SECI1013: DISCRETE STRUCTURE 2021/2022 – SEMESTER 1

ASSIGNMENT 1 (Part 2)

Deadline of submission: 19 November 2021

1. Determine whether the relation R on set Z (set of integer number) is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

$$a R b$$
 if and only if $|a - b| = 2$

2. Given a relation, R on $A = \{a, b, c, d\}$ on as follows:

$$R = \{(a, a), (a, b), (a, d), (b, b), (b, c), (c, c), (c, d), (d, a), (d, d)\}$$

Show the matrix of relation, M_R and determine whether the relation, R is an equivalence relation.

- 3. Let f(x, y) = (2x y, x 2y); $(x, y) \in \mathbf{R} \times \mathbf{R}$, (**R** is set of real numbers.)
 - a) Show that *f* is one to one.
 - b) Find f^{-1}
- 4. Let a set $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}$ and $W = \{1, 2\}$.
 - a) Draw the arrow diagram to define function $f: X \rightarrow Y$ that is one-to-one but not onto.
 - b) List the three ordered pairs to define function $g: X \rightarrow W$ that is onto but not one-to-one.
- 5. Function f and g are defined by formulas as shown below.

$$f(x) = x^3$$
 and $g(x) = x - 1$, for all real number x.

- i) Find $g \circ f$ and $f \circ g$.
- ii) Determine whether $g \circ f$ equals $f \circ g$.
- 6. Let $A = \{0,1\}$. Give a recurrence relation for the strings of length n in A * that do not contain 01. Note: A * is the set of all string over A
- 7. A game is played by moving a marker ahead either 2 or 3 steps on a linear path. Let c_n be the number of different ways a path of length n can be covered. Given,

$$c_n = c_{n-2} + c_{n-3}, c_1 = 0, c_2 = 1, c_3 = 1$$

Write a recursive algorithm to compute c_n .