[image: A picture containing text, clipart

Description automatically generated]




——————————————————————————————————

SECR 2033
COMPUTER ORGANISATION AND ARCHITECTURE
_____________________________________________________________________

GROUP PROJECT


SECTION		: 01
LECTURER		: DR. ZURIAHATI BINTI MOHD YUNOS
PREPARED BY	: GROUP 03
GROUP MEMBERS	:

	NO.
	NAME
	MATRIC NO.

	1.
	MEK ZHI QING
	A20EC0077

	2.
	CHANG MIN XUAN
	A20EC0024

	3.
	KESHINIY A/P MOGAN 
	A20EC0057

	4.
	ZEREEN TEO HUEY HUEY
	A20EC0173







VIDEO LINK: https://youtu.be/HMcGeHG-O9Q













Table of Content
Member Responsibilities………………………………………………………………1
Coding and Explanation……………………………………………………………….2
Example of Inputs and Outputs……………………………………………………......9
Discussion and Conclusion……………………………………………….………….11
References……………………………………………………………………………12
Appendix……………………………………………………………………………..12















Member Responsibilities
	Name
	Description

	Mek Zhi Qing
	Program:
· Binary to decimal
· Bug solving
· Check and link all the function together
Report:
· Example of inputs and outputs
· Coding and explanation

	Chang Min Xuan
	Program:
· Looping function of the menu
Report:
· Coding and explanation

	Keshiniy A/P Mogan
	Program:
· Decimal to binary
Report:
· Discussion and conclusion

	Zereen Teo Huey Huey
	Program:
· Binary to decimal
Report:
· Coding and explanation


















Coding and Explanation
	In this project, we are required to apply our knowledge of assembly language that we had learned in the subject computer organisation and architecture. We use Visual Studio as a platform to conduct our project. Based on the task given by the lecturer, we are required to write an assembly program which can do the conversion function from 8-bit unsigned binary to decimal and from positive decimal to 8-bit binaries. 

[image: Scatter chart

Description automatically generated with medium confidence]







Figure 1: Define the variable
	First, we create the variables based on their data types. The question to be displayed is store in the variable of str 1 until str 14 which will be call later when the program is run to display it to the user. The others variable is uninitialized for the further usage in the program. 






[image: Table

Description automatically generated with low confidence]









Figure 2: L1 loop
	In the main program, L1 acts as a loop to display the menu of the conversion program. It will display the question to ask the user whether they want to do the conversion of 8-bit unsigned binary to decimal, conversion of positive decimal to 8-bit binaries or end the program. If the user enters 1, it will jump to the loop named BtoD to carry out the conversion of 8-bit unsigned binary to decimal. However, if the user enters 2, it will jump to the loop named DtoB to carry out the conversion of positive decimal to 8-bit binaries; if user enter 3, it will jump to the loop named Bye which leads to the end of the program. This process is done by using the function named cmp where the data enter by the user will be compared with the constant we set in the program. 
[image: Text

Description automatically generated]





Figure 3: BtoD loop
[image: Text

Description automatically generated]




Figure 4: L2 loop
	In the BtoD loop, the user is required to enter the 8-bit binary digits. After the statement of the conversion is display, it will jump to L2 for the further conversion process. In L2, the value enter by the user is now store in eax, the cmp function is used to compare it with 0. If eax is equal to 0, it will jump to L3; if not, the program will continue to run the code in L2. The value will divide by 10 by using the function div. Next, the remainder is push into stack. After that, the xor is used to restore the edx with 0. The value of ecx is increase 1 for the further use as a counter. This process is continue looping until the eax is equal to 0 and jump to L3.
[image: Text

Description automatically generated]
	


Figure 5: L3 loop
In L3 loop, the ecx is compared to 0 and if it is equal to 0 then the program will jump to L8. In contrast, it will continue in L3, and the remainder is pop from the stack and then compare with 0. If the value pop out is equal to 0, it will jump to L5 to decrease the ecx and counter while if the edx is equal to 1, it will continue the process in L3 which is move the value of edx to eax and move the ecx to count as the counter to be use in L6 loop. Then, the process will continue in L6.



