (Please state in the form of SECJ) : SECV

College desired (KTDI,KTF,KSI,KYC and KFG only) : KTDI

1 student(s) registered.

Press ENTER to continue...l

The screen shows the student registration for students to fill in the details required. Details
such as name, matric number, gender, course, and college desired. We have also included
validation for each item that user need to input. For instance, when user enter the matric
number as 0021, the system takes the value as 2 digits only and notify user that one need
to re-enter again. There are limits of validating the items as long as user input what the
system wants. Once the details have been filled in, system will notify how many students
have been registered.

COLLEGE ROOM

LIST OF COLLEGE AVAILABLE

Your desired college is available here.

Press ENTER to continue...[]

The screen shows the list of college name together with the number of rooms available and
occupied. The interface will only prompt this as to notify user how many rooms are
available at their desired college.

ROOM REGISTRATION

Please choose which room number you prefer (1-3@ only): 20
Your room no is 20-Bl

Note that the number in front is the floor level.

B = your room is on the right side of the building.

Press ENTER to continue...]]

Once the room college list has been displayed, the system then required user to input desired
room number. Once selected, system will determine which floor that one’s room would be
and also the wing building on each floor.

CHECK IN AND CHECK OUT
STUDENT INFORMATION FOR CHECK IN AND CHECK OUT
Check in date (Please put in the form of DD/MM/YYYY) : 13/02/2022

Check out date (Please put in the form of DD/MM/YYYY) : 15/02/2022
Duration of stay (Days) : 2

Press ENTER to continue....

Upon coming to check in and check out, the screen will display a list of input statements.
The user will start off by inputting his check in date followed by check out date and ending
with the duration of his stay. Here, we can see that the user will check in on the 13/02/2022,
check out on 15/02/2022, and the duration of the stay is 2 days

PAYMENT AND RECEIPT
AUTOMATED RECEIPT

Full name : John Wick
Matric No. : 3455
Gender M
Course : SECV
Room No
heck in date
Check out date : 15/82/20822

Duration of stay : 2 days.

Price rate per day : RM 2
Please pay your final amount RM 4.00 at your block office

THANK YOU !! ENJOY YOUR STAY <3

Do you want to relogin? (Y = yes / N = no)
Your choice : D

After completing student registration, choosing his desired room as well as check in and
check out, the user will arrive at the payment and receipt screen. Here, an automated receipt
is displayed to show all the details of the user. Besides that, it also shows the price rate per
day and the final amount needed to be paid at a specific location. In this case, we can see
that the price rater per day is RM 2 and the amount needed to be paid is RM 4.00 at the
block office.

VIEW STUDENT DETAILS AND SORT MATRIC NUMBER

STUDENT 'S REGISTERED

No. Full name Matric Course College Registered Room No Check In Date Check Out Date Duration Payment required (RM)

John Wick 13/02/2022 15/02/2022
Lisa surihani 7/02/2022 10/02/2022
Haziq Agil 8/02/2022 11/03/2022
Rohit Jarjit 9/02/2022 13/02/2022
Siew Yuen 13/01/2022 20/01/2022

PR 2 OUTPUT ~ TERMINAL DEBUG LE

Do you want to sort the data based on ASCENDING matric no(Y/N)?
Your choice : Y

Do you want to relogin? (Y = yes / N = no)
Your choice :

This interface shows all the registered student details based on the registration made by the
students themselves. This interface is only accessible by admins or staff members. The
details are also sorted in ascending order of their matric numbers as the staff or admin were
prompted to choose whether they want it to be sorted or not. After all the processes have
finished, the system will prompt the admin whether they want to relogin or not.

STAFF SEARCH

Select the following options
. Student Registration (STUDENT ONLY)
. College Room Status [Includes room booking and payment] (STUDENT ONLY)
. View Student's booked room. (STAFF ONLY)
. Search Student's Details (BOTH CAN ACCESS THIS SECTION)
. Manage college room. (STAFF OMLY)
. View and delete student personal details. (STAFF ONLY)

Your choice :

The list is not empty!

Please enter the Student Matric Number: 3621
Matric Number search is available !!

The following student’s matric number is available !!
Full Name : Brendan Dylan

Matric No : 3021

Course : SEQV

College : KIDI

Room : 20-B1

Check In : ©1/05/2022

Check Out : @7/65/2022

Duration : 6 days

Payment : RM 12.00

The screen shows on searching a specific student’s details by key in the matric number of
the desired. Note that this feature is accessible to both target groups. This is to allow
students to double check if their details are correctly stored in the system. As for staff, they
can also navigate through the system to find the specific student’s details. Once the desired
details have been displayed, system will prompt user to the main menu to perform another
searching or select other options.

