

INSPIRING CREATIVE AND INNOVATIVE MINDS

யயய.utm.my

- In computer science, we study different types of computer languages, such as Basic, Pascal, and C++.
- We will discuss a type of a language that can be recognized by special types of machines.

யயய.utm.my

A deterministic finite automaton (pl. automata) is a mathematical model of a machine that accepts languages of some alphabet.

யயய.utm.my

Deterministic Finite Automaton is a quintuple

 $M = \{ S, I, q_0, f_s, F \}$ where,

S is a finite nonempty set of states

I is the input alphabet (a finite nonempty set of symbols)

q₀ is the initial state

f_s is the state transition function

F is the set of final states, subset of S.

யயய.utm.my

Let M={ $\{q_0,q_1,q_2\}$, $\{0,1\}$, q_0 , f_s , $\{q_2\}$ } where f_s is defined as follows:

$$f_s(q_0,0) = q_1, \quad f_s(q_1,1) = q_2$$

 $f_s(q_0,1) = q_0, \quad f_s(q_2,0) = q_0$
 $f_s(q_1,0) = q_2, \quad f_s(q_2,1) = q_1$

Note that for M:

$$S=\{q_0,q_1,q_2\}$$
, $I=\{0,1\}$, $F=\{q_2\}$
 q_0 is the initial state

யயய.utm.my

The state transition function of a DFA is often described by means of a table, called a transition table.

f _s	0	1
q_0	q_1	q_0
q_1	q_2	q_2
q_2	q_0	q_1

யயய.utm.my

The transition diagram of this DFA is,

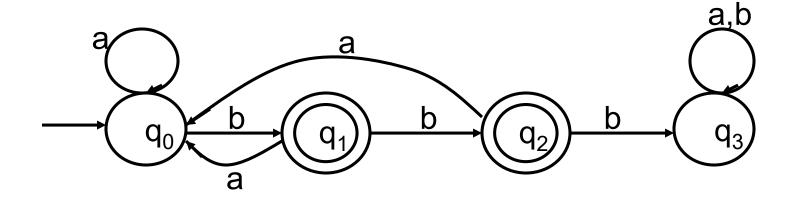
Initial state with incoming unlabeled arrow not originating from any vertex

prepared by Razana Alwee

Each state represented by a small circle labeled with the state

Final state with a double circle

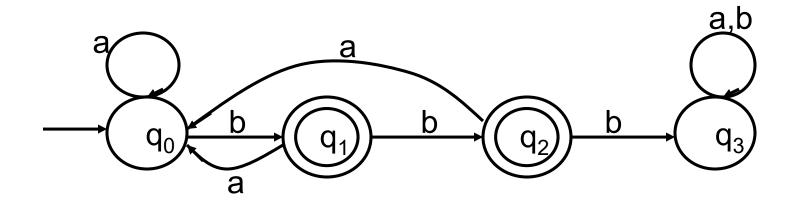
www.utm.my


Let $M=(\{q_0,q_1,q_2,q_3\}, \{a,b\},q_0, f_s, \{q_1,q_2\})$ where f_s is given by the table

f _s	а	b
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

யயய.utm.my

The transition diagram of this DFA is,

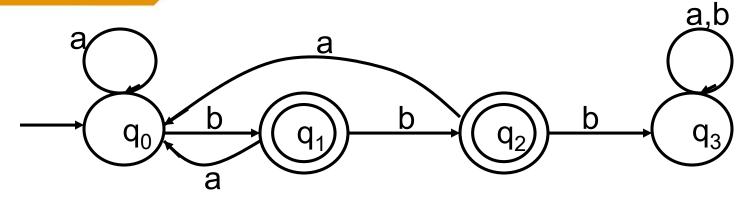

யயய.utm.my

- Let M= { S, I, q_0 , f_s , F} be a DFA and w is an input string,
- w is said to be accepted by M if $f_s^*(q_0, w) \in F$
- f_s* extended transition function for M

