
Chapter 1

Part 4 
Quantifiers & Proof Technique



 Most of the statements in mathematics and 
computer science are not described properly by 
the propositions. 

 Since most of the statements in mathematics and 
computer science use variables, the system of logic 
must be extended to include statements with the 
variables.

QUANTIFIERS



 Let P(x) is a statement with variable x and A is a 
set. 

 P a propositional function or also known as 
predicate if for each x in A, P(x) is a proposition. 

 Set A is the domain of discourse of P.
 Domain of discourse -> the particular domain of 

the variable in a propositional function.

QUANTIFIERS



 A predicate is a statement that contains variables.

Example:
P (x) : x > 3
Q (x,y) : x = y + 3
R (x,y,z) : x + y = z

QUANTIFIERS



x2 + 4x is an odd integer 
(domain of discourse is set of positive numbers).

x2 – x – 6 = 0 
(domain of discourse is set of real numbers).

x is rated as Research University in Malaysia
(domain of discourse is set of university in Malaysia).

Example



A predicate becomes a proposition if the variable(s) contained 
is(are)

 Assigned specific value(s)
 Quantified

Example
• P(x) : x > 3. 

What are the truth values of P(4) and  P(2)?
• Q(x,y) : x = y + 3. 

What are the truth values of Q(1,2) and Q(3,0)?

QUANTIFIERS
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Propositional functions 

• Let P(x) : “x is a multiple of 5”
• For what values of x is P(x) true?

• Let P(x) : x+1 > x
• For what values of x is P(x) true?

• Let P(x) : x + 3 =0
• For what values of x is P(x) true?



• Two types of quantifiers:
Universal
Existential

QUANTIFIERS



 Let A be a propositional function with domain of 
discourse B. The statement

for every x, A(x)
is universally quantified statement

 Symbol called a universal quantifier is used “for 
every”. 

 Can be read as “for all”, “for any”. 

QUANTIFIERS
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Universal quantifiers 

Represented by an upside-down A: 
 It means “for all”

Example
Let P(x) = x+1 > x

We can state the following:
 x P(x)
 English translation: “for all values of x, P(x) is true”
 English translation: “for all values of x, x+1>x is true”



 The statement can be written as

x A(x)
 Above statement is true if A(x) is true for every x in B

(false if A(x) is false for at least one x in B ). 
 OR   In order to prove that a universal quantification is true,

it  must be shown for ALL cases
In order to prove that a universal quantification is false, it          
must be shown to be false for only ONE case

 A value x in the domain of discourse that makes the statement A(x) 
false is called a counterexample to the statement.

QUANTIFIERS



 Let the universally quantified statement is
x (x2 ≥ 0)

Domain of discourse is the set of real numbers. 

 This statement is true because for every real number 
x, it is true that the square of x is positive or zero.

Example



 Let the universally quantified statement is
x (x2 ≤ 9)

Domain of discourse is a set B = {1, 2, 3, 4}

 When x = 4, the statement produce false value. 
 Thus, the above statement is false and the 

counterexample is 4.

Example



 Easy to prove a universally quantified statement is true 
or false if the domain of discourse is not too large. 

 What happen if the domain of discourse contains a 
large number of elements? 

 For example, a set of integer from 1 to 100, the set of 
positive integers, the set of real numbers or a set of 
students in School of Computing. It will be hard to 
show that every element in the set is true.

Use existential quantifier!!

QUANTIFIERS



 Let A be a propositional function with domain of 
discourse B. The statement

There exist x, A(x)
is existentially quantified statement

 Symbol called an existential quantifier is used 
“there exist”. 

 Can be read as “for some”, “for at least one”. 

QUANTIFIERS



 The statement can be written as

x A(x)
 Above statement is true if A(x) is true for at least one x

in B (false if every x in B makes the statement A(x) 
false).

 Just find one x that makes A(x) true!

QUANTIFIERS



 Let the existentially quantified statement is
x

Domain of discourse is the set of real numbers. 

 Statement is true because it is possible to find at least 
one real number x to make the proposition true. 

 For example, if x = 2, we obtain the true proposition as 
below

Example
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 Distributing a negation operator across a 
quantifier changes a universal to an existential and 
vice versa.

¬ (x P(x)) ;  x ¬ P(x) 

¬ (x P(x)) ;  x ¬ P(x)

Negation of Quantifiers



 Let P(x) : x is taking Discrete Structure course with 
the domain of discourse is the set of all students.

x P(x)
All students are taking Discrete Structure course.

x P(x)
There is some students who are taking Discrete 
Structure course.

Example



¬ x P(x)
None of the students are taking Discrete Structure course.

x ¬ P(x)
All students are not taking Discrete Structure course.

¬ (x P(x)) ;  x ¬ P(x)

Example



¬ x P(x)
Not all students are taking Discrete Structure course.

x ¬P(x)
There is some students who are not taking Discrete Structure 
course

¬ (x P(x)) ;  x ¬ P(x) 

Example
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Translating from English

 Consider “For every student in this class, that 
student has studied calculus”

 Rephrased: “For every student x in this class, x has 
studied calculus”
• Let C(x) be “x has studied calculus”
• Let S(x) be “x is a student in this class”

x C(x)
• True if the universe of discourse is all students in 

this class
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 What about if the universe of discourse is all 
students (or all people?)

