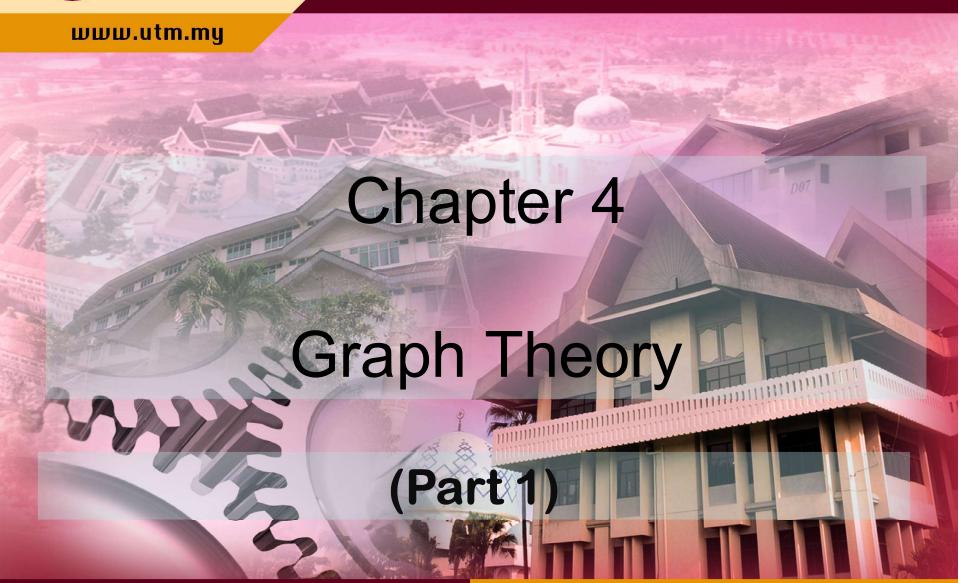


#### **INSPIRING CREATIVE AND INNOVATIVE MINDS**





#### Definition

#### www.utm.my

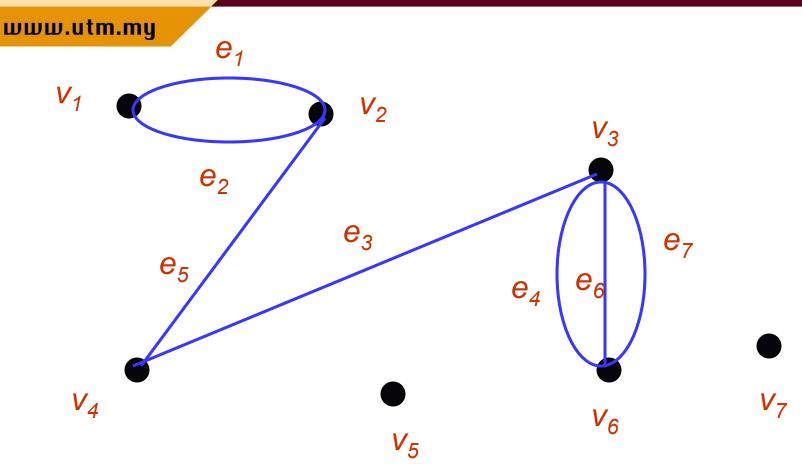
- A graph G is a triple (V, E, f), where
  - V is a finite nonempty set, called the set of vertices
  - E is a finite set (may be empty), called the set of edges
  - f is a function, called an incidence function, that assign to each edge, e∈E, a one-element subset {v} or a two-element subset {v,w}, where v and w are vertices.
- We can write G as (V,E,f) or (V,E) or simply as G.



#### யயய.utm.my

- Let,
  - $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$
  - $E=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- and f be defined by
  - $f(e_1) = f(e_2) = \{v_1, v_2\}$
  - $f(e_3) = \{v_4, v_3\}$
  - $f(e_4) = f(e_6) = f(e_7) = \{v_6, v_3\}$
  - $f(e_5) = \{v_2, v_4\}$
- Then G=(V,E,f) is a graph





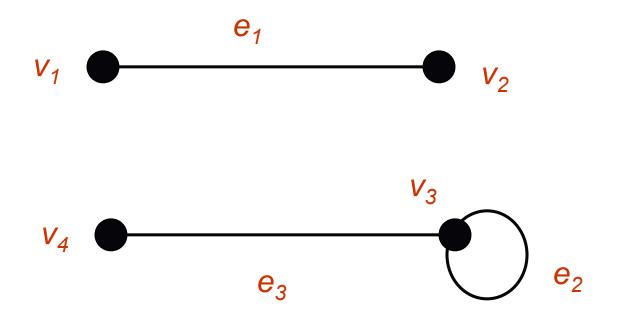


#### யயய.utm.my

- Let  $V=\{v_1, v_2, v_3, v_4\}, E=\{e_1, e_2, e_3\}$  and
  - $f(e_1)=\{v_1, v_2\}$
  - $f(e_2) = \{v_3, v_3\}$
  - $f(e_3) = \{v_3, v_4\}$
- Then G=(V,E,f) is a graph



யயய.utm.my





யயய.utm.my

# **Characteristics of Graph**



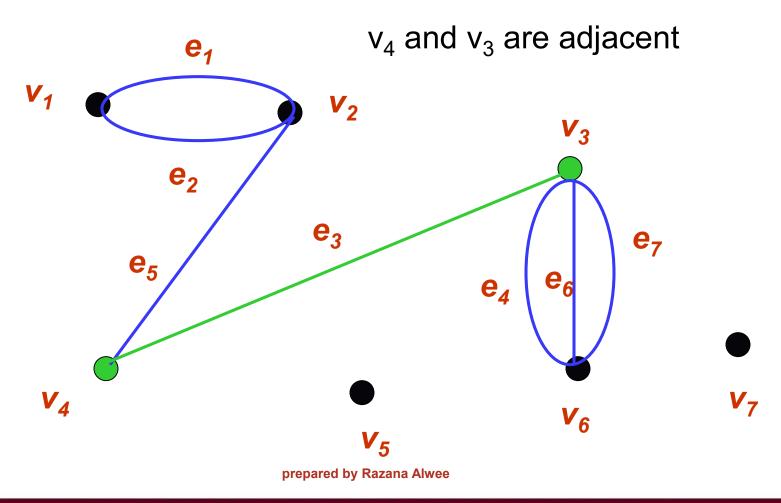
## **Adjacent Vertices**

யயய.utm.my

- An edge *e* in a graph that is associated with the pair of vertices *v* and *w* is said to be incident on *v* and *w*, and *v* and *w* are said to be incident on *e* and to be adjacent vertices.
- A vertex that is an endpoint of a loop is said to be adjacent to itself.



யயய்.utm.my





#### **Isolated Vertex**

#### யயய.utm.my

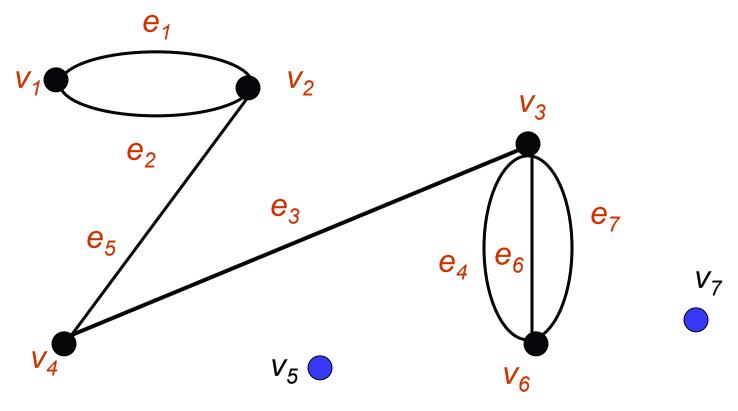
- Let G be a graph and v be a vertex in G.
- We say that v is an isolated vertex if it is not incident with any edge.

10



#### யயய.utm.my

v5 and v7 are isolated vertices.



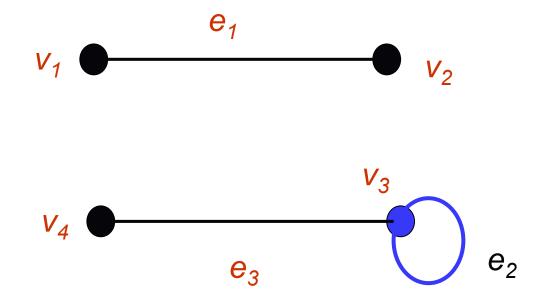


## Loop

#### யயய்.utm.my

An edge incident on a single vertex is called a loop.