10

யயய.utm.my

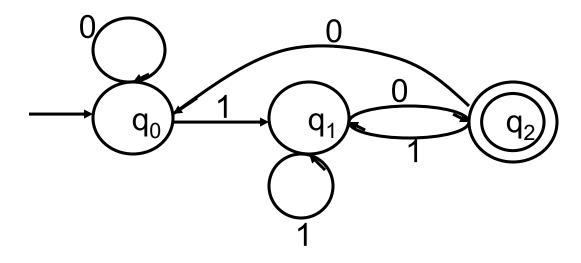
w= abb


$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2$$
 accepted by M

prepared by Razana Alwee

11

யயய.utm.my


w= abba

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0$$

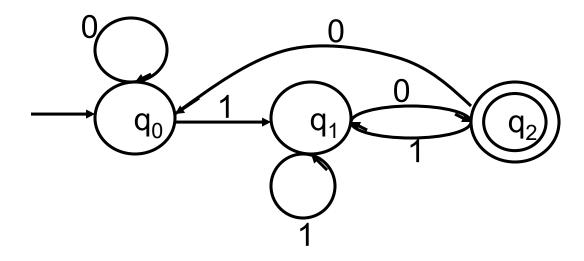
not accepted by M

யயய.utm.my

What are the states of M?

$$q_0, q_1, q_2$$

Write the set of input symbols.


$$I = \{0,1\}$$

Which is the initial state?

$$q_0$$

யயய.utm.my

Write the set of final states.

$$F = \{q_2\}$$

Write the transition table for this DFA

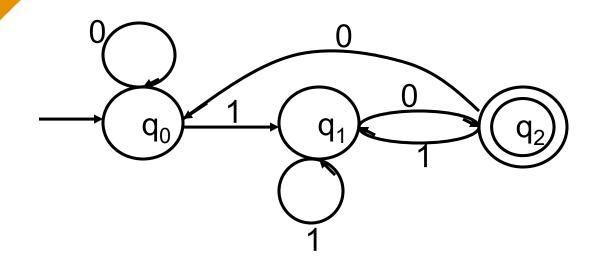
யயய.utm.my

The transition table, fs

0	1	
q_0	q_1	
q_2	q_1	
q_0	q_1	
	q ₀ q ₂	q_0 q_1 q_2 q_1

யயய.utm.my

Which of the strings are accepted by M?