• x (S(x)C(x))     X
• This is wrong!  Why? (because this statement says 

that all people are students in this class and have 
studied calculus)

• x (S(x)→C(x))   √

C(x) : “x has studied calculus”
S(x) : “x is a student in this class”

Translating from English
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 Consider:
• “Some students have visited Mexico”
• Rephrasing: “There exists a student who has visited 

Mexico”

 Let:
• S(x) be “x is a student”
• M(x) be “x has visited Mexico”

x M(x)
• True if the universe of discourse is all students

Translating from English
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• What about if the universe of discourse is all people?

x (S(x)  M(x))    

x (S(x) → M(x))     This is wrong!  Why? 

suppose someone is not student= F->T or  F->F, both 
make the statement  true (refer to truth table p → q)

S(x) :“x is a student”
M(x): “x has visited Mexico”

Translating from English
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 Consider   “Every student in this class has visited Canada or 
Mexico”

 Let, S(x) be “x is a student in this class”
M(x) be “x has visited Mexico”
C(x) be “x has visited Canada”

x (M(x)C(x))
(When the universe of discourse is all students in this class)

x (S(x)→(M(x)C(x))
(When the universe of discourse is all people or all students)

Translating from English



Mathematical systems consists:

 Axioms: assumed to be true.
 Definitions: used to create new concepts.
 Undefined terms: some terms that are not  

explicitly defined.
 Theorem

• Statement that can be shown to be true (under certain 
conditions)

• Typically stated in one of three ways:
• As Facts
• As Implications 
• As Bi-implications

Proof Techniques



Direct Proof  (Direct Method)
 Proof of those theorems that can be expressed in 

the form x (P(x) → Q(x)), D is the domain of 
discourse.

 Select a particular, but arbitrarily chosen, member a
of the domain D.

 Show that the statement P(a) → Q(a) is true. 
(Assume that P(a) is true).

 Show that Q(a) is true.
 By the rule of Universal Generalization (UG), 

x (P(x) → Q(x)) is true.

Proof Techniques



“For all integer x, if x is odd, then x2 is odd”
Or P(x) : x is an odd integer

Q(x) : x2 is an odd integer

The domain of discourse is set Z of all  integer.
Can verify the theorem  for certain value of x. 

x=3, x2 =9 ; odd
Or show that the square of an odd number is an odd number
Rephrased: “if n is odd, then n2 is odd”

Example
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Example



Indirect Proof 

 The implication p → q is equivalent to the 
implication (¬q → ¬p) (contrapositive)

 Therefore, in order to show that p → q  is true, 
one can also show that the implication (¬q → 
¬p) is true.

 To show that (¬ q  → ¬ p) is true, assume that 
the negation of q is true and prove that the 
negation of p is true.

Proof Techniques



P(n) : n2+3 is an odd number
Q(n) : n is even number

¬ Q(n) is true , n is not even (n is odd), so n=2k+1
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Which to use

 When do you use a direct proof versus an 
indirect proof?

 If it’s not clear from the problem, try direct 
first, then indirect second
 If indirect fails, try the other proofs
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Prove that “if n is an integer and n3+5 is odd, then 
n is even”

Via direct proof
• n3+5 = 2k+1 for some integer k (definition of 

odd numbers)
• n3 = 2k - 4
•
• Umm…

So direct proof didn’t work out.  
Next up: indirect proof

3 42  kn

Example
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Prove that “if n is an integer and n3+5 is odd, then n is even”

Via indirect proof
• Contrapositive: If n is odd, then n3+5 is even
• Assume n is odd, and show that n3+5 is even
• n=2k+1 for some integer k (definition of odd numbers)
• n3+5 = (2k+1)3+5 = 8k3+12k2+6k+6 = 2(4k3+6k2+3k+3)
• As 2(4k3+6k2+3k+3) is 2 times an integer, it is even

Example



Proof by Contradiction 

Assume that the hypothesis is true and that the 
conclusion is false and then, arrive at a contradiction.

Proposition “if P then Q”
Proof. Suppose P and ~Q

Since we have a contradiction, it must be that Q is true

Proof Techniques



Prove that “there are infinitely many prime numbers”.
Proof:
 Assume there are not infinitely many prime numbers, 

therefore they are can be listed,  i.e. p1,p2,…,pn

 Consider the number q = p1 x p2 x…x pn + 1. 
 q is either prime or not divisible, but not listed above. 

Therefore, q is a prime. However, it was not listed.
 Contradiction! Therefore, there are infinitely many 

primes numbers.
(Note: prime numbers, 2, 3, 5, 7,……)

Example



• For all real numbers x and y, if x+y 2, then either      
x  1 or y  1.

Proof
• Suppose that the conclusion is false. Then 

x < 1 and y <1
Add these inequalities,   x+y < 1+1 = 2  (x+y <2)

• Contradiction
• Thus we conclude that the statement is true.

Example



Suppose  a∈Z . If   a2 is even, then a is even
Proof
• Contradiction: Suppose a2 is even and a is not even. 
• Then a2 is even, and a is odd
• Let, (odd)

• Contradiction
• Thus we conclude that the statement is true.

12  ca

    122214412 2222  ccccca (odd)

Example
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Exercise

a)  xy P(x, y)

b) xy P(x, y)

Let P(x, y)  (x* y)2 1. Given the domain of discourse for x  and y is set of integer, Z.

Determine the truth value of the following statements. Give the value of x  and y that make the

statement TRUE or FALSE. 



Thank  You