**Example**: e<sub>2</sub> is a loop

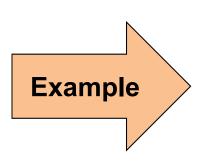




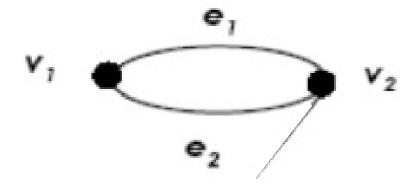
## Parallel Edges

யயய.utm.my

Two or more distinct edges with the same set of endpoints are said to be parallel.



•  $e_1$  and  $e_2$  are parallel.

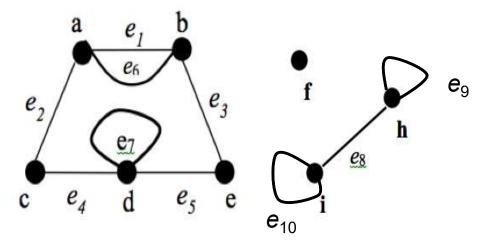




#### **Example**

யயய.utm.my

Given a graph as shown below,



- a) Write a vertex set and the edge set, and give a table showing the edgeendpoint function.
- b) Find all edges that are incident on a, all vertices that are adjacent to a, all edges that are adjacent to  $e_2$ , all loops, all parallel edges, all vertices that are adjacent to themselves and all isolated vertices.



## **Example 1 - Solution**

#### **Solution:**

a) Vertex set,  $V = \{a, b, c, d, e, f, i, h\}$  and the set of edges,  $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ 

| Edge       | Endpoints               |
|------------|-------------------------|
| £1         | {a, b}                  |
| €2         | {a, c}                  |
| <b>e</b> 3 | { <b>b</b> , <b>e</b> } |
| £4         | { <b>c</b> , <b>d</b> } |
| es.        | { <b>d</b> , <b>e</b> } |
| <b>e</b> 6 | {a, b}                  |
| <b>e</b> 7 | { <b>d</b> }            |
| es         | { <b>i</b> , <b>h</b> } |
| <u>e9</u>  | {h}                     |
| e10        | (i)                     |



#### யயய்.utm.my

b)

```
incident on a, e1, e2, e6 adjacent to a, c, b adjacent to e_2, e1, e4, e6 loops, e7, e9, e10 parallel edges, e1, e6 adjacent to themselves, i, h, d isolated vertices,
```



யயய.utm.my

# The Concept of Degree



## Degree of a vertex

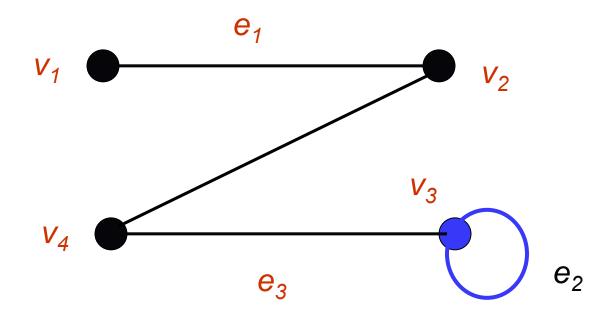
#### யயய.utm.my

- Let G be a graph and v be a vertex of G.
- The degree of v, written deg(v) or d(v) is the number of edges incident with v.
- Each loop on a vertex v contributes 2 to the degree of v.



#### யயய்.utm.my

 $\deg(v_1) = 1$ ;  $\deg(v_2) = 2$ ;  $\deg(v_3) = 3$ ;  $\deg(v_4) = 2$ 

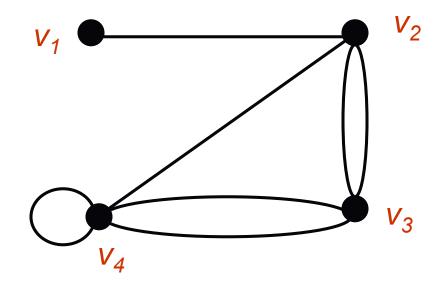




## exercise

#### யயய.utm.my

Find the degree of each vertex in the graph.

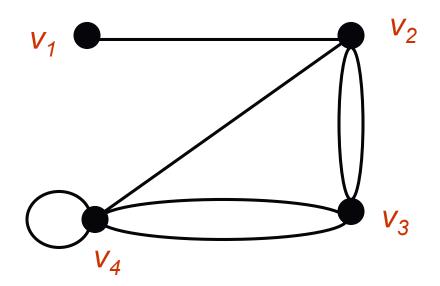




### solution

ա<mark>աա.utm.my</mark>

Find the degree of each vertex in the graph.



Solution:  $deg(v_1) = 1$ ;  $deg(v_2) = 4$ ;  $deg(v_3) = 4$ ;  $deg(v_4) = 5$ 



யயய.utm.my

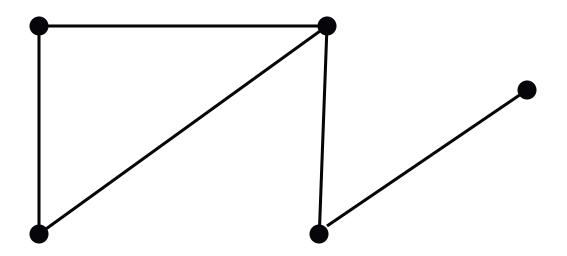
# **Types of Graphs**



## Simple Graphs

யயய.utm.my

- A graph G is called a simple graph if G does not contain any parallel edges and any loops.
- Example

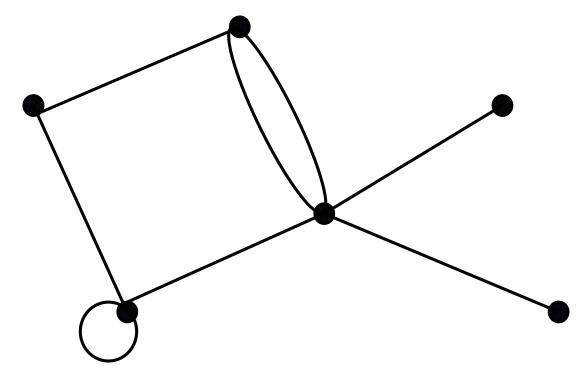




## **Connected Graph**

யயய.utm.my

- A graph G is connected if given any vertices v and w in G, there is a path from v to w.
- Example:

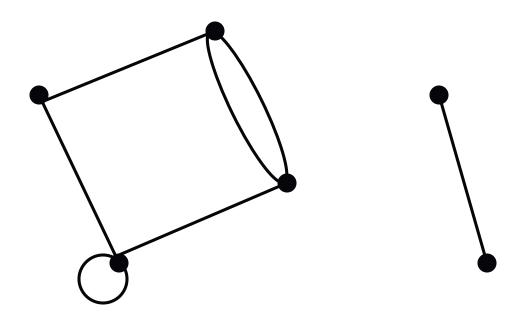


prepared by Razana Alwee



யயய.utm.my

not connected





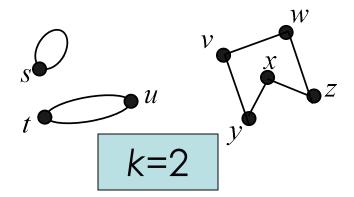
## Regular Graphs

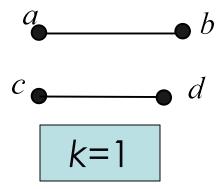
யயய.utm.my

- Let G be a graph and k be a nonnegative integer.
- G is called a k-regular graph if the degree of each vertex of G is k.