0111010, 00111, 111010,

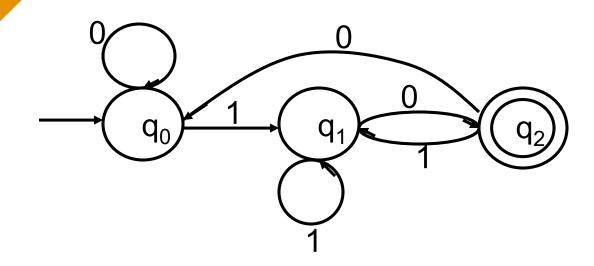
0100, 1110

யயய.utm.my

0111010

$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

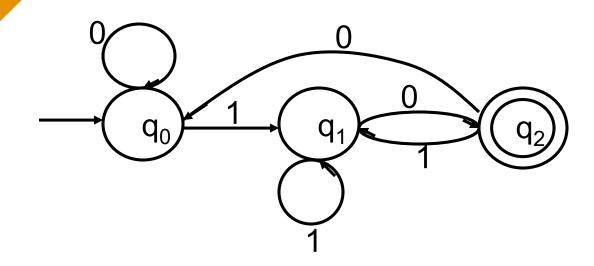
accepted by M


prepared by Razana Alwee

17

யயய.utm.my

00111


$$q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1$$

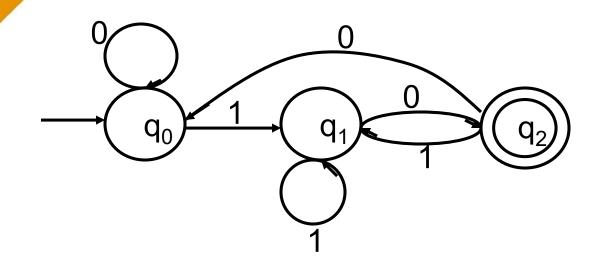
not accepted by M

யயய.utm.my

111010

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

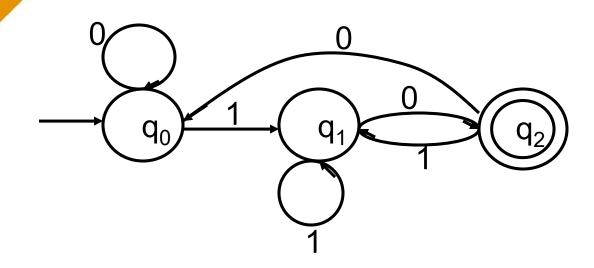
accepted by M


prepared by Razana Alwee

19

யயய்.utm.my

0100


$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{0} q_0$$

not accepted by M

யயய்.utm.my

1110

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

யயய.utm.my

Construct a state transition diagram of a DFA that accepts on {a,b} that contain an even number of a's and an odd number of b's.

Example of accepted strings:

aab, baa, baaabba

யயய.utm.my

4 states,

q₀ even num. of a's & even num. of b's.

q₁ even num. of a's & odd num. of b's.

q₂ odd num. of a's & odd num. of b's.

q₃ odd num. of a's & even num. of b's.

$$S = \{q_0, q_1, q_2, q_3\}$$

யயய.utm.my

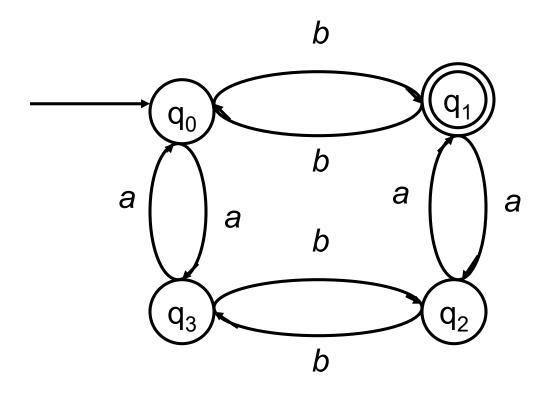
set of states, $S = \{q_0, q_1, q_2, q_3\}$

set of input symbols, $I = \{a, b\}$

initial state, q_0

final state, q_1

யயய.utm.my


State transition function

f _s	a	b	
q_0	q_3	q_1	
q_1	q_2	q_0	
q_2	q_1	q_3	
q_3	q_0	q_2	

யயய.utm.my

State transition diagram

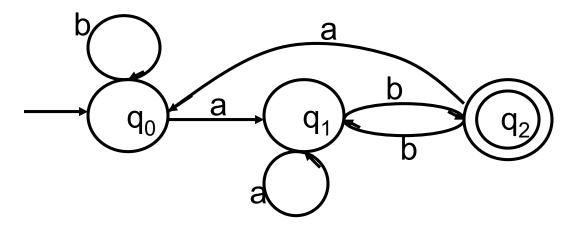
exercise

யயய.utm.my

Let M=(S, I, q_0 , f_s , F) be the DFA such that S={ q_0 , q_1 , q_2 }, I={a,b}, F={ q_2 }, q_0 =initial state, and f_s is given by,

f_s	а	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_0

Draw the state diagram of M.


Which of the strings abaa, bbbabb, bbbaa dan bababa are accepted by M?

exercise

யயய.utm.my

The transition diagram of M is,

Construct the transition table of M. Which of the strings baba, baab, abab dan abaab are accepted by M?

exercise

யயய.utm.my

Construct a state transition diagram of a DFA M with the input set {0,1} such that M accepts only the string 101.

Exercise

யயய.utm.my

Construct a deterministic finite automaton (DFA) that accepts the set of all bit strings that contain string '0101'.