MANAGE ROOM DETAILS
VIEW AND DELETE STUDENT ROOM DETAILS

Options :

1. Delete past room details. [POP]
2. Display room details. [DISPLAY]
3. Exit

Your choice: 1
Room no - (3-A@) and its check in and check out date has been removed.

Press ENTER to continue...|]

The screen portrays a mini menu to view and delete the student room details. This particular
section is created in case the students have past booking of the rooms; the system would
preferably delete it to free some memory. When staff selects option 1, the room details at
top will be deleted and removed from the system. Staff can select option 1 multiple times
until the system prompts a message that the stack is empty.

VIEW AND DELETE STUDENT ROOM DETAILS

Options :

1. Delete past room details. [POP]
2. Display room details. [DISPLAY]
3. Exit

Your choice: 2

ROOM BOOKING WITH CHECK IN AND CHECK OUT DATES

Room Number Check In Date Check Out Date
17-B1 89/03/2022 17/06/2022
20-B1 e1/e5/2022 @7/e5/2822

Press ENTER to continue...J]

The second screen on the mini menu would be to display the remaining room details in the
system if there is any deletion of room details conducted before. As in the first screen
related to the deletion process, it is noted that room details for room 3-A0 have been
removed. This means it will not be displayed when staff wants to see the remaining room
booked in the system. The display function is important to alert the staff if there are any
past check out room dates that are yet to be removed.

MANAGE STUDENT PERSONAL DETAILS
VIEW AND DELETE STUDENT PERSONAL DETAILS

Options

1. Delete past student personal details from top. [POP]
2. Display remaining students details. [DISPLAY]

3. bxat

Your choice: ||

The screen above shows the view and delete student personal details under matricqueue
function. The system will first insert all necessary data from the other data structures to be
inserted into the queue. Once the insert data has finished, the system will ask the admin
whether they want to delete past student personal detail or to display all personal detail of
each students available and ask the admin to enter their input.

VIEW AND DELETE STUDENT PERSONAL DETAILS

Options :

1. Delete past student personal details from top. [POP]
2. Display remaining students details. [DISPLAY]

3. Bxit

Your choice: 1

Student details deleted from queue with matric number : 2011

Press ENTER to continue...]]

The screen above shows the view and delete student personal details under matricqueue
function. This is the system after an admin choose to delete a student details from the top
of the queue. The system will display the matric number of the student that is going to be

deleted and ask the admin to press enter to continue. Once the admin click enter, the student
details will be deleted.

. DEVELOPMENT ACTIVITIES

Members

presentation.

concepts to be
mentioned in
the video.
Jeevan
compiled all

the video parts.

. . . Task
Meeting Partlclpate Activity Task for each Achieved
Date in the member
. (Yes/No)
meeting
18/01/2022 | Jeevan Discuss Improvisation | Contribute Yes
Hafiy from Assignment 2 ideas into the
Brendan discussion.
20/01/2022 | Jeevan Divide tasks on Volunteer to Yes
Hafiy functions for each be responsible
Brendan member for functions
of his choice.
20/01/2022 | Jeevan Write and improvise | Contribute Yes
Hafiy the coding from ideas to fix
Brendan Assignment 2 based errors in
on the first meeting coding.
Give ideas on
where to
implement the
data structure
concepts.
21/01/2022 | Jeevan Divide tasks for Volunteer to Yes
Hafiy report writing be responsible
Brendan for parts of
report of his
choice.
25/01/2022 | Jeevan Finalize coding and Each member | Yes
Hafiy report. Assign video has respective
Brendan parts for group parts and

5. APPENDIX

.cpp coding file

//MINI PROJECT HOSTEL MANAGEMENT SYSTEM GROUP 8 SECTION 06 DATA STRUCTURE AND ALGORITHM
//1. AUM JEEVAN A/L AUM NIRANGKAR A20EC0017

//2. BRENDAN DYLAN GAMPA ANAK JOSEPH DUSIT@DUSIT A20EC0021

//3. HAFIY HAKIMI BIN SAIFUL REDZUAN A20EC0040

//LECTURER: TS. Dr. Johanna binti Ahmad

#include <iostream>
#include <string>
#include <stdio.h>
#include <ctype.h>
#include <fstream>
#include <cstdlib>
#include <iomanip>
#include <unistd.h>
#define collegelist 5
using namespace std;

//global object declaration
fstream collroom;

