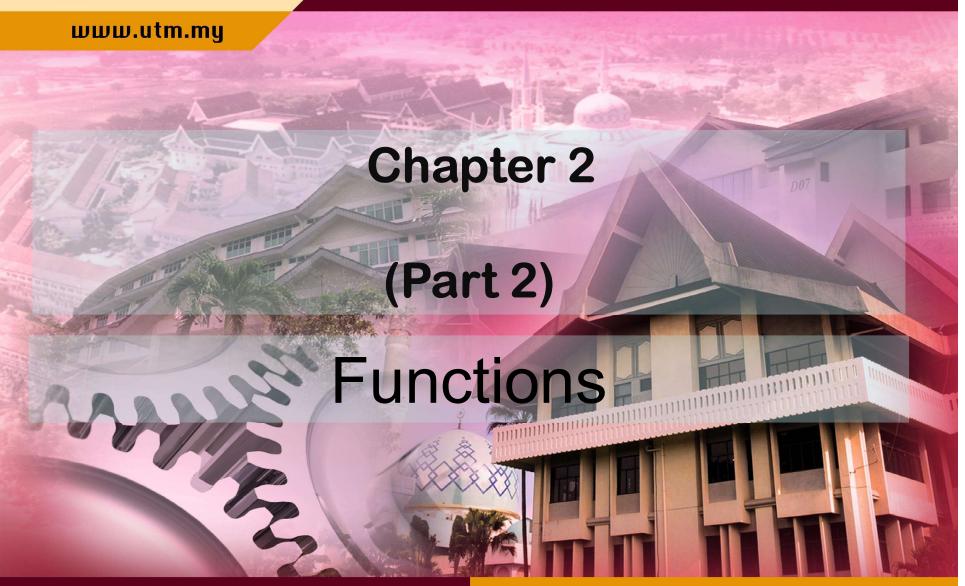


INSPIRING CREATIVE AND INNOVATIVE MINDS



Functions

யயய.utm.my

- Let X and Y be nonempty sets
- A function f from X to Y is a relation from X to Y having the properties.
 - The domain of f is X
 - If (x,y), $(x,y') \in f$, then y=y'

(e.g. f(1)=b, f(2)=b is a function, but f(1)=a, f(1)=b is NOT a function)

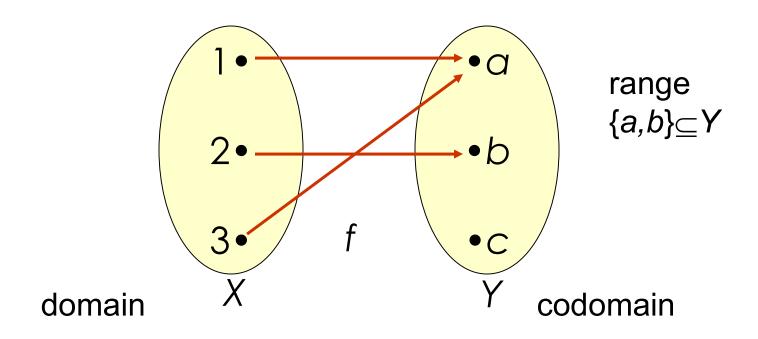
Functions

- A function from X to Y is denoted, $f: X \to Y$
- The domain of f is the set X.
- The set Y is called the codomain or target of f.
- The set $\{y \mid (x,y) \in f\}$ is called the range.

- The relation, f = { (1,a), (2,b), (3,a) } from X = { 1, 2, 3 } to Y= { a, b, c } is a function from X to Y.
- The domain of f is X
- The range of f is {a, b}

யயய.utm.my

 $f = \{ (1,a), (2,b), (3,a) \}$



- The relation, R= {(1,a), (2,a), (3,b)} from X= {1, 2, 3, 4} to Y= {a, b, c} is NOT a function from X to Y.
- The domain of R, { 1,2,3 } is not equal to X.