[image: A picture containing graphical user interface

Description automatically generated]


Figure 6: L5 loop
	In L5 loop, this loop is used when the remainder pop out from edx is 0. The ecx and counter will decrease by 1 and it will then return to L3 loop for the further conversion. 
[image: Text

Description automatically generated]



Figure 7: L6 loop
	In L6 loop, the value in the count variable will compare to 1 and if it is equal to 1 the program will jump to L7 loop. If not equal, the program will multiply the value with 2. Then, the count will decrease by 1. The looping will be continuing to carry out all these steps until the count is equal to 1 to gain the decimal number. Then, the program will continue the process in L7 loop.
[image: Text

Description automatically generated]



Figure 8: L7 loop
In L7 loop, the value we obtain in decimal from L6 loop will be moved into total. The value of total will move to eax and add the eax value to dValue. Next, the counter and ecx value will decrease 1. After that, the process will continue by jumping back to L3 loop to pop the second number in stack from edx. All the steps will keep repeated until all 8-bit binary is done.

[image: Text, letter

Description automatically generated]



Figure 9: L8 loop
	When the 8-bit binary conversion is done, the process will go to L8 loop. The value in dValue will move to eax and display out by the function call writeDec. After the value is display, the process will jump to L1 loop to display the menu again. 
[image: A picture containing text

Description automatically generated]









Figure 10: DtoB loop
	In DtoB loop, the user is prompted to enter a decimal integer value by using the function readDec. Then, writeDec is called to display the decimal integer value entered at the end of string 11. It will then jump to the next loop. 






[image: Text, letter

Description automatically generated]





Figure 11: next loop
	In next loop, the decimal integer value previously entered by the user is compared with 0 by using cmp function. If eax value is equals to 0, it will jump to zero loop, or else, it will continue the loop. Then, the value is divided by 2, and the remainder is pushed into stack and stored in edx. The value of ecx is incremented by one. XOR instruction is used to set edx to 0. The looping will continue unless eax is equal to 0, then it will jump to zero loop.

[image: Text, letter

Description automatically generated]




Figure 12: then loop
	In then loop, the value of ecx is compared with 0. If ecx equals to 0, it will jump to last loop. If not equal, the remainder from stack will be pop out and move to eax. The function call writeDec is used to display the value stored in eax. Then, ecx is decremented by one. The looping will continue until ecx is equal to 0, then it will jump to last loop.

[image: A picture containing table

Description automatically generated]





Figure 13: zero loop
	In zero loop, ecx is compared with 8. If ecx equals to 8, it will jump to then loop. If not equal, 0 is moved into variable named value and it will be pushed into the stack and stored in edx. The ecx value is increased by one. The looping will continue until ecx equals to 8 and jump to then loop.

[image: Text

Description automatically generated]




Figure 14: last loop
	In last loop, string 13 is called and displayed at the output. Then, the looping ends and jump to L1 loop again to display menu.
[image: Graphical user interface, text

Description automatically generated]




Figure 15: Bye loop
	In Bye loop, string 12 will be called and displayed at the output. Then the program ends.


Example of Inputs and Outputs

[image: A picture containing text, screenshot, monitor, computer

Description automatically generated]
Example of inputs and outputs when the user choose 1 (convert binary to decimal)
[image: Graphical user interface, text

Description automatically generated]
Example of inputs and outputs when the user choose 2 (convert decimal to binary)


[image: A screenshot of a computer

Description automatically generated with medium confidence]
Example of inputs and outputs when the user choose 3






Discussion and Conclusion
 	Since it is a pandemic time and we have to stay at our own place, we carried out this project fully online. Even though we stayed apart, we were still determined to complete this project successfully with a great teamwork. We discussed about project through WhatsApp and decided our responsibilities on this project. We separated our responsibilities equally for both program and report. Since there was not a face-to-face communication, we faced difficulties when doing the program. For example, we have to wait for the looping and menu coding to finish in order to complete the coding part for Decimal to Binary and Binary to Decimal. Since we planned to complete this project before our final exams, it was quite stressful when we have to complete other course projects too. Fortunately, we were able to complete our project which includes the full coding, report, and a video before the deadline with the spirit of teamwork. 
            In order to complete this project, we applied our understandings and knowledge that we learnt from Computer Organization and Architecture which was taught by Dr Zuriahati Bt. Mohd Yunos. For example, we used many instructions such as CALL, JMP and MOV in order to execute the coding. We also used BYTE to declare all the strings and DWORD to declare the variables which will hold a value. Not only that, but we also used loop in order to repeat the process in the loop. Using Reverse Polish Nation, RPN helped us to change decimal value into binary and binary into decimal by pushing in and popping out the remainder from the stack. At both conversions part, the XOR is used to restore the edx to 0. Last but not least, the converted value is displayed with proper sentence.
           Last but not least, this project helped us to increase our understandings and knowledge in assembly language programming. Besides, it also gave us a chance to know and understand our groupmates more. Since programming languages are very important in developing software system or programs, it is important to understand assembly language. Lastly, we would like to thank Dr Zuriahati for teaching and helping us in the Computer Organization and Architecture course.