Exercise

யயய.utm.my

Construct a deterministic finite automaton (DFA) that accepts all string over {a,b} that contain ab and end in bbb

Final 2018/2019

யயய.utm.my

Construct a state transition diagram of a DFA that accepts all string over $\{a,b, ..., z, 0, 1, ..., 9\}$ that start with a letter (a-z) and end with a digit (0-9).

Example of accepted strings are a9, xy12, a1b2c3 ect.

Finite State Machines (FSM)

யயய.utm.my

- Automata with input as well as output.
- Every state has an input and corresponding to the input the state also has an output.
- These types of automata are commonly called finite state machines.

Finite State Machines (FSM)

யயய.utm.my

A finite state machine is a sextuple,

M= { S, I, O,
$$q_0$$
, f_s , f_o } where,

S is a finite nonempty set of states

I is the input alphabet

O is the output alphabet

q₀ is the initial state

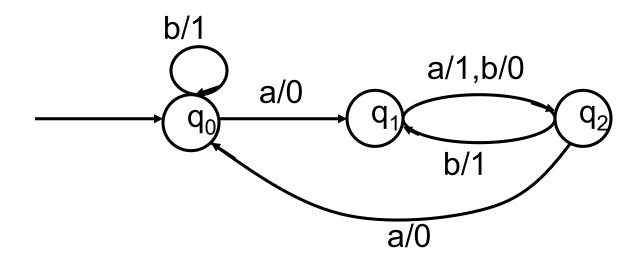
f_s is the state transition function

f₀ is the output function.

www.utm.my

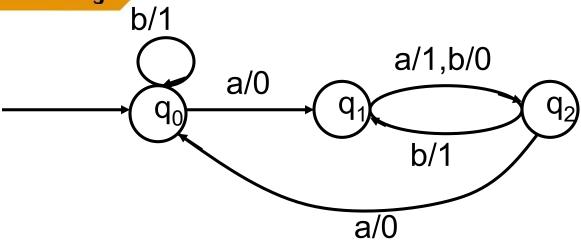
- Let $M = \{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

$$S = \{q_0, q_1, q_2\},\$$
 $I = \{a,b\},\$
 $O=\{0,1\},\$
 $q_0=$ initial state,


யயய.utm.my

f_s and f₀

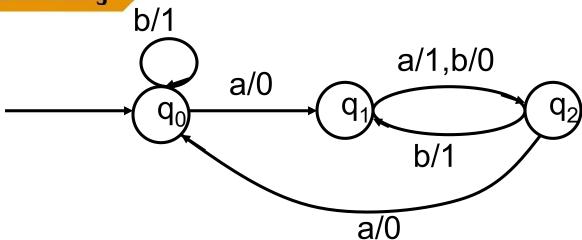
	f_s		f_o	
	а	b	а	b
q_0	q_1	q_0	0	1
q_1	q_2	q_2	1	0
q_2	q_0	q_1	0	1



யயய.utm.my

யயய.utm.my

Input string: bbab


$$q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2$$
1 1 0 0

Output string: 1100

Output: 0

யயய.utm.my

Input string: bababaa

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2$$

$$1 \qquad 0 \qquad 0 \qquad 1 \qquad 0 \qquad 1$$

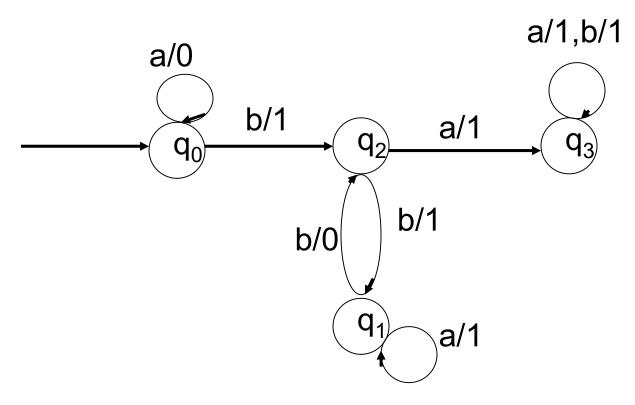
Output string: 1000101

Output: 1

- Let M= $\{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

S =
$$\{q_0, q_1, q_2, q_3\}$$
,
I = $\{a,b\}$,
O = $\{0,1\}$,
 q_0 = initial state,

