

CLASSIFICATION

\rightarrow

Member Group

- NOOR HANNANI SYAMIMI BINTI
 MOHD SUFFIAN
 A21EC0104
- AIN BATRISYIA BINTI NORAZLAN
 A21EC0009

LEE RONG XIAN
A21EC0043

- MUHAMMAD AKMAL BIN SHAMSUL
 HAMIDI
 A21EC0057
- SITI NURKAMILAH BINTI SAIFUL
 BAHARI
 A21EC0131

Introduction

Our project will be focused on the Fourth Industrial Revolution technology, which is machine learning

The machine learning that we choose is tertiary analysis.

Tertiary analysis in bioinformatics refers to the application of advanced computer to analyze sequencing results retrieved from raw genetic data.

AWS speeds up the study of enormous genomics data by combining machine learning and supercomputing

This project provides a model that can predict whether a variant has conflicting classifications

Problem

Create a machine-learning model based on tertiary analysis to predict if a variant has a conflicting classification.

Researchers take too much time looking for the conflict in the classification of the genomic variant.

Determine whether a DNA variant causes disease

DEMAND:

- Utilize tertiary analysis to classify variants
- High performance in multiple genes and different health conditions.

Solution

Develop a low fidelity machine learning prototype

Use Amazon Web Service (AWS) Use the services provided by AWS

Predict the existence of a conflicting categorisation for a variant

AWS gives many benefits to run genomics analysis

Team Working

-gathering ideas-

Share informations

Nani

Vetted Technology | AWS Solutions Library

aws.amazon.com

https://aws.amazon.com/solutions/

AstraZeneca Case Study

Using AWS, biopharmaceutical company AstraZeneca built a cloud-based, efficient, scalable solution that processes genomics sequencing data quickly.

aws.amazon.com

https://aws.amazon.com/solutions/case-studies/astrazeneca/?did=cr_card&trk=cr_card

2:09 PM **///**

Nani

Vetted Technology | AWS Solutions Library

aws.amazon.com

https://aws.amazon.com/solutions/

2:02 PM

Genomics Tertiary Analysis and Machine Learning Using Amazon SageMaker | Implementations | AWS Solutions

Create a platform in the AWS Cloud to build machine learning models on aws.amazon.com

https://aws.amazon.com/solutions/implementations/genomics-tertiaryanalysis-and-machine-learning-using-amazon-sagemaker/ **UTM-Kamilah**

Genomics in the Cloud | Healthcare & Life Sciences | Amazon Web Services

AWS enables genomic organizations to stay agile, scale their business,

aws.amazon.com

https://aws.amazon.com/health/genomics/

Divide tasks

UTM-Kamilah

introduction problem solution team working -

7:31 PM

introduction problem solution team working - rx 7:32 PM 🕢

introduction - kamilah problem - ain solution - akmal team working - rx prototypes- nani 9:10 PM 🕢

+60 11-1541 4432 ~ainbatrisyia introduction - kamilah problem - ain solution team working - rx 8:03 PM

Meeting

-To make sure everyone understands and clear what they are doing

Set the deadline for specific tasks

- 2. Detail steps and descriptions related to the project e.g use the video, image, and log journal, team progress, brainstorm idea, and others.
- -submit by Thursday before 9.30pm (rongxian)
- Detailed descriptions include problem, solution, and team working.
- -submit by Thursday before 9.30pm (Ain)
- 4. This project must have a business process flow diagram and description.
- submit by Thursday before 9.30pm(Akmal)
- Provides low-fidelity mock-ups.
- -submit by Wednesday before 11pm (Hannani)
- 6. Video
- -submit by Saturday before 2pm (kamilah)

LOW FIDELITY MOCK-UP

Low Fidelity Mock-Up

Continue Next slide

Continue Here

End

#