//function to do the partition for quick sort
int partition(int mNo[], int first, int last) {
int pivot, temp;
int loop, cutPoint, bottom, top;

pivot=mNo [first];
bottom=first;
top=1last;

loop=1;

while (loop) {
while (mNo[top]>pivot) {
top--;
}

while (mNo [bottom] <pivot) {
bottom++;

}

if (bottom<top) {
temp=mNo [bottom] ;
mNo [bottom]=mNo [top];
mNo [top]=temp;

}

else{
loop=0;
cutPoint=top;

}
}

return cutPoint;

}

//recusive function that will partition the sublist until there is no sublist left
void quickSort (int mNo[], int first, int last) {
int cut;
if (first<last) {
cut=partition (mNo, first,last);
quickSort (mNo, first, cut) ;
quickSort (mNo, cut+l, last);

}

//function to display selection menu
int optionchoose () {
int choice;

for (int i=0;1<66;1i++) {
cout<<"_";

}

cout<<endl<<endl;

cout<<"Select the following options\n"

<<"1. Student Registration (STUDENT ONLY)\n"

<<"2. College Room Status [Includes room booking and payment] (STUDENT ONLY)\n"

<<"3. View Student's booked room. (STAFF ONLY)\n"

<<"4. Search Student's Details (BOTH CAN ACCESS THIS SECTION)\n"

<<"5. Manage college room. (STAFF ONLY)\n"

<<"6. View and delete student personal details. (STAFF ONLY) "<<endl;
COUE M —mmm oo oo \n";
cout<<"Your choice :
cin>>choice;

return choice;

}

//class to save login info and verified user
class Login{
private: //private class functions
string username;
int password;
char identification;

public: //public class functions
Login () {
username = " ";
password = O;
identification = ' ';

}

void getDetails (string u, int p,char i) {
username = Uu;
password = p;
identification = 1i;

}

void SetUser (char i) {
identification = 1i;

if (toupper (identification) == 'U"') {

cout << "\nYou are verified as user login."<<endl;
}
else if (toupper (identification) 'A'){

cout << "\nYou are verified as admin login."<<endl;

}

bool FillCredentials (int p) {
if (p == password)
return true;
else
return false;

bi

//class that handles student registration for college
class RegistrationCollege{
private: //private class functions
string fname, lname, fullname;
string course,college;
char gender;
int matricNum, digit, tempmatric; //validation conducted based on tempmatric

public: //public class functions
RegistrationCollege () {

fullname=" ";
fname=" ";
lname=" ";
tempmatric = 0O;
matricNum = O;
gender = ;
course = ;
college =" ";

void studRegister (string &fname,int &matNum,string &cou,string &tempcollege,

&sizearray){ //get student da

ta

COUt<<"WELCOME TO STUDENT REGISTRATION FOR COLLEGE SECTION !"<<endl;
cout<<M——=-- -
"<<endl<<endl;
cout<<"Full name (FIRST NAME AND LAST NAME ONLY example: John Doe) : ";
getline (cin, fname) ;
getline (cin, lname) ;
fullname= fname + " " + lname;
fname=fullname;
cout<<"Matric No (PLEASE STATE LAST FOUR DIGITS ONLY) "
cin>>matricNum;
tempmatric = matricNum;
digit = 0;
while (tempmatric != 0){
tempmatric = tempmatric/10;
digit++;
}
while(digit > 4 || digit < 4){
cout<<"\nInvalid number of digits for matric number. Please re-enter
again. "<<endl<<endl;
cout<<"Matric No (PLEASE STATE LAST FOUR DIGITS ONLY) :
cin>>matricNum;
tempmatric = matricNum;
digit = 0;
while (tempmatric != 0) {
tempmatric = tempmatric/10;
digit++;
}
}
matNum = matricNum;
cout<<"Gender (M = male, F = female) "
cin>>gender;
while (gender != 'M' && gender != '"F'){
cout<<"\nInvalid gender code. Please re-enter again. "<<endl<<endl;
cout<<"Gender (M = male, F = female) :
cin>>gender;
}
cout<<"Course (Please state in the form of SECJ) "
cin>>course;
cou=course;
cout<<"College desired (KTDI,KTF,KSI,KYC and KFG only) HERA
cin>>college;
tempcollege = college;
sizearray++;
cout<<endl;
cout<<sizearray<<" student (s) registered."<<endl;
}
void RegStudOutput () { //display student data
cout<<"Full name :"<<fullname<<endl;
cout<<"Matric No. : "<<matricNum<<endl;
cout<<"Gender : "<<gender<<endl;
cout<<"Course : "<<course<<endl;
}
}i
//class that handles college room and assign it to the student registered

int

class CollegeRoom{
private: //private class functions
int roomNo, floor,available[collegelist],occupied[collegelist];
char wingBuild;
string collegeName[collegelist], roomhold;

public: //public class functions

//default constructor
CollegeRoom () {
roomNo = 0;
floor = 0;
wingBuild = ' ';
roomhold=" ";