யயய.utm.my

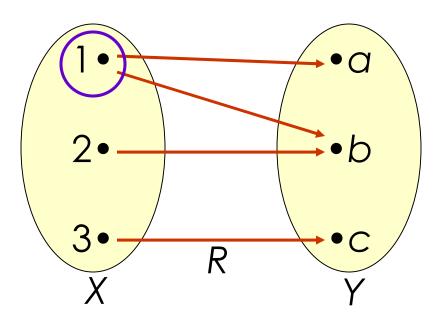
There is no arrow from 4

- The relation, R= {(1,a), (2,b), (3,c), (1,b)} from X= {1, 2, 3} to Y= {a, b, c} is NOT a function from X to Y
- (1,a) and (1,b) in R but $a \neq b$.

யயய.utm.my

$$R = \{(1,a), (2,b), (3,c), (1,b)\}$$

There are 2 arrows from 1



யயய.utm.my

- For the function, $f = \{(1,a), (2,b), (3,a)\}$
- We may write

$$f(1)=a, f(2)=b, f(3)=a$$

Notation f (x) is used to define a function

10

யயய.utm.my

$$f(x) = x^2$$

$$f(2) = 4$$
, $f(-3.5) = 12.25$, $f(0) = 0$

$$f = \{(x, x^2) \mid x \text{ is a real number}\}$$

11

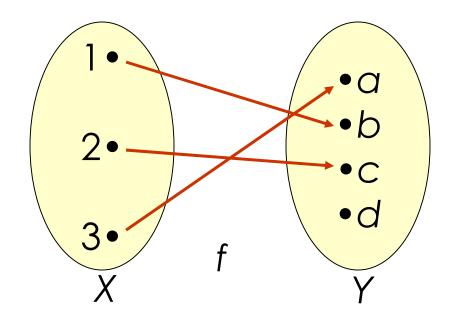
One-to-one

- A function f from X to Y, is said one-to-one (or injective) if for each y ∈ Y, there is at most one x ∈ X, with f(x)=y.
- For all x_1 , x_2 , if $f(x_1) = f(x_2)$, then $x_1 = x_2$. $\forall x_1 \forall x_2 ((f(x_1) = f(x_2)) \rightarrow (x_1 = x_2))$

யயய.utm.my

The function, $f = \{ (1,b), (3,a), (2,c) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c, d \}$ is one-to-one.

Each element in Y has at most one arrow pointing to it



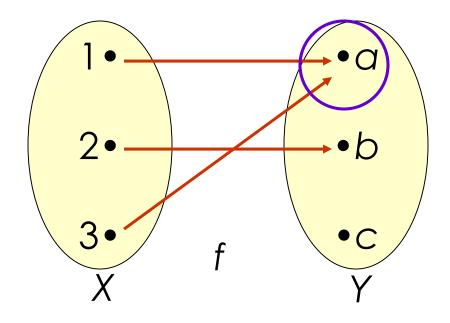
யயய.utm.my

- The function, $f = \{ (1,a), (2,b), (3,a) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c \}$ is NOT one-to-one.
- f(1)=a=f(3)

14

யயய.utm.my

$$f = \{ (1,a), (2,b), (3,a) \}$$



a has 2 arrows pointing to it

யயய.utm.my

Show that the function,

$$f(n) = 2n+1$$

on the set of positive integers is one-to-one.

யயய.utm.my

For all positive integer, n_1 and n_2 if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Let,
$$f(n_1) = f(n_2)$$
, $f(n) = 2n+1$
then $2n_1 + 1 = 2n_2 + 1$ (-1)
 $2n_1 = 2n_2$ (÷2)
 $n_1 = n_2$

This shows that *f* is one-to-one.

யயய.utm.my

Show that the function,

$$f(n) = 2^n - n^2$$

from the set of positive integers to the set of integers is NOT one-to-one.

யயய.utm.my

- Need to find 2 positive integers, n_1 and n_2 $n_1 \neq n_2$ with $f(n_1) = f(n_2)$.
- Trial and error,

$$f(2) = f(4)$$

f is not one-to-one.

