
Chapter 1

Part 3 
Fundamental and Elements of Logic



Some of the reasons:
 Logic is the foundation for computer operation
 Logical conditions are common in programs

Example:
Selection:  if (score <= max) { ... }
Iteration:  while (i<limit && list[i]!=sentinel) ...

 All manner of structures in computing have properties that need 
to be proven (and proofs that need to be understood).

Example: Trees, Graphs, Recursive Algorithms, . . .
 Programs can be proven correct.
 Computational linguistics must represent and reason about 

human language, and language represents thought (and thus 
also logic).

Why Are We Studying Logic?
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A statement or a proposition, is a declarative sentence 
that is either TRUE or  FALSE, but not both.

Example:
 4 is less than 3.
 7 is an even integer.
 Washington, DC, is the capital of United 

State.

PROPOSITION
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Example

i) Why do we study mathematics?
ii) Study logic.
iii) What is your name?
iv) Quiet, please.

The above sentences are not propositions. Why ?

(i) &  (iii) : is question, not a statement.
(ii)& (iv) : is a command.
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Example

i) The temperature on the surface of the planet Venus is 
800 F.

ii) The sun will come out tomorrow.

Propositions? Why?

 Is a statement since it is either true or false, but not 
both. 

 However, we do not know at this time to determine 
whether it is true or false. 
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 Compound propositions 
formed in English with 
the word “and”

 Formed in logic with the 
caret symbol  (“ ”)

 True only when both 
participating 
propositions are true.

CONJUNCTIONS
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p q pq
T T T
T F F
F T F
F F F

TRUTH TABLE: This tables 
aid in the evaluation of 
compound propositions.

True (T),  False (F)



p : 2 is an even integer
q : 3 is an odd number

p q
: 2 is an even integer and 3 is an odd number

p : today is Monday 
q : it is hot

p q: today is Monday and it is hot

Example

propositions

symbols

statements
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Proposition
p : 2 divides 4
q : 2 divides 6

Symbol  & Statement

p q: 2 divides 4 and 2 divides 6.
or, 

p q: 2 divides both 4 and 6.
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Example



Proposition  
p : 5 is an integer
q : 5 is not an odd integer

Symbol & Statement

p q: 5 is an integer and 5 is not an odd integer.
or, 

p q: 5 is an integer but 5 is not an odd integer.
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Example



DISJUNCTION

 Compound propositions 
formed in English with 
the word “or”,

 Formed in logic with the 
caret symbol (“ ”)

 True when one or both 
participating 
propositions are true.
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p q p q

T T T

T F T

F T T

F F F

The truth table for  p q



p q : 2 is an integer or 3 is greater than 5

p q : 1+1=3 or a decade is 10 years

p: 2 is an integer   
q: 3 is greater than 5

p : 1+1=3  
q : A decade is 10 years

Example
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p q
3 is an even integer or 3 is an odd integer 

or 
3 is an even integer or an odd integer

p : 3 is an even integer 
q : 3 is an odd integer

Example
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NEGATION

Negating a proposition simply 
flips its value. Symbols 
representing negation include:

Let p be a proposition.
The negation of p, written ¬ p
is the statement obtained by 
negating
statement p.

￢x ,    , x, x′  (NOT)x
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p ¬p

T F

F T

The truth table of ¬ p



p : 2 is positive

¬ p : 2 is not positive.

Example
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p : 4 is less than 3

¬ p : 4 is not less than 3.



Exercise

p: It will rain tomorrow 
q: it will snow tomorrow

Give the negation of  the following statement  and write 
the symbol.

It will rain tomorrow or it will snow tomorrow.
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In each of the following, form the conjunction and the 
disjunction of p and q by writing the symbol and the 
statements.

i) p: I will drive my car         
q: I will be late

ii) p : NUM > 10
q : NUM ≤ 15
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Exercise



Suppose x is a particular real number. Let p, q and r
symbolize “0 < x”, “x < 3” and “x = 3”, respectively. 
Write the following inequalities symbolically:

a) x ≤ 3

b) 0 < x <3

c) 0 < x ≤ 3
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Exercise



State either TRUE or FALSE if  p and r are TRUE 
and q is FALSE.

a) ~ p ( q∨ r )

a) ( r ~q ) ∨ ( p∨ r )
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Exercise



CONDITIONAL PROPOSITIONS

Let p and q be propositions.

“if p, then q” 

is a statement called a conditional proposition, 
written as

p → q
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The truth table of p → q  
=> Cause and effect relationship

p q p q

T T T

T F F

F T T

F F T

FALSE if 
p = True 

and q 
=false

TRUE if 
both 

true or 
p=false 
for any  
value of 

q
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CONDITIONAL PROPOSITIONS



p → q :  If today is Sunday, then I will go for a walk.

p → q: If I get a bonus, then I will buy a new car

p : today is Sunday 
q : I will go for a walk

p : I get a bonus 
q : I will buy a new car
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Example



p → q :  if x/2 is an integer, then x is an even integer.

p : x/2 is an integer.
q : x is an even integer.
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Example



BICONDITIONAL

Let p and q be propositions.