}

//implement basic sequential search for the college
string setCollegeBuilding (string c) {

string searchColl, emptycoll = ; //means college name wanted is not
available

for(int temp = 0; temp < 5; temp++) {

if (c == collegeName[temp]) {
searchColl = c;
cout<<"\nYour desired college is available here."<<endl;
available[temp] = available[temp]-1;
occupied[temp] = occupied[temp]+1;
return searchColl;
break;

}

cout<<"\nSorry, the college you input is not in the system. Please fill in the
registration form again."<<endl;

return emptycoll;

}

//read college list from the data input
void readCollege () {
collroom.open ("collegelist.txt",ios::in);

if (!collroom) {
cout<<"Input file is not found !!"<<endl;
exit (0);

}

for (int i=0; i<5;i++){
collroom >> collegeName[i] >> available[i] >> occupied[i];

}

collroom.close();

}

//display the college data
void displayCollege () {
cout<<"\nLIST OF COLLEGE AVAILABLE"<<endl;

COUL<L M
"<<endl;
cout<<"College Name\t"
<<"Available rooms \t"
<<"Room occupied\t"<<endl;
COUE N m e e e e e
"<<endl;

for(int i=0; 1i<5; i++){
cout << collegeName[i]<<" \t\t"
<< available[i]<<"\t\t\t"
<< occupied[i] << endl<<endl;

}
//assign room number, floor and wing building

void assignroom(string &room) {
string result;

cout<<"\nROOM REGISTRATION"<<endl;

cout<<M"=-=->------—
"<<endl;

dof{

cout<<"Please choose which room number you prefer (1-30 only): ";

cin>>roomNo;

if (roomNo<1l || roomNo>30)

cout<<"\nSorry, there are only 30 rooms available for each college.";

} while (roomNo<l || roomNo>30) ;

if (roomNo>=1 && roomNo<=10) {

floor = 0;

if (roomNo>=1 && roomNo<=5) {
wingBuild = 'A'; //left wing

}else if (roomNo>=6 && roomNo<=10) {
wingBuild = 'B'; //right wing

}
}else if (roomNo>=11l && roomNo<=20) {
floor = 1;
if (roomNo>=11 && roomNo<=15) {
wingBuild = 'A'; //left wing
}else if (roomNo>=16 && roomNo<=20) {
wingBuild = 'B'; //right wing
}
}else if (roomNo>=21 && roomNo<=30) {
floor = 2;
if (roomNo>=21 && roomNo<=25) {
wingBuild = 'A'; //left wing
}else if (roomNo>=26 && roomNo<=30) {
wingBuild = 'B'; //right wing

}
room = to string(roomNo) + "-" + wingBuild + to string(floor);
roomhold=room;

cout<<"Your room no is "<<room<<endl;

cout<<"Note that the number in front is the floor level."<<endl;

if(wingBuild == 'A'")

cout<<"A = your room is on the left side of the building."<<endl;
else if (wingBuild == 'B"') {

cout<<"B = your room is on the right side of the building."<<endl;

}

} //assign the room number

void displayRoom () {
cout<<"Room No : "<< roomhold <<endl;

}

string returnroom /() {
return roomhold;
}
}i

//handles check in, check out and duration
class CheckInOut{
private: //private member functions
string tempin, tempout;
int duration, tempdur;

public: //public member functions

//default constructor
CheckInOut () {
tempin = " ";
tempout = " ";
duration = 0;

}

//return duration value
int returnduration () {
return tempdur;

//get input from user to fill in details for check in,
string &outdate,

void studCheckInOut (string &indate,

check out and duration

int &duration){ //collect data

cout<<"\nSTUDENT INFORMATION FOR CHECK IN AND CHECK OUT"<<endl;
COUE<M "<<endl;

cout<<"Check in date
cin>>indate;
tempin=indate;

cout<<"Check out date
cin>>outdate;
tempout=outdate;

cout<<"Duration of stay
cin>>duration;
tempdur=duration;

(Days)

(Please put in the form of DD/MM/YYYY) : ";

(Please put in the form of DD/MM/YYYY) : ";

cout<<M———————— - "<<endl;

}

Cout<M—m "<<endl;

//display check in, check out and duration

void displayCheckInOut () {
cout<<"Check in date "<<tempin<<endl;
cout<<"Check out date "<<tempout<<endl;

cout<<"Duration of stay

}i

//global object declaration
CheckInOut chkinout;

