
User-Defined Functions:
Passing Data

• Passing by Value

• Passing by Reference

Passing Data by Value

• Pass by value: when an argument is passed to a function,
its value is copied into the parameter.

• Changes to the parameter in the function do not affect
the value of the argument

User-Defined Functions: Passing
Data by Value (cont.)

01 #include <iostream>

02 using namespace std;

03

04 void f(int n) {

05 cout << "Inside f(int), the value of the parameter is "
<< n << endl;

06 n += 37;

07 cout << "Inside f(int), the modified parameter is now "
<< n << endl;}

08

09 int main() {

10 int m = 612;

11

12 cout << "The integer m = " << m << endl;

13 cout << "Calling f(m)..." << endl;

14 f(m);

15 cout << "The integer m = " << m << endl;

16 return 0;

17 }

User-Defined Functions: Passing
Data by Value (cont.)

Passing Information to
Parameters by Value

• Example: int val=5;

evenOrOdd(val);

• evenOrOdd can change variable num, but it will have no
effect on variable val

5

val

argument in
calling function

5

num

parameter in
evenOrOdd function

Using Functions in
Menu-Driven Programs

• Functions can be used

– to implement user choices from menu

– to implement general-purpose tasks:
• Higher-level functions can call general-purpose functions,

minimizing the total number of functions and speeding program
development time

The return Statement

• Used to end execution of a function

• Can be placed anywhere in a function
– Statements that follow the return statement will not be

executed

• Can be used to prevent abnormal termination of
program

• In a void function without a return statement,
the function ends at its last }

Returning a Value from a Function

• A function can return a value back to the statement that
called the function.

• You've already seen the pow function, which returns a
value:

double x;

x = pow(2.0, 10.0);

Returning a Value from a Function

• In a value-returning function, the return statement can be
used to return a value from function to the point of call.
Example:

int sum(int num1, int num2)

{

double result;

result = num1 + num2;

return result;

}

A Value-Returning Function

int sum(int num1, int num2)

{

double result;

result = num1 + num2;

return result;

}

Return Type

Value Being Returned

A Value-Returning Function

int sum(int num1, int num2)

{

return num1 + num2;

}

Functions can return the values of expressions,
such as num1 + num2

The return Statement - Example

The return Statement - Example

Program 6-11(Continued)

Return to
called

function

Returning a Value From a Function

Returning a Value From a Function

Program 6-12 (Continued)

The Structure Chart

main_program

sum

value1

value2
total

Returning a Value From a Function

The statement in line 17 calls the sum function, passing
value1 and value2 as arguments. The return
value is assigned to the total variable.

Returning a Value From a Function

• The prototype and the definition must indicate the
data type of return value (not void)

• Calling function should use return value:
– assign it to a variable

– send it to cout

– use it in an expression

Returning a Boolean Value

• Function can return true or false

• Declare return type in function prototype and heading as
bool

• Function body must contain return statement(s) that
return true or false

• Calling function can use return value in a relational
expression

Returning a Boolean Value

Returning a Boolean Value

In-Class Exercise
#include <iostream>

using namespace std;

void try1(int p);

int try3(int r);

int main()

{ int a=2;

cout << a <<endl;

try1(a);

cout << a <<endl;

int b=3;

cout << b <<endl;

int c=4;

try3(c);

cout << c <<endl;

c=try3(c);

cout << c <<endl;

cout << try3(5) <<endl;

return 0;}

void try1(int p)

{

p++;

cout << p <<endl;

}

int try3(int r)

{

return r*r;

}

In-Class Exercise

• Write a function prototype and header for a function named
distance. The function should return a double and have
a two double parameters: rate and time.

• Write a function prototype and header for a function named
days. The function should return an integer and have three
integer parameters: years, months and weeks.

• Examine the following function header, then write an example
call to the function.

– void showValue(int quantity)

In-Class Exercise

• The following statement calls a function named half. The
half function returns a value that is half that of the
argument. Write the function.

result = half(number);

• A program contains the following function:
int cube (int num)

{

return num*num*num;

}

Write a statement that passes the value 4 to this function and
assigns its return value to the variable result.