யயய.utm.my



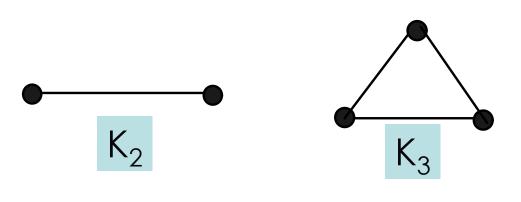


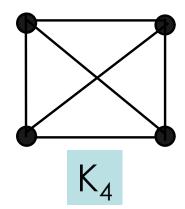


## Complete Graph

யயய.utm.my

- A simple graph with n vertices in which there is an edge between every pair of distinct vertices is called a complete graph on n vertices.
- This is denoted by  $K_n$ .
- Example







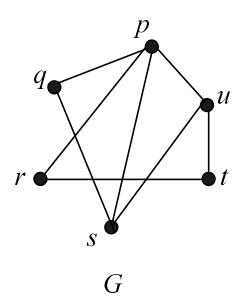
## Subgraph

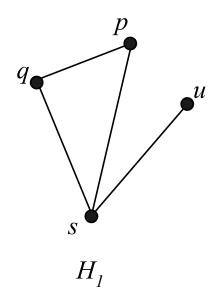
#### யயய.utm.my

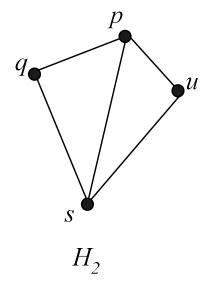
- Let G=(V,E) be a graph.
- = H=(U,D) is a subgraph of G if
  - *U*⊆ *V* and *D*⊆ *E*
  - for every edge e∈D, if e is incident on v and w, then v, w∈ V.



யயய.utm.my









யயய்.utm.my

## **Graph Representation**



# Matrix Representation of a Graph

www.utm.my

- To write programs that process and manipulate graphs, the graphs must be stored, that is, represented in computer memory.
- A graph can be represented (in computer memory) in several ways.
- 2-dimensional array: adjacency matrix and incidence matrix.



## Adjacency Matrices

#### யயய.utm.my

- Let G be a graph with n vertices.
- The adjacency matrix,  $A_G$  is an  $n \times n$  matrix  $[a_{ij}]$  such that,

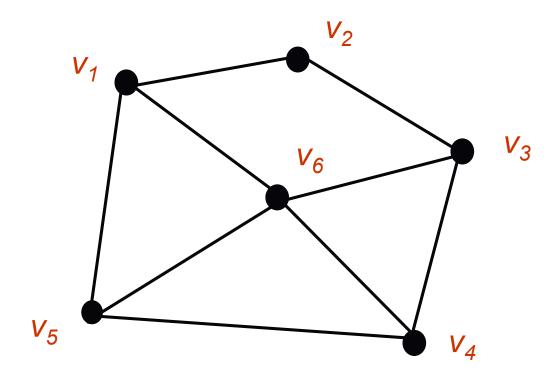
 $a_{ij}$ = the number of edges from  $v_i$  to  $v_j$ , {undirected G} or,

 $a_{ij}$ = the number of arrows from  $v_i$  to  $v_j$ , {directed G}

for all i, j = 1, 2, ...., n.

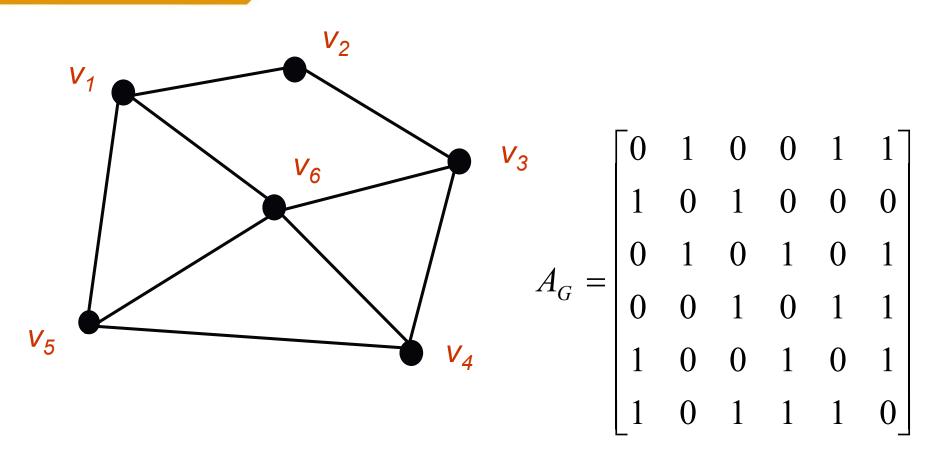


#### யயய.utm.my



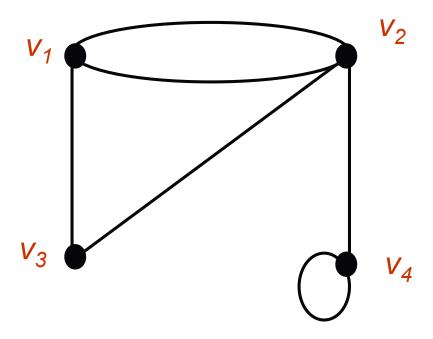


#### யயய்.utm.my



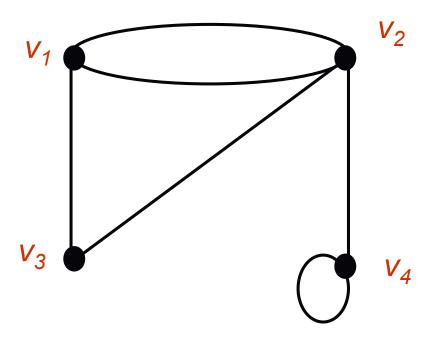


யயய.utm.my





யயய.utm.my



$$A_G = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$



யயய.utm.my

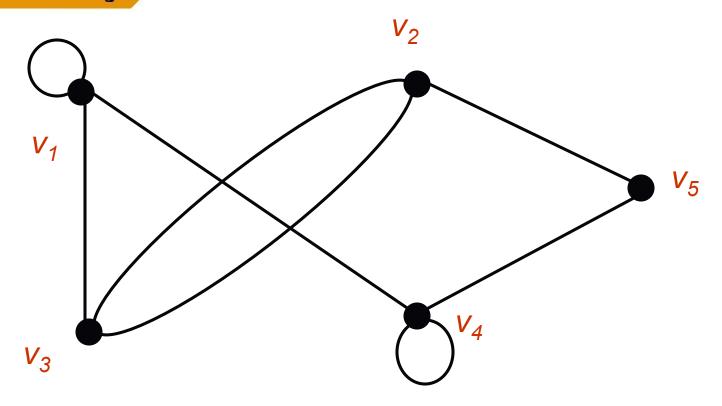
$$A_G = egin{bmatrix} 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 2 & 0 & 1 \ 1 & 2 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

prepared by Razana Alwee

38



யயய.utm.my





## **Adjacency Matrices**

யயய.utm.my

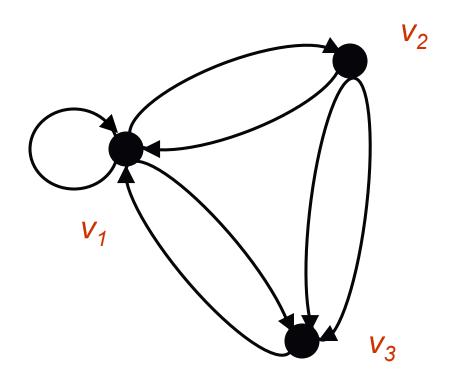
Notice that the matrix  $A_G$  is a **symmetric matrix** if it is representing an undirected graph, where

$$a_{ij} = a_{ji}$$

If G is a directed graph (digraph), then A<sub>G</sub> need not be a symmetric matrix.



