Exercise 2

- 1. If $p \rightarrow q$ is false, what is the truth value of $((\neg p) \land q) \leftrightarrow (p \lor q)$
- 2. Let p, q and r be the proposition
 - p: you get an A on the final exam
 - q: you do every exercise in this book
 - r: you get an A in this class

Write these propositions using p, q and r and logical connective

- i) You get A in this class, but you do not do every exercise in this book
- ii) To get an A in this class, it is necessary for you to get an A on the final
- iii) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class
- 3. Write the predicate and quantifier represent the following sentence. Domain of discourse is all people
 - i) Some of my friends are clever.
 - ii) All clever people are either boring or wealthy.
- 4. Write a sentence represent the negation, $\neg p$ of the following predicate
 - i) p: some people like discrete structure
 - ii) p: all people in my class are tall and thin
- 5. Base on the propositions p, q and r, rewrite the given statements using logic symbols.
 - *p* : Power button is on
 - q : Computer shuts down
 - r: Computer displays start screen
 - Computer displays start screen only with the condition that the power button is on.
 - ii) If the power button is on then the computer does not shuts down or displays start screen.

- iii) Once the power button is off, it is either the computer shuts down or does not displays start screen.
- 6. State the truth value for the given compound propositions below provided the truth values for p and r is FALSE and q is TRUE.

i)
$$(p \rightarrow \neg q) \land \neg (r \lor q)$$

ii)
$$(\neg p \land \neg q) \rightarrow (p \lor \neg r)$$

iii)
$$\neg(\neg p \leftrightarrow \neg q) \land r$$
)

7. Let $P(x,y)=(x^*y)^2 \ge 1$. Given the domain of discourse for x and y is set of integer, Z. Determine the truth value of the following statements. Give the value of x and y that make the statement TRUE or FALSE.

i)
$$\exists x \exists y P(x,y)$$

ii)
$$\forall x \forall y P(x,y)$$

8. Use truth table to check if the compound propositions A and B are logically equivalent.

$$A = (\neg p \lor q) \to r$$

$$B = \neg q \leftrightarrow (\neg p \lor r)$$

9. Simplify the following compound propositions using Laws of Logic.

$$(a \lor b) \land \neg (\neg a \land b)$$

10. Prove the following compound proposition using logical law.

$$(P \vee \neg Q) \vee (R \wedge (Q \vee \neg Q)) = R \vee (P \vee \neg Q)$$

11. Proof directly that,

"If m is an even integer and n is an odd integer then m+n is an odd"