//handles payment
class Payment({
private: //private member functions
float finalpayment, temppay;
int rate=2; //rate per day
public: //public member functions
//default constructor
Payment () {
finalpayment=0.00;
}

//calculate payment

void calcpay(float &finalpayment) {

finalpayment=chkinout.returnduration () *rate;

temppay=finalpayment;
}

//display final payment
void displayPayment () {
cout<<"\nPrice rate per day

RM 2"<<endl;

"<<tempdur<< " days."<<endl;

cout<<"Please pay your final amount RM "<<setprecision (2)<<fixed<<temppay<<"

at your block office"<<endl;
}
}i

//global object declarations
Login temp;
RegistrationCollege regcol;
CollegeRoom colreg;

Payment pay;

//handles receipt display
class Receipt{

public: //public class functions

//display receipt
void displayPayment () {

CcOout<<"AUTOMATED RECEIPT"<<endl;

cout<<"--------—--——-————— "<<endl;

regcol .RegStudOutput () ;
colreg.displayRoom() ;
chkinout.displayCheckInOut () ;

pay.displayPayment () ;
cout<<"-----------------—-— "<<endl;
COUt<<"THANK YOU !! ENJOY YOUR STAY <3"<<endl;

}i

class StaffVview({
private: //private class functions
fstream sv;

public: //public class functions

//display all inputs of the users
void StaffViewOutput (string fullname[], int matric[], string course[], string
college[],string room[], string in[], string out[], int duration[], float payl[], int
sizearray) {
char decide;
int first = 0, last = sizearray;

sv.open ("studentregistered.txt",ios::out);

if (!'sv) {
sv <<"Data output file is not available."<<endl;
exit (0);

sv << "STUDENT'S REGISTERED"<< endl;

for (int i=0;1i<250;i++) {
sv<<" ";

}

sv<<endl;

sv <<setw (5)<<left<<"No.

<<setw (20)<<"Full name"

<<setw(1l2)<<"Matric"

(5
(
(
<<setw (8)<<"Course"
<<setw (20)<<"College Registered"
<<setw (10) <<"Room No"
<<setw(15)<<"Check In Date"
<<setw (18)<<"Check Out Date"
<<setw (10)<<"Duration"
<<setw (15)<<"Payment required (RM)"<< endl;

for (int i=0;1i<250;1i++) {
sv<<"_";
}

sv<<endl;

for (int i=0;i<sizearray;i++) {
sv <<setw (5)<<left<< (i+1)

<<setw (20)<<fullname[i]

<<setw(l2)<<matric[i]

<<setw (8)<<course[i]

<<setw (20)<<college[i]

<<setw (10)<<room[i]

<<setw(15)<<in[i]

<<setw (18)<<out[i]

<<setw (10)<<duration[i]

<<setw (15)<<setprecision (2)<<fixed<<pay[i]<<endl;

}

for(int i=0;1<250;i++) {
sv<<" _";
} _

sv<<endl;

cout<<"Do you want to sort the data based on ASCENDING matric no (Y/N)?"<<endl;
cout<<"Your choice : ";
cin>>decide;
f (toupper (decide) == 'Y') {

if (sizearray>=3) {
//display sorted array with ascending order
quickSort (matric, first, last);

"<<endl;

sv <<"Sorted matric no : ";
for (int i1=0;i<sizearray;i++) {
sv<<matric[i]<<" ";

SV <M N mm o e
"<<endl;
}
else
cout<<"Sorry! There is not enough elements to be sorted"<<endl;
}else if (toupper (decide) == 'N'") {
//display original array with no sorting
SV <<\ N mmmmm -
"<<endl;
sv<<"Unsorted matric no: ";
for (int i=0;i<sizearray;i++) {
sv<<matricli]<<" ";
}
SV <<\ Nmmmmmm oo
"<<endl;
}
sv.close();

//class Node to store data from the system
class Node{
public:
int data;
Node *next;
}i

//perform insertion and searching nodes
class List{
private:
Node *root;
Node *head;

public: //public class functions

//constructor
List (void) {

root = NULL;
}

//destructor
~List (void) {
Node *currNode = root, *nextNode = NULL;

while (currNode != NULL) {
nextNode = currNode->next;

delete currNode;
currNode = nextNode;

}

//determine if the head is empty
bool IsEmpty () {
if (root->next == head && root->data==0)
return true;
else
return false;

}

void InsertNode (Node **head, int item) {
Node *temp = new Node;
Node *ptr;

temp->data=item;
temp->next=NULL;

if (*head == NULL) {
*head = temp;
}else{
ptr= *head;
while (ptr->next != NULL)

ptr = ptr->next;
ptr->next = temp;