யயய.utm.my


 \mathbf{s} \mathbf{f}_{s} and \mathbf{f}_{0}

	f_s		f_{o}	
	a	b	a	b
q_0	q_0	q_2	0	1
q_1	q_1	q_2	1	0
q_2	q_3	q_1	1	1
q_3	q_3	q_3	1	1

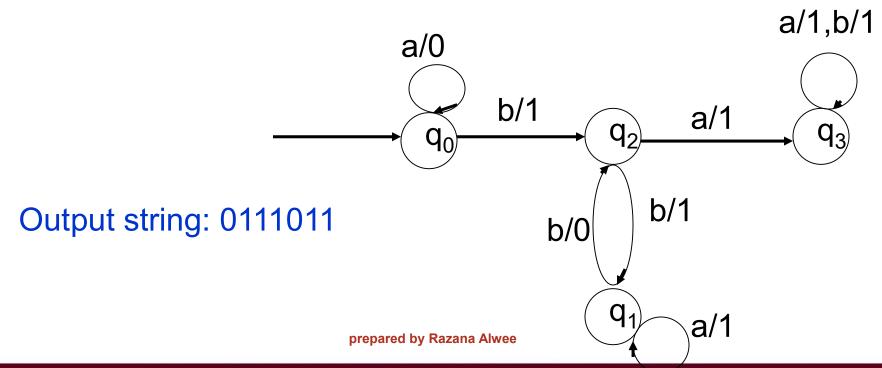
யயய்.utm.my

Draw the transition diagram of M.

யயய.utm.my

What is the output string if the input string is abbabab?

prepared by Razana Alwee


43

abbabab

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 1 \qquad 1 \qquad 0 \qquad 1 \qquad 1$$

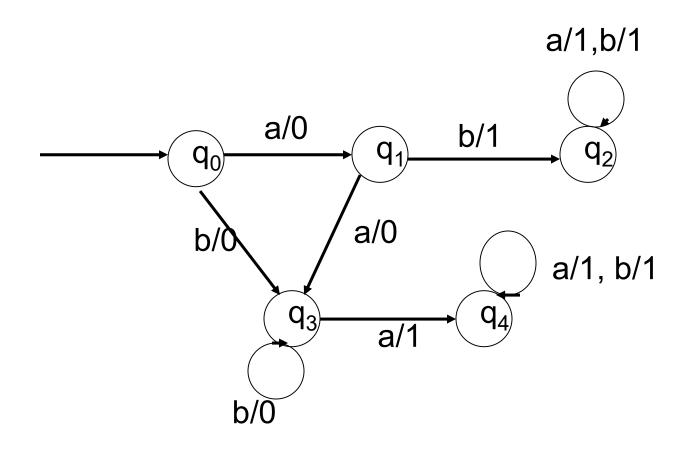
யயய.utm.my

What is the output of abbabab?

Output: 1

Finite State Machines (FSM)

யயய.utm.my


- Let M be a FSM.
- Let x be a nonempty string in M.
- We say that x is accepted by M if and only if the output of x is 1.

prepared by Razana Alwee

46

யயய.utm.my

யயய.utm.my

- Write the transition table of M.
- What is the output string if the input string is aaabbbb?
- What is the output if the input string is bbbaaaa?

prepared by Razana Alwee

48

www.utm.my

- Is the string aaa accepted by M?
- Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

யயய.utm.my

The transition table of M.