Onto

யயய.utm.my

If f is a function from X to Y and the range of f is Y, f is said to be onto Y

(or an onto function or a surjective function)

For every $y \in Y$, there exists at least one $x \in X$ such that f(x)=y

$$\forall y \in Y \exists x \in X (f(x)=y)$$

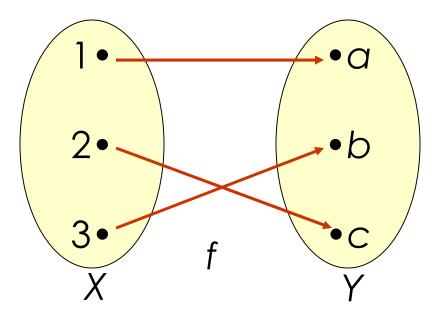
யயய.utm.my

The function, $f = \{ (1,a), (2,c), (3,b) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ a, b, c \}$ is one-to-one and onto Y.

யயய.utm.my

$$f = \{ (1,a), (2,c), (3,b) \}$$

One-to-one
Each element
in Y has at
most one
arrow



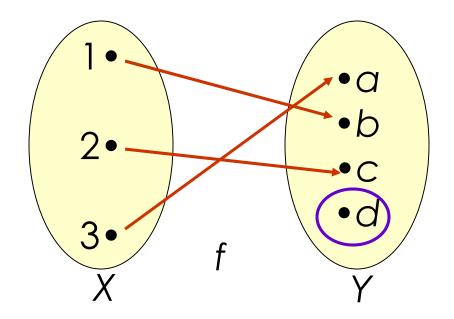
Onto
Each element
in Y has at
least one
arrow

pointing to it

- The function, $f = \{ (1,b), (3,a), (2,c) \}$ is not onto $Y = \{a, b, c, d\}$
- **■** It is onto {*a*, *b*, *c*}

யயய.utm.my

$$f = \{ (1,b), (3,a), (2,c) \}$$



not onto no arrow pointing to *d*

Bijection

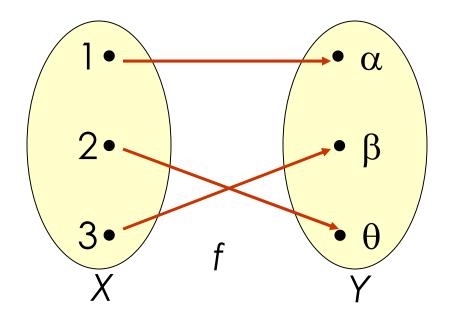
யயய.utm.my

f is called one-to-one correspondence (or bijective or bijection) if f is both one-to-one and onto.

- The function, $f = \{ (1, \alpha), (2, \theta), (3, \beta) \}$ from $X = \{ 1, 2, 3 \}$ to $Y = \{ \alpha, \beta, \theta \}$ is one-to-one and onto Y.
- The function f is a bijection

யயய.utm.my

$$f = \{ (1, \alpha), (2, \theta), (3, \beta) \}$$



One-to-one and onto *Y* -bijection

exercise

யயய.utm.my

Determine which of the relations *f* are functions from the set *X* to the set *Y*.

a)
$$X = \{-2, -1, 0, 1, 2\}$$
, $Y = \{-3, 4, 5\}$ and $f = \{(-2, -3), (-1, -3), (0, 4), (1, 5), (2, -3)\}$

b)
$$X = \{-2, -1, 0, 1, 2\}, Y = \{-3, 4, 5\}$$
 and $f = \{(-2, -3), (1, 4), (2, 5)\}$

c)
$$X = Y = \{-3, -1, 0, 2\}$$
 and $f = \{(-3, -1), (-3, 0), (-1, 2), (0, 2), (2, -1)\}$

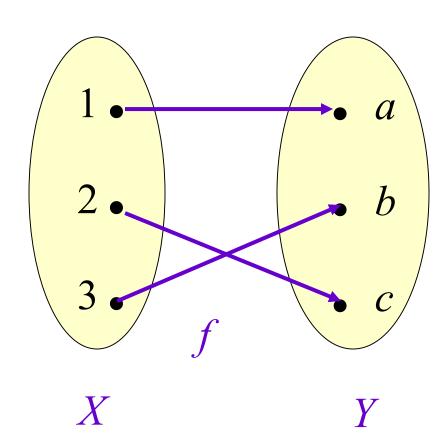
In case any of these relations are functions, determine if they are one-to-one, onto *Y*, and/or bijection.