}

//transfer element from the array to the nodes
Node *arrayToList (int matric[],int sizearray) {

for (int i = 0; 1 < sizearray; i++){
InsertNode (&root, matric[il]);

}

//check if the list is empty or not
if (IsEmpty()) {

cout<<"\nThe list is empty!\n"<<endl;
telse(

cout<<"\nThe list is not empty!\n"<<endl;

return root;

}

//search if the matric searched is available in the data
bool FindNode (int matricchoose) {
Node *currNode = root;

while (currNode != NULL && currNode->data == matricchoose) {
currNode = currNode->next;

}

if (currNode == NULL) {
cout<<"\nMatric Number search is available !!"<<endl;
return true;
telse(
cout<<"Sorry. The matric number searched is not available !!"<<endl;

return false;

}i

//class to search the student details
class StaffSearch({
public: //public class functions

//function to search student and display student details
void SearchStudent (string fullname[], int matric[], string course[], string
college[],string room[], string in[], string out[], int duration[], float payl[], int
sizearray) {
int code, correct;
List *temp = new List;
Node *root = temp -> arrayTolist (matric, sizearray);

cout<< "Please enter the Student Matric Number: ";
cin >> code;

if (temp->FindNode (code)) {
for (int i=0;i<sizearray;i++) {

if (matric[i]==code) {
cout<<"\nThe following student's matric number is available
lI"<<endl;

cout<<"Full Name : " <<fullname[i]<<endl;
cout<<"Matric No " <<matric[i]<<endl;
cout<<"Course " <<course[i]<<endl;
cout<<"College " <<college[i]<<endl;
cout<<"Room " <<room[i]<<endl;

cout<<"Check In " <<in[i]<<endl;

cout<<"Check Out " <<out[i]<<endl;
cout<<"Duration " <<duration[i]<<" days"<<endl;
cout<<"Payment RM " <<pay[i]l<<endl;

}else(

cout<<"There are no data of the following student details in the
system."<<endl;

}

bi

//class that display room no based on the latest day and date
class RoomStack{

private:

int top=-1;

string roomdata[l0],indata[10], outdata[l10];
public:

int isFull() {
if (top==10-1)
return 1;
else
return 0;

int isEmpty () {

if (top==-1)
return 1;
else
return 0;
}
void stackpush(string roomNo[], string chkin[], string chkout[], int sizearray) {
cout<<"Transfering data. Please wait a moment...."<<endl;

sleep(2); //delay

1f (isFull()) {
cout<<"Stack is full."<<endl<<endl;
}
else{
for (int i=0; i<sizearray;i++) {
top = top+l;
roomdata[i]=roomNo[i];
indata[i] = chkin[i];
outdata[i]=chkout[i]

’

}

cout<<"\nData for roomNo, check in and checkout has been inserted."<<endl;

}

//remove room no
void stackpop () {
string temproom, tempin, tempout;

if (isEmpty ()) {
cout<<"Stack is empty."<<endl;
}
else{
cout<<"Room no - ("<< roomdatal[top] << ") and its check in and check out
date has been removed.'"<<endl;

temproom = roomdata[top];

tempin = indatal[top];
tempout = outdata[top];
top=top-1;

}

//display stack elements based on LIFO
void stackdisplay () {

if (top>=0) {
cout<<"\nROOM BOOKING WITH CHECK IN AND CHECK OUT DATES"<<endl;
cout<<M—====m—mmm "<<endl<<endl;

cout<<setw (15)<<left<<"Room Number"
<<setw (20)<<"Check In Date"
<<setw (20)<<"Check Out Date"<<endl;

for (int i=top; i>=0; i--)

cout<<setw (1l5)<<left<<roomdata[i]
<<setw(2l)<<indatal[i]
<<setw (19)<<outdata[i]<<endl;
} else
cout<<"Stack is empty"<<endl;

bi

//struct to store pointer for queue implementation
struct QNode{

public:
char cod[5];
int mat;

struct QNode *nextl;

}i

//class to view and delete student personal details
class MatricQueue({
public:

//point initializer
struct QNode *frontl = NULL;
struct QNode *rearl = NULL;
struct QNode *templ;

int val = 0;
char code[5]; //code stands for course

//function to insert element from array into nodes
void Queuelnsert (int matric[],string course[],int sizearray) {

cout<<"Transfering data. Please wait a moment...."<<endl;
sleep(2); //delay

for (int i1=0; i<sizearray; i++) {
val = matric([i];