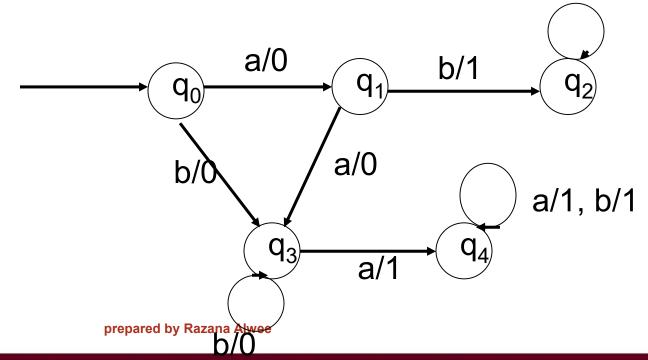
	f _s a	b	f _o a	b
q_0	q_1	q_3	0	0
q_1	q_3	q_2	0	1
q_2	q_2	q_2	1	1
q_3	q_4	q_3	1	0
q_4	q_4	q_4	1	1

யயய.utm.my

What is the output string if the input string is aaabbbb?

51

aaabbbb


யயய.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output string: 0011111

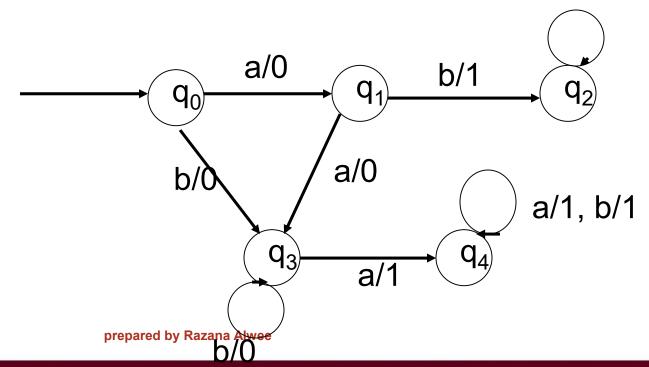
a/1,b/1

யயய.utm.my

What is the output if the input string is bbbaaaa?

53

bbbaaaa


யயய்.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1$$

$$a/1,b/1$$

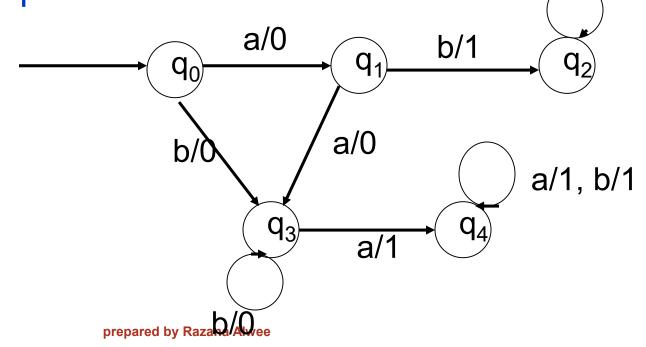
Output: 1

யயய.utm.my

Is the string aaa accepted by M?

