TITLE :	Gesture Recognition and Prediction for Smart Photo Album		YEAR
			2013
KEY CONTRIBUTION		THEORY	
Develop a photo album application using HCI features helping users to view and edit their photos on the easier way		To solve a major problem of interwith the same applications which their dependence on using device physically and touch them direct	h were es

DEPENDENT VARIABLES

- A posture: static finger configuration without hand
- A gesture: dynamic hand movement, with or without finger motion
- Sensor Base: that number of sensors are attached to the user's body in order to detect movement, rotation and angles
- - Image Base: which is not using sensors benefits a video camera source and an image processing engine to detect body and track movements.
- a number of cameras, speed, latency, computer vision and image understanding, 2D or 3D representation

INDEPENDENT (AND HYPOTHESES)

- uses image processing in order to detect and position user movements and track user's skeleton in the skeleton engine
- Kinect is using an RGB camera [14] and a depth infrared sensor combination [8]to provide 3D information about objects in a scene
- powerful monochrome CMOS chip to capture 3 dimensions in low light condition
- a Kinect device is to produce a depth map out of a scene

METHODS	ANALYSIS			
 combination of skeletal detection and image processing prediction engine by applying Markov algorithm with finite state machine and 5 states transition matrix 	 a fast response system while it benefit processing of the raw RGB frame two processes which are finit number of states and random function for each of the states 			
FINDINGS				

- Two tables show a different sequence to see how the prediction engine will give out the output which is the predicted gesture. First sequence predicted "Previous" and the second sequence predicted "Rotate".
- The occurrence probability of each state can increase or decrease by change of recognized gesture and the application will study user behavior through this way.
- when number of experiments using this system increases the accuracy of prediction is increasing due to low change in probability of each state
- The coverage ratio is decreasing with increase the number of experiments because the test set that do not have corresponding states in the higher order Markov model; thus, reducing their coverage

FUTURE RECOMMENDATION/GAP	R	How gesture used in the system is	
No future recommendation stated	E M A	quite vague (not mention how it will implemented) The paper just reports on the	
	R	gesture work and shows	
	K S	prediction engine results.	