//convert string to char
int n = course[i].length();

strcpy (code, course[i].c_str());

if (rearl == NULL) {
rearl = (struct QNode *)malloc (sizeof (struct QNode)) ;
rearl->nextl = NULL;
rearl->mat = val;

//input char into struct cod
for (int i=0; i<n;i++) {
rearl->cod[i]=code[i];

}

frontl = rearl;

}else(
templ = (struct QNode *)malloc(sizeof (struct QNode));
rearl->nextl = templ;

templ->mat = val;

//input char into struct cod

for (int i=0; i<n;i++) {
templ->cod[i]=code[i];

}

templ->nextl = NULL;
rearl = templ;

}

cout<<"All data of student details have been assigned to the
nodes."<<endl;
}
}

//function to delete element at the top based on queue concept
void QueueDelete () {
templ=frontl;

>mat;

>mat;

}

if (val == 0){
cout<<"Queue is empty"<<endl;
}
else if (frontl==NULL)
{
cout<<"Underflow"<<endl;
return;
}
else if (templ->nextl!=NULL)
{
templ=templ->nextl;
cout<<"Student details deleted from queue with matric number : "<<frontl-

cout<<endl;

free(frontl);
frontl=templ;
}
else

{

cout<<"Student details deleted from queue with matric number : "<<frontl-
cout<<endl;
free (frontl);

frontl=NULL;
rear1=NULL;

//function to display the queue element based on FIFO
void QueueDisplay () {

}i

templ=frontl;
if ((frontl==NULL) && (rearl==NULL) || val == 0)
{

cout<<"Queue is empty"<<endl;

return;

cout<<"STUDENT PERSONAL DETAILS"<<endl;
cout<<M—————— e "<<endl<<endl;
cout<<setw (20)<<left<<"Matric number "

<<setw (20)<<"Course code"<<endl;

while (templ!=NULL)
{
cout<<setw (20)<<left<<templ->mat;

for (int j=0;3<4;j++) {
cout<<templ->cod[]j];
}

cout<<endl;
templ=templ->nextl;

}

cout<<endl;

//global object declarations
Receipt receipt;

Staffview staff;

StaffSearch search;
RoomStack stack;

MatricQueue queue;

//main function

int main () {

int mNum, sizearray=0,option, password;

float paid;
char userType, confirmation;
string username, fullname, course, tempcollege, tempsearch = " ", room;

string in,out;
bool use, credentials;

(mow, o o ww
’ ’ ’
v

string fullnamearray[5]
string collegearray([5]=
String cinarray[S]:{" n’n n’n n’n n’n

(rmor,rw oW wow
’ ’ ’ ’

"y,

"y,
coutarray([5]

"},coursearray[5]={" vv,vv vv,vv vv,vv vv,vv
roomarray[5]=

AL L I R L L L

(ror,rm ooy
’

int matricarray[5]={0,0,0,0,0},durationarray[(5]={0,0,0,0,0};

float payarray([5]={0,0,0,0,0};
int i=0, k=0, duration;

colreg.readCollege() ;

do{
system ("CLS") ;

//read data input file collegelist.txt

COUut<<"WELCOME TO G8 MINI PROJECT HOSTEL MANAGEMENT SYSTEM !!"<<endl;

do{
COUE mmmmmmm oo \n"<<endl;
cout<<"Select which user? U == student/guest, A == admin"<<endl;

cout<<"Your choice : ";
cin>>userType;

if (toupper (userType) == 'U') {
temp.SetUser (toupper (userType)) ;

}

else if (toupper (userType) 'AV){
temp.SetUser (toupper (userType)) ;

}
else
cout<<"\nYou have entered the wrong input.

}while (toupper (userType) != 'U’'

cout<<"\nPlease

cout<<"Username : ";
cin>>username;

cout<<"Password : ";
cin>>password;

temp.getDetails (username, password, userType) ;
//send.Staff (username, password, usertype) ;

do{
cout<<"Please confirm again your password : ";
cin>>password;

credentials = temp.FillCredentials (password) ;

if (credentials == 0) {

cout<<"\nPassword not match with the system.