References
Pearson Education, 2010, Assembly Language for x86 Processors 6th Edition (Chapter 6), Kip R Irvine, last accessed on 2 July 2021
Stack Overflow, Convert binary to decimal,
https://stackoverflow.com/questions/33426296/how-can-i-convert-binary-to-decimal-in-8086-assembly-nasm, last accessed on 2 July 2021

Appendix
TITLE Project(main.asm)
; created on 28/6/2021
INCLUDE Irvine32.inc

.data
str1 BYTE ">>>Please select the conversion type:", 0
str2 BYTE "1. Binary to Decimal", 0
str3 BYTE "2. Decimal to Binary", 0
str4 BYTE "3. Exit", 0
str5 BYTE "--------------------------------------", 0
str6 BYTE "Enter your choice: ", 0
str7 BYTE "Please Enter 8-bit binary digits (e.g., 11110000): ", 0
str8 BYTE "The decimal integer of ", 0
str9 BYTE " is ", 0
str10 BYTE "Please Enter a decimal integer less than 256: ", 0
str11 BYTE "The binary of ", 0
str12 BYTE "Bye.", 0
str13 BYTE "b",0
str14 BYTE "d",0

dValue DWORD ?
total DWORD 0
counter DWORD ?
count DWORD ?
totald DWORD ?
value DWORD ?

.code
main PROC

; display menu
L1 :
	mov edx, offset str1
	call writestring
	call Crlf
	mov edx, offset str2
	call writestring
	call Crlf
	mov edx, offset str3
	call writestring
	call Crlf
	mov edx, offset str4
	call writestring
	call Crlf
	mov edx, offset str5
	call writestring
	call Crlf
	mov edx, offset str6
	call writestring

	call ReadDec
	cmp eax, 1
	je BtoD
	cmp eax, 2
	je DtoB
	cmp eax, 3
	je Bye

BtoD :
	mov edx, offset str7
	call writestring
	call readDec
	mov edx, offset str8
	call writestring
                   call writeDec
	mov edx, offset str13
	call writestring
	mov edx, offset str9
	call writestring
	mov ecx,0
	mov edx,0
	jmp L2
	


L2:
	cmp eax,0
	je L3
	mov ebx,10
	div ebx              ;divide the value by 10
	push edx             ;push the remainder into stack
	xor edx,edx
	inc ecx
	mov counter,ecx
	mov dValue,0
	jmp L2

L3:
	cmp ecx,0
	je L8
	pop edx               ; pop the remainder from stack
	cmp edx,0             ; compare the remainder with 0
	je L5
	mov eax,edx
	mov count, ecx
	jmp L6

;when the value pop out is equal to zero
L5:
	dec ecx
	dec counter
	jmp L3

;when the value pop out is equal to one
L6:
	 cmp count,1
	 je L7
	 mov ebx,2
	 mul ebx
	 dec count
	 jmp L6

L7:
	 mov total,eax
	 mov eax,total
	 add dValue,eax
	 dec counter 
	 dec ecx
	 jmp L3

L8:
	mov eax, dValue
	call writeDec
	mov edx, offset str14
	call writestring
	call Crlf
	call Crlf
	jmp L1

;Decimal to Binary
DtoB:
	mov edx, offset str10
	call writestring
	call readDec
	mov edx, offset str11
	call writestring
	call writeDec
	mov edx, offset str14
	call writestring
	mov edx, offset str9
	call writestring
	mov ecx,0
	mov edx,0
	jmp next

next:
	cmp eax,0
	je zero
	mov ebx,2
	div ebx              ;div the value by 2
	push edx             ;push remainder into stack
	inc ecx
	xor edx,edx          ;mov 0 to dx
	jmp next

then:
	cmp ecx,0
	je last
	pop edx              ; pop remainder from stack
	mov eax,edx
	call writeDec
	dec ecx
	jmp then
zero:
	cmp ecx, 8
	je then
	mov value,0
	push edx
	inc ecx
	jmp zero

last:
	mov edx, offset str13
	call writestring
	call Crlf
	call Crlf
	jmp L1
		
Bye:
    mov edx, offset str12
    call writestring


exit
main ENDP

END main
1

image2.png
[CR RN ]

1e
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

.data
strl
str2
str3
str4
strs
stré
str7
strg
stro

strle BYTE
strll BYTE
strl2 BYTE
strl3 BYTE
strl4 BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

"Please Enter 8-bit binary digits (e.g., 11110000): ", ©

>>>Please select the conversion type:", @
1. Binary to Decimal”, @
2. Decimal to Binary", @
3. Exit", @

Enter your choic

The decimal integer of ", @

is ", @

"Please Enter a decimal integer less than 256:
"The binary of ", ©

"Bye.", @

"b", @

"d", @

dValue DWORD ?
‘total DWORD @
counter DWORD ?
count DWORD ?
‘totald DWORD ?
value DWORD ?