prepared by Razana Alwee

55


aaa

யயய்.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4$$

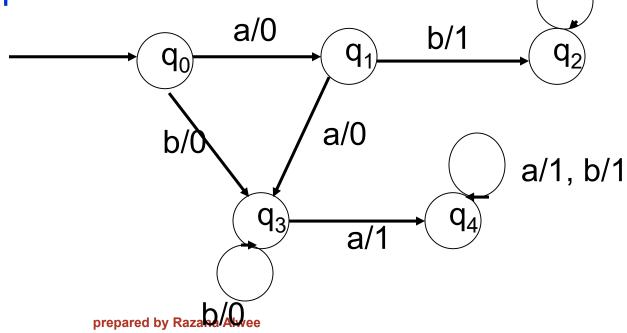
$$0 \qquad 0 \qquad 1$$

Output: 1, accepted

a/1,b/1

www.utm.my

Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

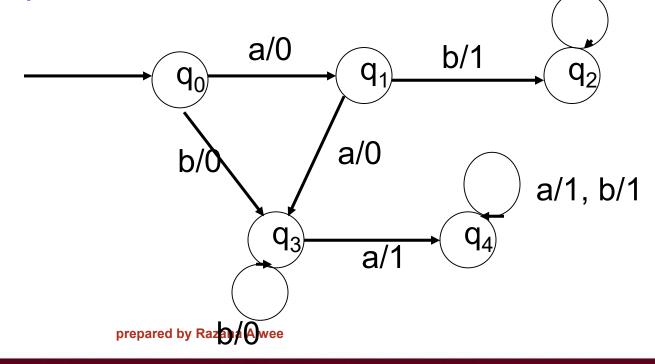

ba

யயய்.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{a} q_4$$
0 1

a/1,b/1

Output: 1, accepted



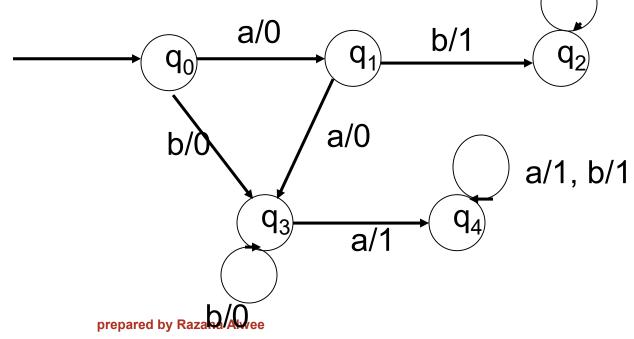
aabbba

Output: 1, accepted

a/1,b/1

59

bbbb


ա<mark>աա.utm.my</mark>

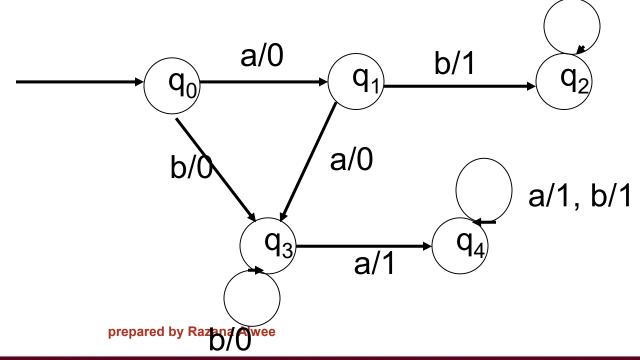
$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 0 \qquad 0$$

a/1,b/1

Output: 0, not accepted

aaabbbb


யயய.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output: 1, accepted

a/1,b/1

யயய.utm.my

- Consider a vending machine that sells candy and the cost of a candy is 50 cents.
- The machine accepts any sequence of 10-, 20-, or 50 cent coins.
- After inserting at least 50 cents, the customer can press the button to release the candy.

யயய.utm.my

- If the customer inputs more than 50 cents, the machine does not return the change.
- After selling the candy, the machine returns to initial state.
- Construct a finite state machine that models this vending machine.

யயய.utm.my

States,

 q_0 , initial state (0)