யயய.utm.my



prepared by Razana Alwee

41



## **Incidence Matrices**

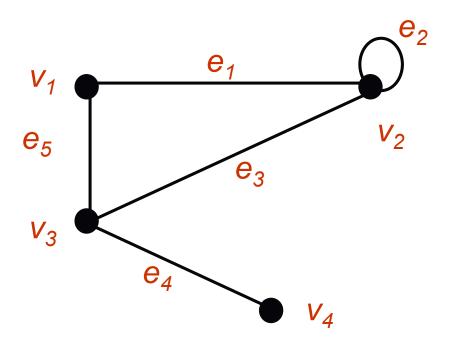
#### யயய.utm.my

- Let G be a graph with n vertices and m edges.
- The incidence matrix  $I_G$  is an  $n \times m$  matrix  $[a_{ij}]$  such that,

$$a_{ij} = \begin{cases} 0 & \text{if } v_i \text{ is not an end vertex of } e_j, \\ 1 & \text{if } v_i \text{ is an end vertex of } e_j, \text{ but } e_j \text{ is not a loop} \\ 2 & \text{if } e_j \text{ is a loop at } v_i \end{cases}$$

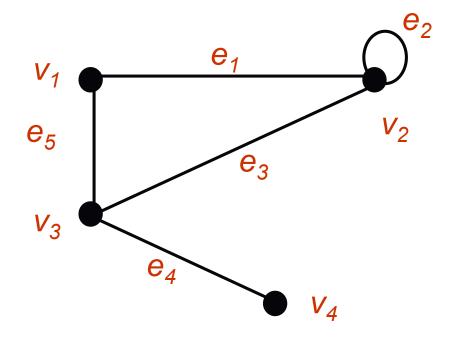


யயய.utm.my





யயய.utm.my



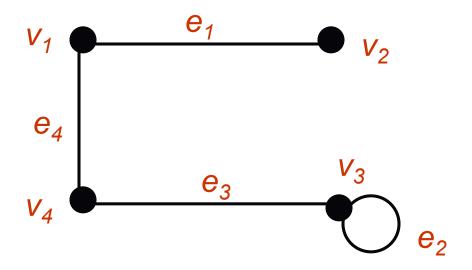
Notice that the sum of the *i*th row is the degree of v<sub>i</sub>



## exercise

#### யயய்.utm.my

Find the adjacency matrix and the incidence matrix of the graph.





## Exercise Past Year 2015/2016

யயய்.utm.my

A cat show is being judged from pictures of the cats. The judges would like to see pictures of the following pairs of cats next to each other for their final decision: Fifi and Putih, Fifi and Suri, Fifi and Bob, Bob and Cheta, Bob and Didi, Bob and Suri, Cheta and Didi, Didi and Suri, Didi and Putih, Suri and Putih, Putih and Jeep, Jeep and Didi.

Draw a graph modeling this situation.

(3 marks)



# Exercise Past Year 2015/2016

#### யயய்.utm.my

Given a graph as shown in Figure 1.

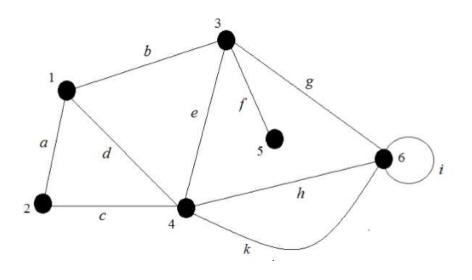


Figure 1

i. Find the incidence matrix of the graph.

(4 marks)

ii. Find the adjacency matrix of the graph.

(3 marks)

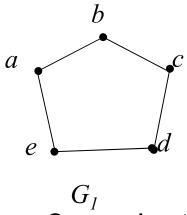


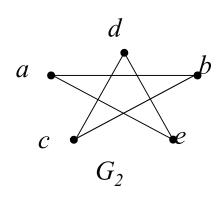
யயய.utm.my

## Isomorphisms



யயய.utm.my





- Are these 2 graphs the same?
- When we say that 2 graphs are the same mean they are isomorphic to each other.



யயய.utm.my

Graphs G<sub>1</sub> and G<sub>2</sub> are isomorphic if there is a one-to-one, onto function f from the vertices of G<sub>1</sub> to the vertices of G<sub>2</sub>

and

a one-to-one, onto function g from the edges of  $G_1$  to the edges of  $G_2$ 



#### யயய.utm.my

- An edge e is incident on v and w in  $G_1$  if and only if the edge g(e) is incident on f(v) and f(w) in  $G_2$ .
- The pair of functions f and g is called an isomorphism of G<sub>1</sub> onto G<sub>2</sub>.
- Graphs G<sub>1</sub> and G<sub>2</sub> are isomorphic if and only if for some ordering of their vertices, their adjacency matrices are equal.

prepared by Razana Alwee

51



## **Definition**

www.utm.my

Let  $G = \{V, E\}$  and  $G' = \{V', E'\}$  be graphs. G and G' are said to be isomorphic if there exist a pair of functions  $f: V \to V'$  and  $g: E \to E'$  such that f associates each element in V with exactly one element in V' and vice versa; g associates each element in E with exactly one element in E' and vice versa, and for each  $v \in V$ , and each  $e \in E$ , if v is an endpoint of the edge e, then f(v) is an endpoint of the edge g(e).



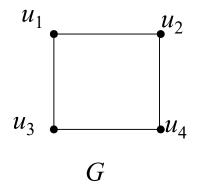
#### யயய.utm.my

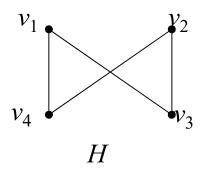
- ◆ If two graphs is isomorphic, they must have:
  - the same number of vertices and edges,
  - the same degrees for corresponding vertices,
  - the same number of connected components,
  - the same number of loops and parallel edges,
  - both graphs are connected or both graph are not connected,
  - pairs of connected vertices must have the corresponding pair of vertices connected.
- In general, it is easier to prove two graphs are not isomorphic by proving that one of the above properties fails.



யயய்.utm.my

Determine whether G is isomorphic to H.





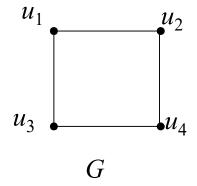
prepared by Razana Alwee

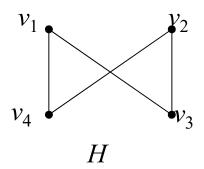
54



www.utm.my

Both graphs are simple and have the same number of vertices and the same number of edges.

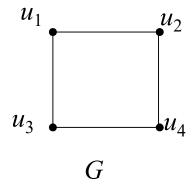


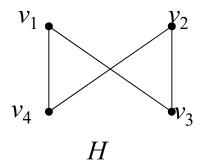




#### யயய்.utm.my

All the vertices of both graphs have degree 2.



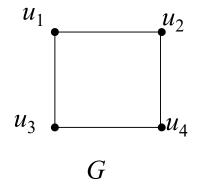


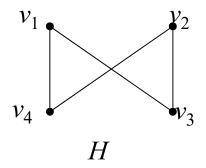


#### யயய்.utm.my

Define  $f: U \rightarrow V$ , where  $U=\{u_1, u_2, u_3, u_4\}$  and  $V=\{v_1, v_2, v_3, v_4\}$ 

$$f(u_1)=v_1$$
,  $f(u_2)=v_4$ ,  $f(u_3)=v_3$ ,  $f(u_4)=v_2$ 







#### யயய.utm.my

To verify whether G and H are isomorphic, we examine the adjacency matrix  $A_G$  with rows and columns labeled in the order  $u_1, u_2, u_3, u_4$  and

the adjacency matrix  $A_H$  with rows and columns labeled in the order  $v_1$ ,  $v_4$ ,  $v_3$ ,  $v_2$ .

#### யயய்.utm.my

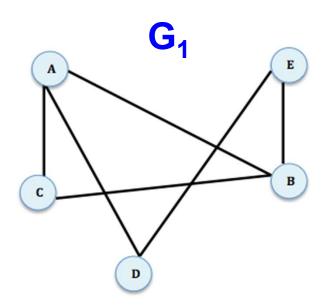
 $A_G$  and  $A_H$  are the same, G and H are isomorphic.

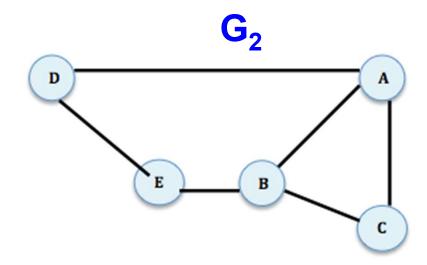


## Exercise

யயய.utm.my

Q: Show that the following two graphs are isomorphic.





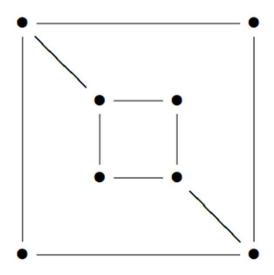


## Exercise

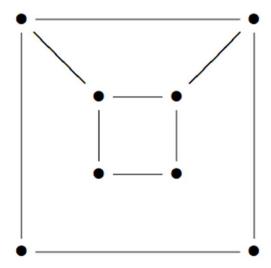
யயய.utm.my

## Q: Is these two graphs are isomorphic?

G:



H:



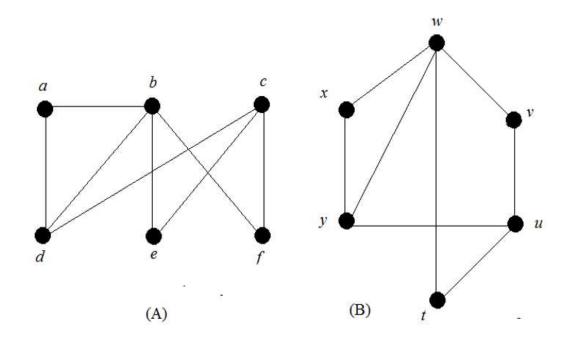


# Exercise Past Year 2015/2016

#### யயய்.utm.my

Determine whether the graphs in Figure 2 (A and B) are isomorphic. If the graphs are isomorphic, find their adjacency matrices; otherwise, give an invariant that the graphs do not share.