In-Class Exercise

• Write a C++ program to calculate a rectangle’s area. The program consists
of the following functions:

– getLength – This function should ask the user to enter the
rectangle’s length, and then returns that value as a double.

– getWidth – This function should ask the user to enter the
rectangle’s width, and then returns that value as a double.

– getArea – This function should accept the rectangle’s length and
width as arguments and return the rectangle’s area.

– displayData – This function should accept the rectangle’s length,
width and area as arguments, and display them in an appropriate
message on the screen.

– main – This function consists of calls to the above functions.

Local and Global Variables

• Variables defined inside a function are local to that
function. They are hidden from the statements in other
functions, which normally cannot access them.

• Because the variables defined in a function are hidden,
other functions may have separate, distinct variables
with the same name.

Local and Global Variables - Example

Local and Global Variables - Example

• When the program is executing in main, the num variable
defined in main is visible.

• When anotherFunction is called, however, only variables
defined inside it are visible, so the num variable in main is
hidden.

Local Variable Lifetime

• A function’s local variables exist only while the function is
executing. This is known as the lifetime of a local variable.

• When the function begins, its local variables and its
parameter variables are created in memory, and when the
function ends, the local variables and parameter variables are
destroyed.

• This means that any value stored in a local variable is lost
between calls to the function in which the variable is
declared.

Global Variables and
Global Constants

• A global variable is any variable defined outside all the
functions in a program.

• The scope of a global variable is the portion of the
program from the variable definition to the end.

• This means that a global variable can be accessed by all
functions that are defined after the global variable is
defined

Global Variables and
Global Constants

• You should avoid using global variables because they
make programs difficult to debug.

• Any global that you create should be global
constants.

Global Constants – Example

Global constants defined for
values that do not change
throughout the program’s

execution.

Global Constants – Example

The constants are then
used for those values
throughout the
program.

Initializing Local and Global
Variables

• Local variables are not automatically initialized. They must be
initialized by programmer.

• Global variables (not constants) are automatically initialized to
0 (numeric) or NULL (character) when the variable is defined.

Static Local Variables

• Local variables only exist while the function is executing.
When the function terminates, the contents of local variables
are lost.

• static local variables retain their contents between
function calls.

• static local variables are defined and initialized only the
first time the function is executed. 0 is the default
initialization value.

Local Variables - Example

Local Variables - Example

In this program, each time showLocal is called, the localNum
variable is re-created and initialized with the value 5.

A Different Approach, Using a
Static Variable

Using a Static Variable - Example

statNum is automatically initialized to
0. Notice that it retains its value
between function calls.

Using a Static Variable - Example
If you do initialize a local static variable, the initialization only happens
once. See Program 6-22…

In-Class Exercise

• Given the following programs compare the output and reason
the output.

#include <iostream>

using namespace std;

void showVar();

int main () {

for (int count=0;count<10; count++)

showVar();

system(“pause”);

return 0;

}

void showVar() {

static int var = 10;

cout << var << endl;

var++;

}

#include <iostream>

using namespace std;

void showVar();

int main () {

for(int count=0;count<10; count++)

showVar();

system(“pause”);

return 0;

}

void showVar() {

int var = 10;

cout << var << endl;

var++;

}

In-Class Exercise

• Identify global variables & local variables in the following
program. What is the output?

#include <iostream>

using namespace std;

int j = 8;

int main()

{

int i=0;

cout<<"i: "<<i<<endl;

cout<<"j: "<<j<<endl;

system("pause");

return 0;

}

• Identify global variables, local variables and static local variables in
the following program. What is the output?

#include <iostream>

using namespace std;

int j = 40;

void p()

{ int i=5;

static int j=5;

i++;

j++;

cout<<"i: "<<i<<endl;

cout<<"j: "<<j<<endl;

}

int main()

{ p();

p();

return 0;}