 q_1 , 10 cents

q₂, 20 cents

 q_3 , 30 cents

q₄, 40 cents

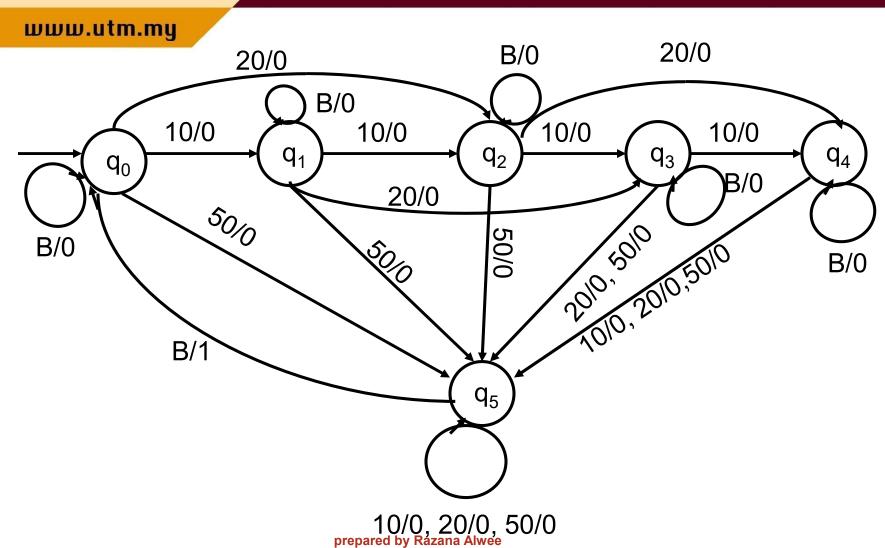
 q_5 , ≥ 50 cents

www.utm.my

$$S = \{q_0, q_1, q_2, q_3, q_4, q_5\},\$$

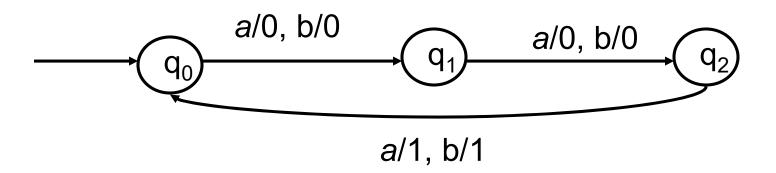
$$I = \{10,20,50,B\},\$$

$$O = \{0, 1\},\$$


$$q_0$$
 = initial state,

யயய.utm.my

	10	f _s 20	50	В	10	20	f _o 50	В
q_0	q_1	q_2	q_5	q_0	0	0	0	0
q_1	q_2	q_3	q_5	q_1	0	0	0	0
q_2	q_3	q_4	q_5	q_2	0	0	0	0
q_3	q_4	q_5	q_5	q_3	0	0	0	0
q_4	q_5	q_5	q_5	q_4	0	0	0	0
q_5	q_5	q_5	q_5	q_0	0	0	0	1



யயய.utm.my

Design a FSM, with input alphabet I={a, b}, that outputs a 1 if the number of input symbols read so far is divisible by 3.

யயய.utm.my

Let M= { S, I, O,
$$q_0$$
, f_s , f_o } be a FSM where,
 S ={ q_0 , q_1 , q_2 },
 I ={a,b},
 O ={0,1},
 q_0 = initial state,

யயய.utm.my

f_s and f₀

	f _s a	b	f _o a	b
q_0	q_2	q_1	1	1
q_1	q_2	q_2	0	0
q_2	q_1	q_2	1	1

- Draw the transition diagram of M.
- What is the output string if the input string is aabbb?
- What is the output string if the input string is ababab?
- What is the output if the input string is abbbaba?
- What is the output if the input string is bbbababa?

- Design a FSM that accepts all string over {a,b} that begin with aa.
- For example: aaab, aabba, aababab

Exercise

- Design a FSM that accepts all string over {a,b} that end with aba.
- For example: aaba, aababa, bbbaba

Exercise

யயய.utm.my

Design a FSM that accepts all string over {a,b} that contain bbb and end in ab

Final 2018/2019

யயய.utm.my

In a standard washing machine operation, there are four phases which start with Idle/Stop, Wash, Rinse and Spin. When the start/stop button is pressed, the door will be automatically locked, timer will start and the washing machine will begin to wash. After the timer end, the washing machine starts the rinse phase and timer for rinsing phase will begin. After the timer is end, the spin phase will begin. At this point, the timer will start again and after it end, operation of the washing machine is finish and it returns to Idle/Stop condition. At any time during the operation, if the start/stop button is pressed again, the washing machine will stop the operation and return to Idle/Stop condition. The door will always remain locked during the operation unless it is in Idle/Stop condition.

Based on the above washing machine operation,

- a) define all the states, inputs and outputs.
- b) construct a transition diagram.