(6 marks)





யயய.utm.my

# Trails, Paths & Circuits



## **Term and Description**

#### யயய.utm.my

 A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. Thus a walk has the form

$$(v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n)$$

where the v's represent vertices, the e's represent edges,  $v = v_0$ ,  $w = v_n$ , and for i = 1, 2, ..., n.  $v_{i-1}$  and  $v_i$  are the endpoints of  $e_i$ .

- A trivial walk from v to w consist of the single vertex v. The walk contains zero edges (has length zero)
- The length of a walk is the number of edges it has.



## Term and Description (cont.)

#### யயய.utm.my

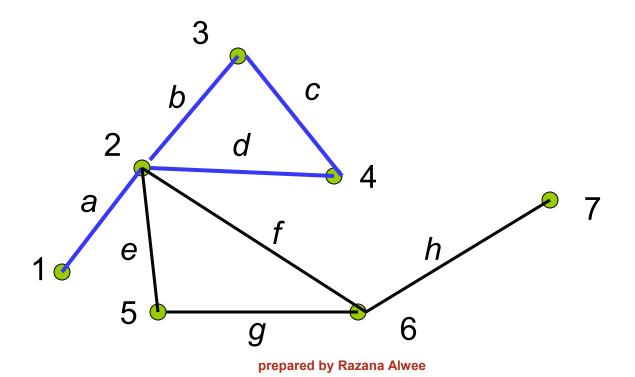
- A trail from v to w is a walk from v to w that does not contain a repeated edge.
- A path from v to w is a trail from v to w that does not contain a repeated vertex.
- A closed walk is a walk that start and ends at the same vertex.
- A circuit/cycle is a closed walk that contains at least one edge and does not contain a repeated edge.
- A simple circuit is a circuit that does not have any other repeated vertex except the first and the last.

#### INSPIRING CREATIVE AND INNOVATIVE MINDS



#### யயய்.utm.my

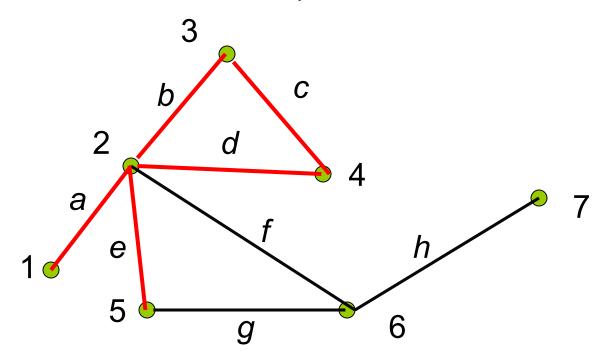
(1, a, 2, b, 3, c, 4, d, 2) is a walk of length 4 from vertex 1 to vertex 2.





#### யயய்.utm.my

• (1, a, 2, b, 3, c, 4, d, 2, e, 5) is a trail.



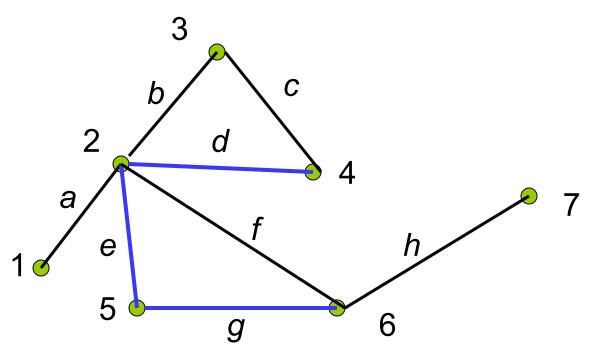
#### Note:

Trail: No repeated edge (can repeat vertex).



#### யயய்.utm.my

(6, g, 5, e, 2, d, 4) is a path.



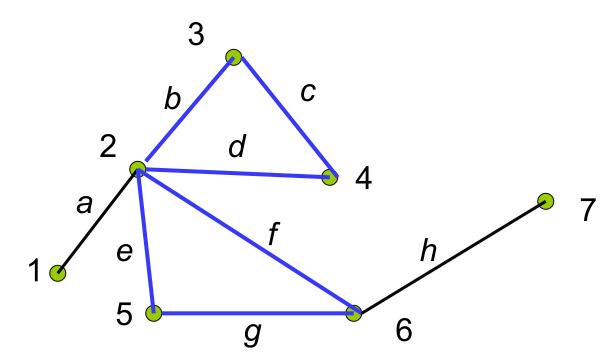
#### Note:

Path: No repeated vertex and edge.



#### யயய்.utm.my

(2, f, 6, g, 5, e, 2, d, 4, c, 3, b, 2) is a circuit/cycle.

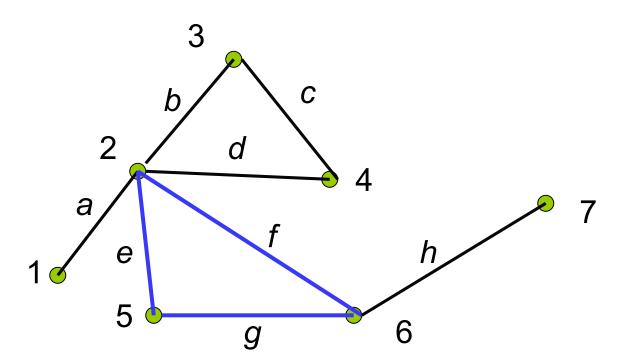


Note: circuit  $\rightarrow$  start and end at same vertex, no repeated edge.



#### யயய்.utm.my

(5, g, 6, f, 2, e, 5) is a simple circuit.

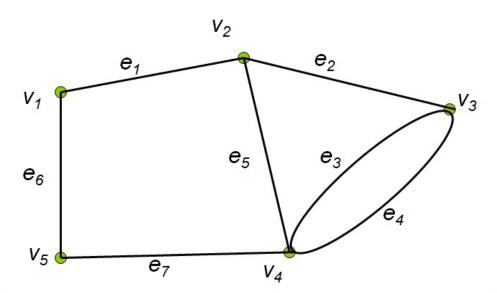


Note: Simple circuit →start and end at same vertex, no repeated edge or vertex except for the start and end vertex.



### exercise

- Tell whether the following is either a walk, trail, path, circuit, simple circuit, closed walk or none of these.
  - $(v_1, e_1, v_2)$
  - $(v_2, e_2, v_3, e_3, v_4, e_4, v_3)$
  - $(v_4, e_7, v_5, e_6, v_1, e_1, v_2, e_2, v_3, e_3, v_4)$
  - $(v_4, e_4, v_3, e_3, v_4, e_5, v_2, e_1, v_1, e_6, v_5, e_7, v_4)$





யயய.utm.my

## **Euler Trail & Circuit**



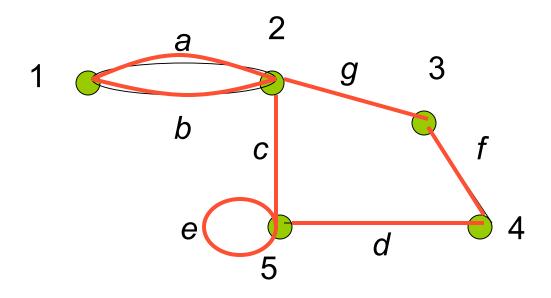
#### **Euler Circuits**

#### www.utm.my

- A circuit in a graph that includes all the edges of the graph is called an Euler circuit.
- Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and every edges of G. That is, an Euler circuit for G is a sequence of adjacent vertices and edges in G that has at least one edges, starts and ends at the same vertex, uses every vertex of G at least once, and uses every edge of G exactly once.



