

Part A

Figure 1: NAND Universal gates circuit 2. Simulate the circuit and built the truth table using the following headers.

0 0 0 0 3. Choose the level/label you want to change and change the gates to dual symbols. Hint: Draw a NAND dual symbol using NOR gate and 2 NOT gates and change NOT drawn with NAND to basic NOT. Paste the circuit (Figure 2) here. Figure 2

4. Simplified the circuit in Question 3. Paste the circuit (Figure 3) here.

Figure 3

5. The Confirmed circuit in Figure 3 is equivalent to the circuit in Figure 1 by simulating the circuit and building Truth Table 2. **Truth Table 2 OUTPUT INPUT** G В D E X A F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

figure 1: Figure 3: AB+GD X = ABCD < Figure 1

0

6. Derive the output expression from Figure 1 and show that it is equivalent to the

0

= $\overline{AB} + \overline{CD}$ = $\overline{AB} + \overline{CD}$ = figure 3 × = $\overline{AB} + \overline{CD}$ = figure 3 : figure 1 equivalent with figure 3

Part B

Design Process

Problem Situation

RULE 3:

RULE 4:

RULE 5:

A

0

0

0

Experimental Steps

B

0

0

0

0

0

CD

CD

AB

00

01

11

10

circuits.

circuits

Îo

as inputs; E1, E2, E3 and E4 as outputs.

INPUT

 \mathbf{C}

0

0

NOTE:

expressions from Figure 3.

iv) Using K-Map, get the SOP optimized form of all Boolean equation outputs. iv) Draw the circuit and use duality symbol. v) Simulate the design using Deeds Simulator. Check the results according to Truth Table.

Combinational circuit design process and simulate with Deeds Simulator.

A new digital fault diagnoses circuit is requested to be designed for analysing four bit 2's complement input binary number from sensors A, B, C, and D. Sensor A represents input MSB and sensor D represents input LSB. As shown in the following Figure 4, bit pattern analysis from input sensors A, B, C, and D will trigger four different output errors (active HIGH) of type E1, E2, E3, and E4.

i) Determine Parameter Input/Output and their relations.

ii) Variable definition (not needed here)

iii) Construct Truth Table.

Digital Fault

> Diagnose Circuit

D (A: MSB, D: LSB) Figure 4 The following rules are used to activate the error's signal type: **RULE 1**: E1 is activated if the input number is positive even and the majority of the bits is '0'. RULE 2:

E2 is activated if the input number is positive odd and the majority of the bits is '0'. E3 is activated if the input number is negative even and the majority of the E4 is activated if the input number is negative odd and the majority of the bits is '1'. The output of error signal is invalid if the input has equal bit '0' and bit '1' Positive odd is positive numbers that are odd Negative even is negative numbers that are even. Zero is considered positive even number.

Create Truth Table 3 for Digital Fault Diagnose Circuit. Use variables A, B, C and D

E1

OUTPUT

E2

0

0

E3

0

E4

0

Truth Table 3

D

0

0

0 0 0 0 0 X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 X X X 0 0 X X 0 0 X X X

1	1	0	0	X	X	X	X
1	1	0	1	0	0	0	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1
2. Us	sing K-MA	P, get mini	mized SOF	Boolean	expressions	for E1, E2,	E3 and E4
		ur K-MAP h			•	, ,	
				T-4			
				E 1			
)							
	CI						
	Al	3 00)	01	11	10	
	00) 1		0	X	1	
	01	1		X	0	X	
	11	X		0	0	0	
	1() 0		X	0	X	
			E1 :	= A'D			

10 00 AB 01 11 00 0 0 01 0 X 11 0 0 10 E2 = A'B'D

E3

01

E4 = AD

3. From the Boolean expression in the step (2), draw your final E1, E2, E3 and E4

11

10

0 X

0

paste your circuit here.

E2

CD 00 10 AB 01 11 00 0 0 0 01 0 11 X 0 E3 = ACD'**E4**

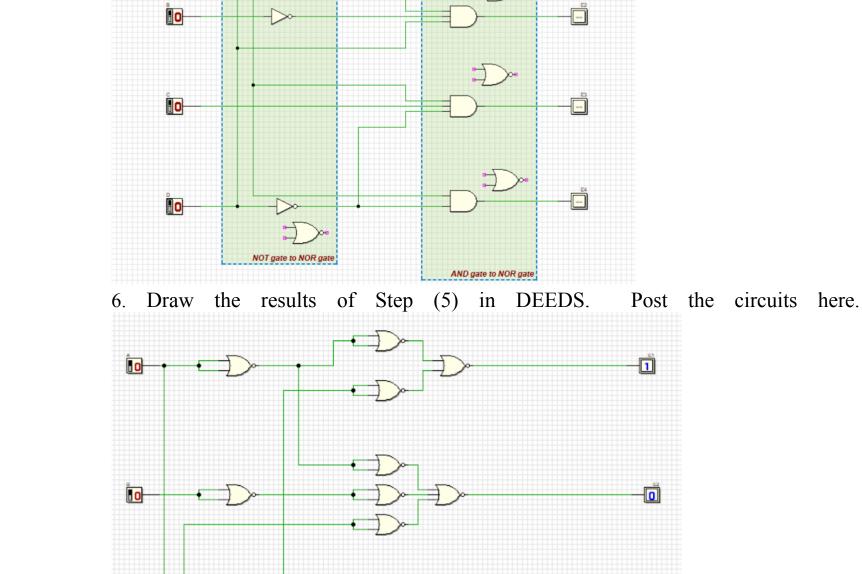
00

0 X

80 0

Use Deeds Simulator and

	nulate the I mulation re	Deeds circuit esult.		and update Table 4	the output (Truth Table	4) based on		
INPUT				OUTPUT					
A	В	C	D	E 1	E2	E3	E4		
0	0	0	0	1	0	0	0		
0	0	0	1	0	1	0	0		
0	0	1	0	1	0	0	0		
0	0	1	1	0	1	0	0		
0	1	0	0	1	0	0	0		
0	1	0	1	0	0	0	0		
0	1	1	0	1	0	1	0		
0	1	1	1	0	0	0	0		
1	0	0	0	0	0	0	0		
1	0	0	1	0	0	0	1		
1	0	1	0	0	0	0	0		
1	0	1	1	0	0	0	1		
1	1	0	0	0	0	0	0		


ÎO \supset

NOR universal

5. From the circuit in step (3), show the conversion of basic gates in E1, E2, E3 and E4

gates.

Post your workings

Truth Table 5

7. Confirm your circuit by simulating the circuits. Build Truth Table 5.

INPUT			OUTPUT				
A	В	C	D	E 1	E2	E3	E4
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	1	0	0
0	1	0	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	1	0	1	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

care(X) condition.

why are they different? Give your reasoning.

Truth Tables 4 and 5 are equal but Truth Table 3 is different as it involves the don't