Inverse function

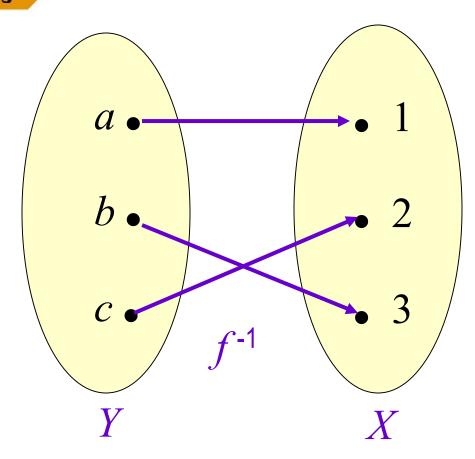
- Let $f: X \rightarrow Y$ be a function.
- The inverse relation $f^{-1} \subseteq Y \times X$ is a function from Y to X, if and only if f is both one-to-one and onto Y.

யயய்.utm.my

- $f = \{(1,a),(2,c),(3,b)\}$
- $f^{-1} = \{(a,1),(c,2),(b,3)\}$



யயய.utm.my



யயய.utm.my

- The function, f(x) = 9x + 5 for all $x \in R$ (R is the set of real numbers).
- This function is both one-to-one and onto.
- Hence, f^{-1} exists.

Let
$$(y, x) \in f^{-1}$$
, $f^{-1}(y) = x$
 $(x,y) \in f$, $y = 9x + 5$
 $x = (y-5)/9$
 $f^{-1}(y) = (y-5)/9$

exercise

யயய.utm.my

Find each inverse function.

a)
$$f(x) = 4x + 2, x \in R$$

b)
$$f(x) = 3 + (1/x), x \in R$$

Composition

யயய.utm.my

- Suppose that g is a function from X to Y and f is a function from Y to Z.
- The composition of f with g,

is a function

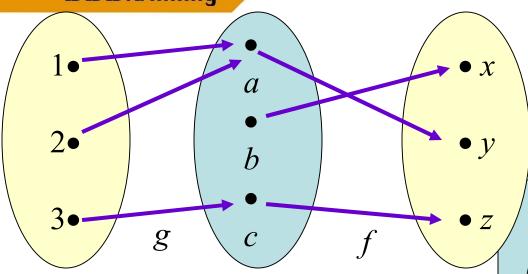
$$(f \circ g)(x) = f(g(x))$$

from X to Z

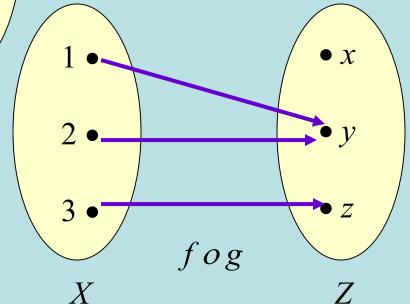
- Given, g = { (1,a), (2,a), (3,c) }
 a function from X = {1, 2, 3} to Y = {a, b, c} and f = { (a,y), (b,x), (c,z) }
 a function from Y to Z = { x, y, z }
- The composition function from X to Z is the function $f \circ g = \{ (1,y), (2,y), (3,z) \}$

யயய.utm.my

X



Y Z



36

www.utm.my

 $f(x) = \log_3 x$ and $g(x) = x^4$

$$f(g(x)) = \log_3(x^4)$$

$$g(f(x)) = (\log_3 x)^4$$

Note: $f \circ g \neq g \circ f$

யயய.utm.my

$$f(x) = \frac{1}{5}x$$

$$g(x) = x^2 + 1$$

$$(g \circ f)(x) = g(f(x)) = g(\frac{x}{5})$$

= $(\frac{x}{5})^2 + 1 = \frac{x^2}{25} + 1$

யயய.utm.my

- Composition sometimes allows us to decompose complicated functions into simpler functions.
- example

$$f(x) = \sqrt{\sin 2x}$$

$$g(x) = \sqrt{x}$$
 $h(x) = \sin x$ $w(x) = 2x$

$$f(x) = g(h(w(x)))$$

exercise

யயய.utm.my

Let f dan g be functions from the positive integers to the positive integers defined by the equations,

$$f(n) = n^2, \qquad g(n) = 2^n$$

- Find the compositions
 - a) fof
 - b) *g o g*
 - c) fog
 - d) *g o f*

prepared by Razana Alwee

40