யயய்.utm.my



(**1**, *a*, 2, *c*, 5, *e*, 5, *d*, 4, *f*, 3, *g*, 2, *b*, **1**) is an Euler circuit



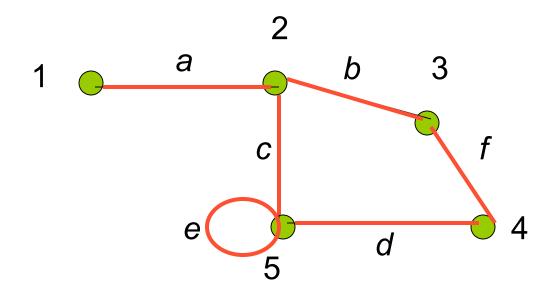
#### **Euler Trail**

#### www.utm.my

- A trail from v to w (v≠w) with no repeated edges is called an Euler trail if it contains all the edges and all the vertices.
- Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from v to w is a sequence of adjacent vertices and edges that starts at v and ends at w, passes through every **vertex** of G at least once, and traverses every **edge** of G exactly once.



யயய்.utm.my



(1, a, 2, c, 5, e, 5, d, 4, f, 3, b, 2) is an Euler trail



#### Theorem

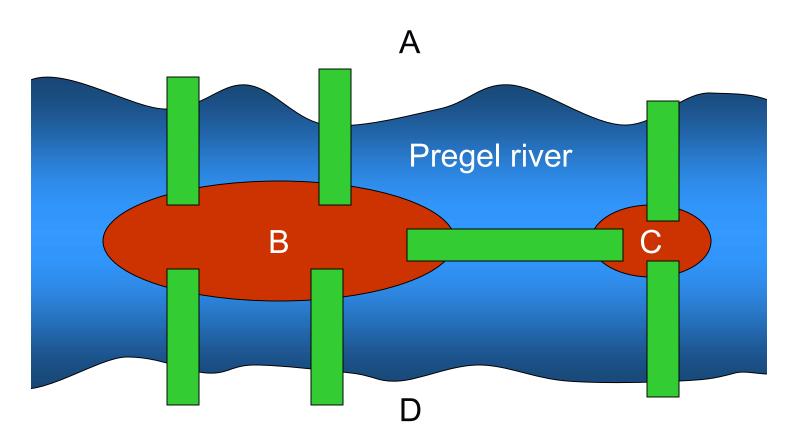
யயய.utm.my

- If G is a connected graph and every vertex has even degree, then G has an Euler circuit.
- A graph has an Euler trail from v to w (v≠w) if and only if it is connected and v and w are the only vertices having odd degree.



#### Königsberg Bridge Problem

யயய.utm.my



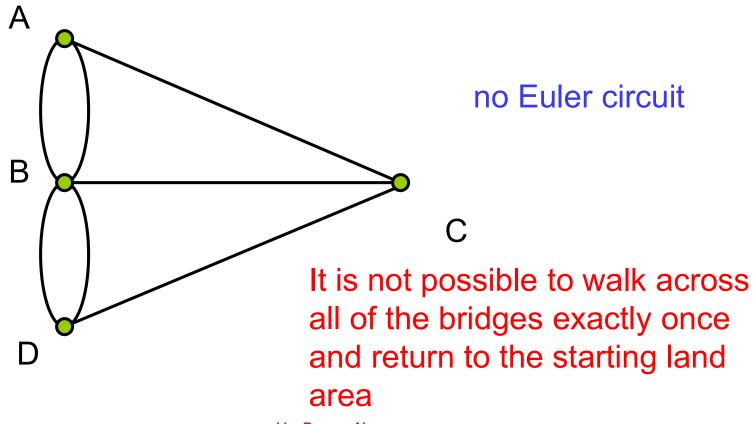
Starting at one land area, is it possible to walk across all of the bridges exactly once and return to the starting land area?



#### Königsberg Bridge Problem

யயய.utm.my

Graph of the Königsberg Bridge Problem

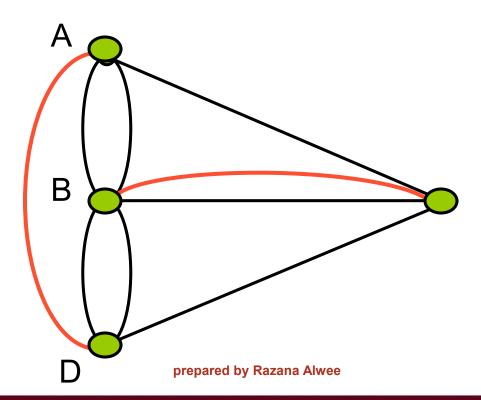




#### Königsberg Bridge Problem

யயய.utm.my

 Since 1736, two additional bridges have been constructed on the Pregel river.

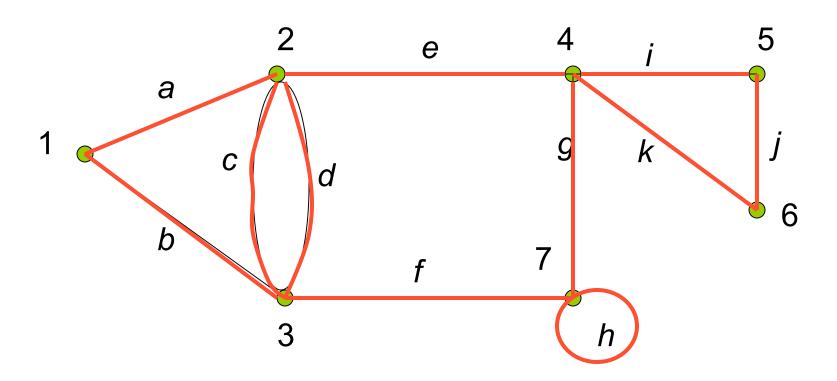


80



யயய.utm.my

| Vertex | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|--------|---|---|---|---|---|---|---|
| Degree | 2 | 4 | 4 | 4 | 2 | 2 | 4 |

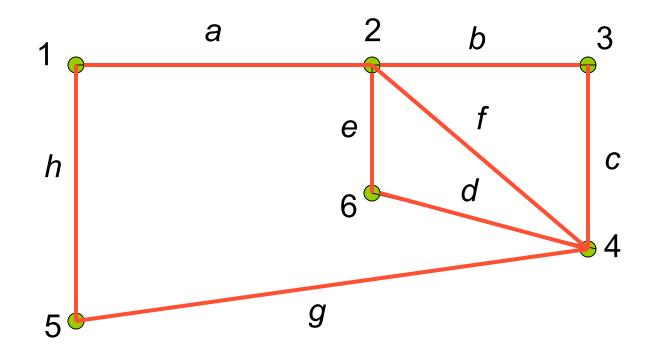


#### This graph has an Euler circuit



யயய.utm.my

| Vertex | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| Degree | 2 | 4 | 2 | 4 | 2 | 2 |

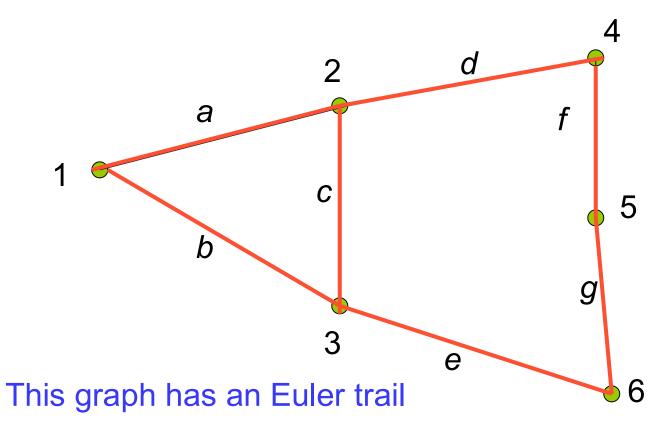


#### This graph has an Euler circuit



யயய்.utm.my

| Vertex | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| Degree | 2 | 3 | 3 | 2 | 2 | 2 |

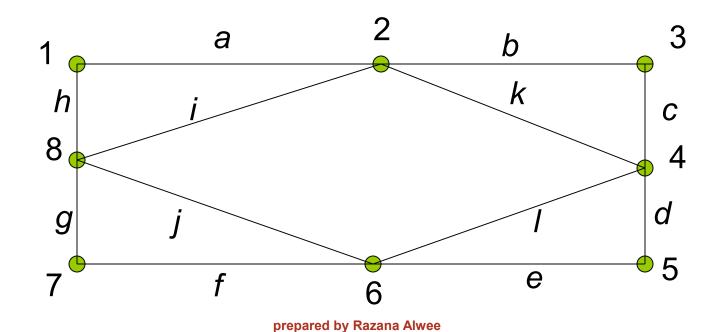




#### exercise

#### யயய.utm.my

Decide whether the graph has an Euler circuit. If the graph has an Euler circuit, exhibit one.

