Exercise 3

- 1. Let *R* be the relation from $X = \{1, 2, 3, 4\}$ to $Y = \{1, 3, 5, 7\}$ defined by xRy if and only if $x \in X$, $y \in Y$ and $x + 3y \le 12$.
 - a) List the elements of the set R.
 - b) Find the domain of *R*.
 - c) Find the range of R.
- 2. Let $A = \{a, b, c\}$ and $R: A \rightarrow A$. Draw the digraph representing the following properties:
 - a) Symmetric and reflexive but not transitive
 - b) Reflexive but not antisymmetric
- 3. Write a matrix representing an irreflexive relation R on a set $A = \{a, b, c\}$.
- 4. Let $B = \{d, e, f, g\}$ and R be the relation on B that has the matrix M_R .

$$M_R = \left[\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

- a) List in-degree and out-degree of all vertices.
- b) Determine whether the relation R on the set B represented by M_R is an equivalence relation. Explain.
- 5. Here are two function $f: \{1, 2, 3\} \rightarrow \{10, 11, 12, 13\}$ and $g: \{10, 11, 12, 13\} \rightarrow \{4, 5, 6\}$ whose rules are given in Table 1.

Table 1

				7,1111111111111111111111111111111111111				
x	1	2	3	x	10	11	12	13
f(x)	11	13	10	g(x)	4	5	4	6

- a) What is f(1)?
- b) What is g(11)?
- c) Draw arrow diagrams for f and g.
- d) Which of these compositions can be defined: gof, gog, fog, or fof?
- e) For any of the compositions above that are defined, give the domain and codomain, and draw the arrow diagram.

- 6. Let, $f: \mathbf{R} \to \mathbf{R}$ be the function with rule f(x) = 5x 7.
 - a) Show that f is one-to-one
 - b) Find the inverse of *f* (note: **R** is the set of real numbers)
- 7. Let $X=\{-1, 0, 1\}$ and $Y=\{-2, 0, 2\}$. For each $x \in X$, define functions $f: X \rightarrow Y$ and $g: X \rightarrow Y$ by:

$$f(x) = x^2 - x$$

$$g(x) = 2x$$

Determine if f and g are one-to-one, onto Y, and/or bijection.