}else if (credential 1) {
cout<<"\nSuccessful login!"<<endl;

}
}while (credentials == 0);
option = optionchoose();

switch (option) {
case 1:

&& toupper (userType) !=

Please try again."<<endl;

A

enter your username and password"<<endl;

//need to set if match with the system

Please input again"<<endl;

if (toupper (userType) == 'U')
{
system ("cls");
cout<<endl;
regcol.studRegister (fullname, mNum, course, tempcollege, sizearray);
if (fullnamearray[i]==" " && coursearray[i]== " " &&

collegearray[i]==" " && matricarray[i]==0) {
fullnamearray[i]=fullname;
matricarray[i]=mNum;
coursearray[i]=course;
collegearray[i]=tempcollege;
i++;
}

while (sizearray==0) {

cout<<"\nNo students registered. Please do the registration first

before booking."<<endl;

break;

}
cout<<"\n"<<"Press ENTER to continue...";
cin.ignore () ;

cin.get () ;

cout<<flush;

telse(

}

case 2:

if (toupper (userType)

{

input is wrong.

cout<<"\nSorry. Only student login can access this section."<<endl;
break;

== ')
system ("CLS") ;

colreg.displayCollege();

tempsearch = colreg.setCollegeBuilding (tempcollege);

cout<<"\n"<<"Press ENTER to continue...";
cin.ignore () ;
cin.get ();

cout<<flush;
system ("CLS") ;

if (tempsearch==" "){ //user need to register again since their college

break;

}

colreg.assignroom (room) ;
cout<<"\n"<<"Press ENTER to continue...";
cin.ignore();

cin.get () ;

cout<<flush;
system ("CLS") ;

chkinout.studCheckInOut (in, out,duration)
cout<<"\n"<<"Press ENTER to continue...'
cin.ignore();

cin.get () ;

’
v.
’

cout<<flush;
system("CLS") ;

pay.calcpay (paid) ;
receipt.displayPayment () ;

== " " && cinarray[k]==" " && coutarrayl[k]== &&
0){

if (roomarraylk]
durationarray[k]==0 && payarrayl[k]==
roomarray[k] = room;
cinarray[k] = in;
coutarrayl[k] = out;
durationarray([k] = duration;
payarrayl[k] = paid;
k++;
}
}else(
cout<<"Sorry. Only student login can access this section."<<endl;
}
break;
case 3:

if (toupper (userType)

collegearray,

roomarray,

== 'A"){
system ("CLS") ;
staff.StaffviewOutput (fullnamearray, matricarray,

cinarray, coutarray, durationarray, payarray,

coursearray,
sizearray);

}else

cout<<"Sorry. You are not login as the staff. Please relogin again to
access this section."<<endl;
break;

case 4:
search.SearchStudent (fullnamearray, matricarray, coursearray,
collegearray, roomarray, cinarray, coutarray, durationarray, payarray, sizearray);
break;

case 5:
if (toupper (userType) == 'A') {

system ("cls") ;
stack.stackpush (roomarray, cinarray, coutarray, sizearray);

do{
system ("cls");
cout<<"VIEW AND DELETE STUDENT ROOM DETAILS"<<endl;
cout<<M—==-mmm -
"<<endl;
cout<<"\nOptions : \n"
<<"1. Delete past room details. [POP]\n"
<<"2. Display room details. [DISPLAY]\n"
<<"3. Exit"<<endl;
cout<<"Your choice: ";
cin>>option;
cout<<endl;

if (option == 1) {
stack.stackpop () ;

cout<<"\n"<<"Press ENTER to continue...";
cin.ignore () ;
cin.get () ;

cout<<flush;

}else if (option == 2) {
stack.stackdisplay () ;

cout<<"\n"<<"Press ENTER to continue...";
cin.ignore () ;
cin.get () ;

cout<<flush;
}else(
cout<<"You are about to return to the main menu."<<endl;

}
}while (option == 1 || option == 2);

}

break;

case 6:
if (toupper (userType) == 'A'"){

system("cls");
queue.Queuelnsert (matricarray,coursearray,sizearray); //include name
and course code

do{

system("cls");

cout<<"VIEW AND DELETE STUDENT PERSONAL DETAILS"<<endl;

cout<<"M-——-—--——---———

"<<endl;

cout<<"\nOptions : \n"
<<"1. Delete past student personal details from top. [POP]\n"
<<"2. Display remaining students details. [DISPLAY]\n"
<<"3. Exit"<<endl;

cout<<"Your choice: ";

cin>>option;

cout<<endl;

if (option == 1) {
queue.QueueDelete () ;

cout<<"\n"<<"Press ENTER to continue...";
cin.ignore();
cin.get () ;

cout<<flush;

}else if (option == 2){
queue.QueueDisplay () ;

cout<<"\n"<<"Press ENTER to continue...";
cin.ignore();
cin.get () ;

cout<<flush;

telse(
cout<<"You are about to return to the main menu."<<endl;

}

}while (option == 1 || option == 2);

break;

}

cout<<"\nDo you want to relogin? (Y = yes / N = no)"<<endl;
cout<<"Your choice : ";
cin>>confirmation;

system ("cls") ;

}while (toupper (confirmation) == 'Y');

return 0;