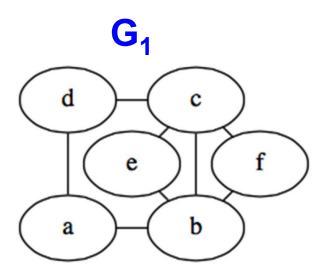


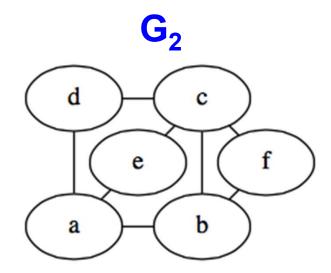


#### exercise

www.utm.my

Q: Which of the following graphs has Euler circuit? Justify your answer.







## Exercise Past Year 2015/2016

#### யயய்.utm.my

Determine whether the graph in Figure 3 has an Euler cycle or Euler path. If the graph has an Euler cycle or Euler path, exhibit one; otherwise, give an argument that shows there is no Euler path.

(4 marks)

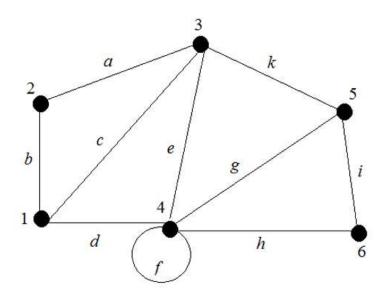


Figure 3



யயய.utm.my

## **Hamilton Circuits**



#### Hamiltonian Circuit

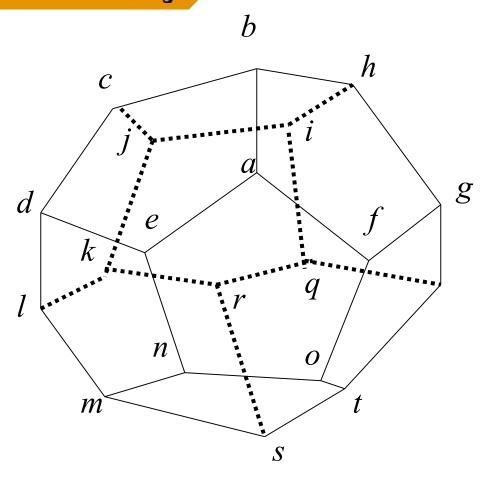
www.utm.my

- A circuit in a graph G is called a Hamiltonian circuit if it contains each vertex of G.
- Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of G (but doesn't need to include all edges). That is, a Hamiltonian circuit for G is a sequence of adjacent vertices and distinct edges in which every vertex of G appears exactly once, except for the first and the last, which are the same.



## Around the world game

யயய.utm.my

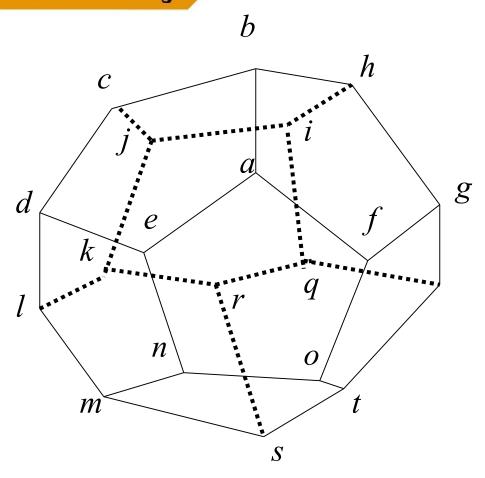


Sir William Rowan Hamilton marketed a puzzle in the mid-1800s in the form of dedocahedron



## Around the world game

யயய.utm.my



Each corner bore the name of a city

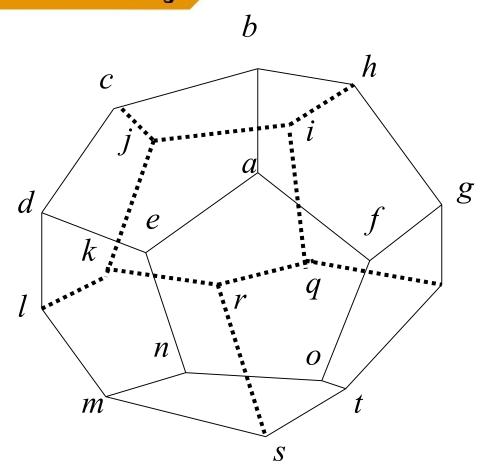
prepared by Razana Alwee

90



#### Around the world game

யயய.utm.my

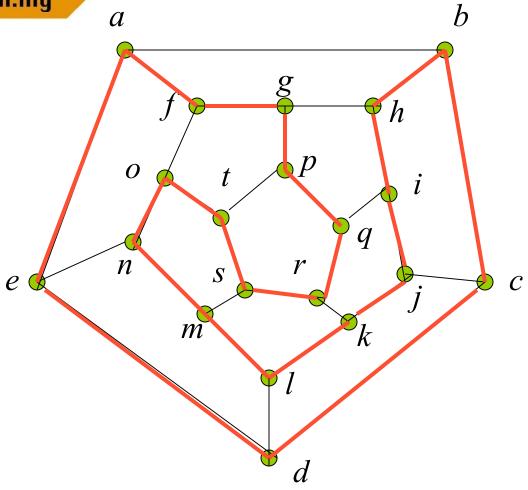


The problem was to start at any city, travel along the edges, visit each city exactly one time and return to the initial city



## The graph

யயய.utm.my



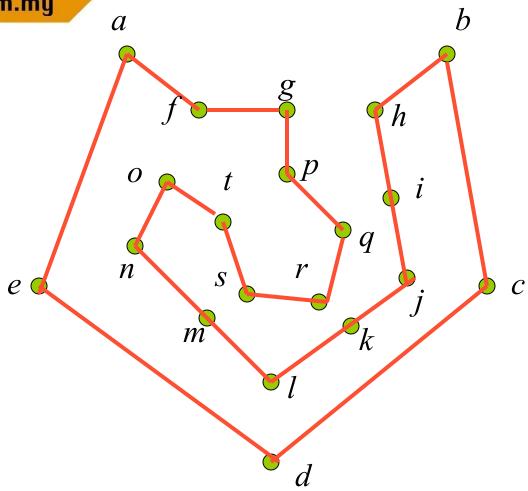
prepared by Razana Alwee

92



#### Hamiltonian Circuit

யயய்.utm.my

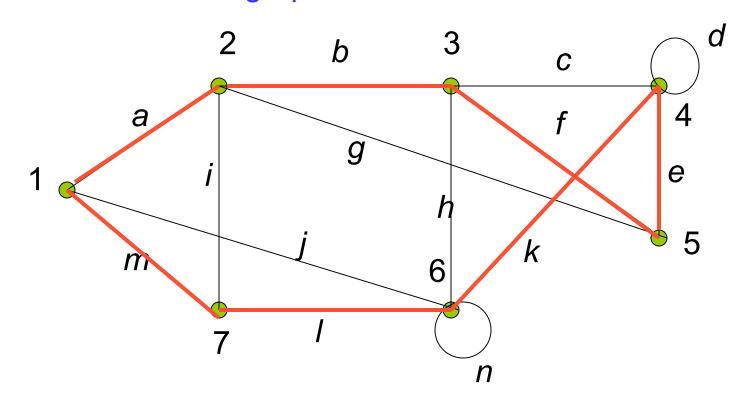


a-f-g-p-q-r-s-t-o-n-m-l-k-j-i-h-b-c-d-e-a
INSPIRING CREATIVE AND INNOVATIVE MINDS