“p if and only if q”

is a statement called a biconditional proposition, 
written as

p ↔ q
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The truth table of p ↔ q:

p q p ↔ q

T T T

T F F

F T F

F F T
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BICONDITIONAL



p ↔ q : My program will compile if and only if it has no 
syntax error.

p ↔ q : x is divisible by 3 if and only if x is divisible by 9.

p : my program will compile
q : it has no syntax error.

p : x is divisible by 3
q : x is divisible by 9
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Example



LOGICAL EQUIVALENCE

 The compound propositions Q and R are made up of 
the propositions p1, …, pn.

 Q and R are logically equivalent and write,
Q ≡ R

provided that given any truth values of p1, …, pn, 
either Q and R are both true or Q and R are both 
false.
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Q = p → q R= ¬ q → ¬ p
Show that, Q ≡ R

The truth table shows that, Q ≡ R

p q p →q ¬q →¬p

T T T T

T F F F

F T T T

F F T T
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Example



Show that,   ¬ (p → q) ≡ p ¬ q

The truth table shows that,  ¬ (p → q) ≡ p ¬ q

p q ¬(p → q) p ¬q

T T F F
T F T T
F T F F
F F F F
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Example



PRECEDENCE OF LOGICAL CONNECTIVES

Precedence of logical connectives 
is as follows:

¬ Highest
∧
∨
→ 
↔ Lowest

not

and

or

If…then

If and only if 
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Construct the truth table for,  A = ¬(p q) → (q p)

Solution

p q (p q) ¬(p q) (q p) A

T T T F T T
T F T F F T
F T T F F T
F F F T F F
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Example



Construct the truth table for each of the following 
statements:

i) ¬ p q

ii) ¬(p q) → q

iii) ¬(¬ p q) q

iv) (p → q) →(¬ q → ¬ p)
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Exercise



LOGIC & SET THEORY

Logic and set theory go very well togather. The previous 
definitions can be made very succinct:

32



Venn Diagrams are used to depict the various unions, 
subsets, complements, intersections etc. of sets. 

Venn Diagrams
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Theorem for Logic

Let p, q and r be propositions.

Idempotent laws:
p p ≡ p
p p ≡ p

Truth table

36



¬ ¬ p ≡ p

p q ≡ q p
p q ≡ q p

Double negation law:

Commutative laws:
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Theorem for Logic

(p q) r ≡ p (q r)
(p q) r ≡ p (q r)

Associative laws:



p (q r) ≡ (p q) (p r)
p (q r) ≡ (p q) (p r)

PROVE

Distributive laws:
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Theorem for Logic



p (p q) ≡ p
p (p q) ≡ p

PROVE

Absorption laws:
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Theorem for Logic



¬(p q) ≡ (¬ p) (¬ q)
¬(p q) ≡ (¬ p) (¬ q)

De Morgan’s laws:

The truth table for ¬(p q) ≡ (¬ p) (¬ q)
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Theorem for Logic



Given,
R = p (¬ q r)
Q = p (q ¬ r)

State whether or not R ≡ Q.

(Hint: construct the truth table)
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Exercise



Propositional functions p, q and r are defined as follows:
p is "n = 7" 
q is "a > 5" 
r is "x = 0" 

Write the following expressions in terms of p, q and r, and show 
that each pair of expressions is logically equivalent. State 
carefully which of the above laws are used at each stage.

(a) ((n = 7) (a > 5)) (x = 0) 
((n = 7) (x = 0)) ((a > 5) (x = 0))

(b) ¬((n = 7) (a ≤ 5)) 
(n ≠ 7) (a > 5) 

(c) (n = 7) (¬((a ≤ 5) (x = 0))) 
((n = 7) (a > 5)) (x ≠ 0) 
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Exercise



Propositions p, q, r and s are defined as follows: 
p is "I shall finish my Coursework Assignment" 
q is "I shall work for forty hours this week" 
r is "I shall pass Maths" 
s is "I like Maths" 

Write each sentence in symbols: 
(a) I shall not finish my Coursework Assignment. 
(b) I don’t like Maths, but I shall finish my Coursework Assignment. 
(c) If I finish my Coursework Assignment, I shall pass Maths. 
(d) I shall pass Maths only if I work for forty hours this week and finish my 
Coursework Assignment. 

Write each expression as a sensible (if untrue!) English sentence: 
(e) q p 
(f) ¬p → ¬r 
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Exercise



For each pair of expressions, construct truth 
tables to see if the two compound propositions 
are logically equivalent: 

(a) p ∨ (q ∧¬p) 
p ∨ q 

(b) (¬p ∧ q) ∨ (p ∧ ¬q) 
(¬p ∧ ¬q) ∨ (p ∧ q) 
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Exercise



Thank  You