யயய்.utm.my

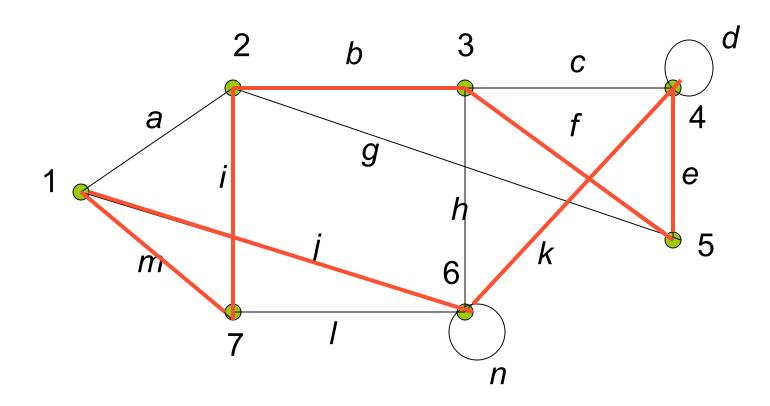
#### This graph has a Hamiltonian circuit



1-a-2-b-3-f-5-e-4-k-6-I-7-m-1



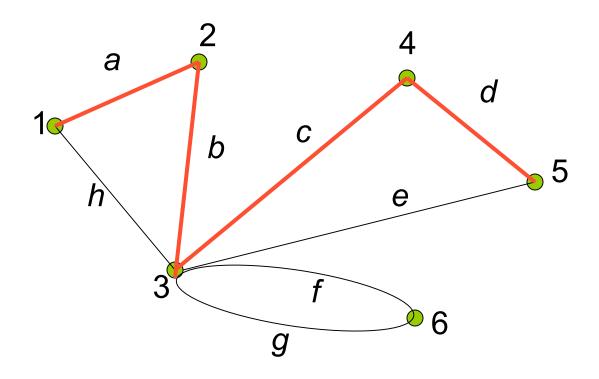
யயய்.utm.my



1-j-6-k-4-e-5-f-3-b-2-i-7-m-1



யயய.utm.my

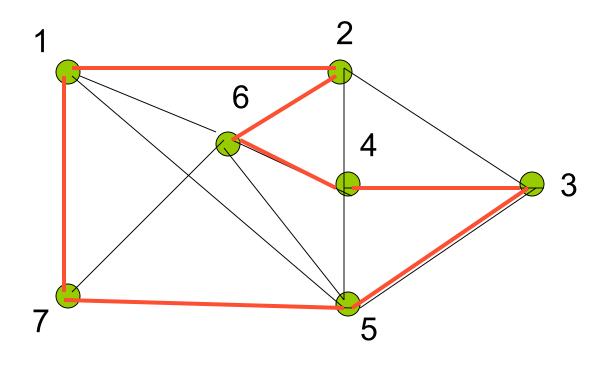


no Hamiltonion circuit



யயய.utm.my

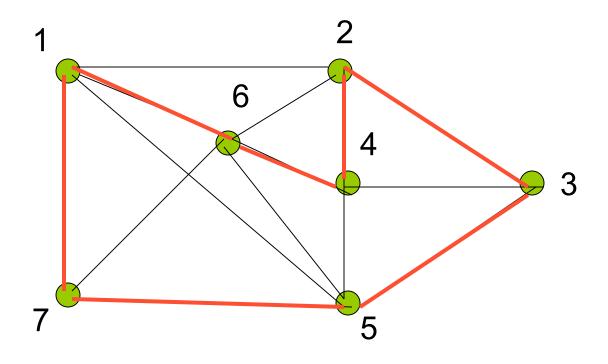
## This graph has a Hamiltonian circuit



1-2-6-4-3-5-7-1



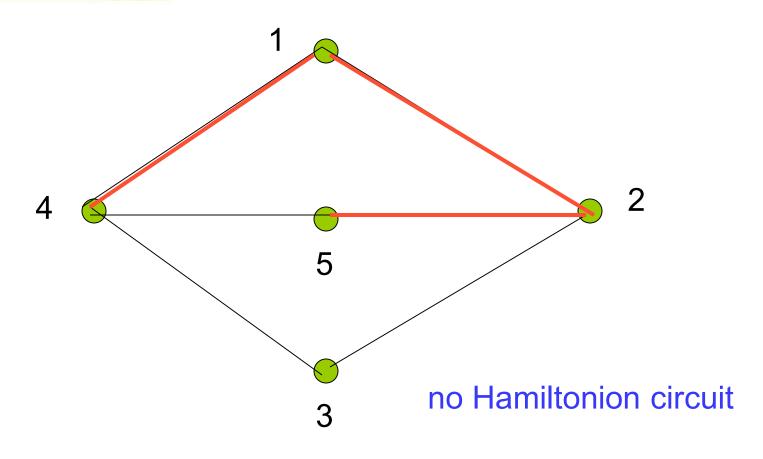
யயய.utm.my



1-6-4-2-3-5-7-1



யயய.utm.my



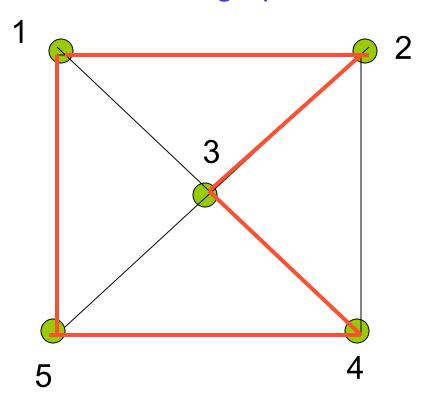
prepared by Razana Alwee

99



யயய்.utm.my

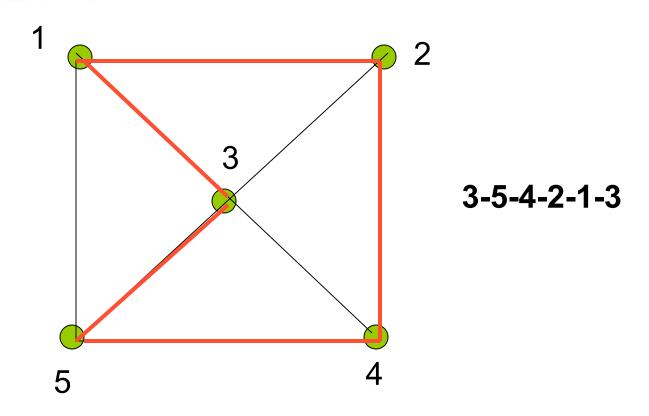
#### This graph has a Hamiltonian circuit



1-2-3-4-5-1



#### யயய.utm.my

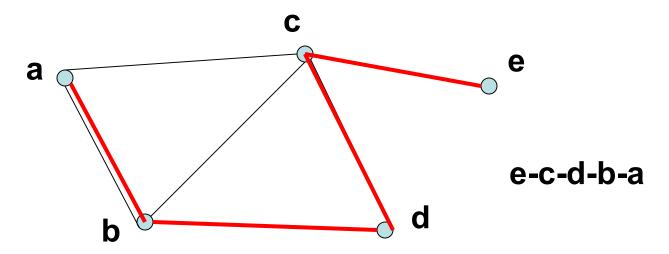




#### Hamiltonian Path

#### யயய.utm.my

- A path in a graph G is called a Hamiltonian path if it contains each vertex of G.
- Example:

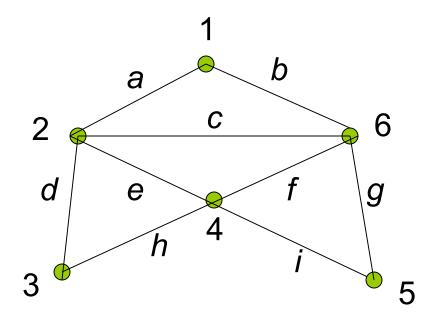




#### exercise

#### யயய.utm.my

Find a Hamiltonian circuit in this graph.





# Exercise Past Year 2015/2016

யயய்.utm.my

Determine whether the graph in Figure 4 has an Hamiltonian cycle. If yes, exhibit one.

(3 marks)

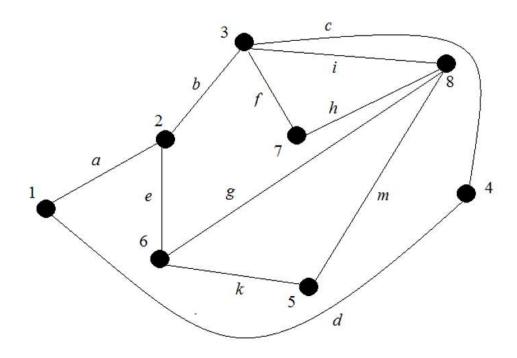


Figure 4