2]




image3.png
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Ly
mov edx, offset strl
call writestring
call Ccrlf

mov edx, offset str2
call writestring
call Ccrlf

mov edx, offset str3
call writestring
call Ccrlf

mov edx, offset str4
call writestring
call Ccrlf

mov edx, offset str5
call writestring
call Ccrlf

mov edx, offset stré
call writestring

call ReadDec
cmp eax, 1
je BtoD

cmp eax, 2
je DtoB

cmp eax, 3
je Bye




image4.png
61
62
63
64
65
66
67
68
69
70
71
72
73
74

BtoD :

mov edx, offset str7
call writestring
call readDec

mov edx, offset str8
call writestring
call writeDec

mov edx, offset strl3
call writestring
mov edx, offset str9
call writestring
mov ecx, ©

mov edx, ©

jmp L2




image5.png
76
77
78
79
80
81
82
83
84
85
86

L2 :

cmp

eax, @

je L3

mov
div

xor
inc
mov
mov

Jmp

ebx, 10

ebx; divide the value by 10
push edx; push the remainder into stack

edx, edx
ecx

counter, ecx

dvalue, ©
L2




image6.png
88
89
90
91
92
93
94
95
96

L3 :

cmp ecx, @

je L8

pop edx; pop the remainder from stack
cmp edx, ©; compare the remainder with @
je L5

mov eax, edx

mov count, ecx

jmp L6




image7.png
98 L5 :

99 dec ecx
1e0 dec counter
101 jmp L3




image8.png
1e3
104
1e5
106
107
1e8
109

Lé :

cmp count, 1
je L7

mov ebx, 2
mul ebx

dec count
jmp L6




image9.png
111
112
113
114
115
116
117

L7 :

mov total, eax
mov eax, total
add dValue, eax
dec counter
dec ecx

jmp L3




image10.png
119
120
121
122
123
124
125
126

L8 :

mov eax, dValue

call writeDec

mov edx, offset stril4
call writestring

call Ccrlf

call Ccrlf

jmp L1




image11.png
129 ;Decimal to Binary
130| DtoB:

131 mov edx, offset strio
132 call writestring

133 call readDec

134] mov edx, offset stril
135 call writestring

136/ call writeDec

137 mov edx, offset strid
138 call writestring

139 mov edx, offset strg
140| call writestring

141 mov ecx,®

142 mov edx,®

143 Jmp next

144




image12.png
145,
146
147
148
149
150
151
152
153
154

next:

cmp eax,@
e zero
mov ebx,2
div ebx
push edx
inc ecx
xor edx, edx
Jmp next

;div the value by 2
spush remainder into stack

smov @ to dx




image13.png
155
156
157
158
159
160
161
162
163

‘then:
cmp ecx,@
Je last
pop edx
mov eax, edx
call writeDec
dec ecx
mp then

5 pop remainder from stack




image14.png
164
165
166
167
168
169
170
171

zero:
cmp ecx, 8
e then
mov value,®
push edx
inc ecx
jmp zero




image15.png
172] last:

173 mov edx, offset stri3
174] call writestring

175 call Crlf

176/ call Crlf

177 Jmp L1

178




image16.png
179
180
181
182
183

Bye:

mov edx, offset strl2
call writestring




image17.png
File

o -

Edit View Git Project Build Debug Test Analyze Tools Extensions ~ Window

- &' | Debug ~ Win32 -

emplate\Debug\Project.exe

Binary to Decimal
Decimal to Binary

[ SolutioRSNSRE

4 [%] Proj

4

Solut...

[J Ready

>>>Please select the conversion type
1. Binary to Decimal
2. Decimal to Binary

Enter your choice: 1

Please Enter 8-bit binary digits (e.g., 11110000)

The decimal integer of 10101010b is 170d

>>>Please select the conversion type
1. Binary to Decimal

2. Decimal to Binary

3. Exit

Enter your choice: 1

Please Enter 8-bit binary digits (e.g., 11110000)

The decimal integer of 1001b is 9d
>>>Please select the conversion type

1. Binary to Decimal
2. Decimal to Binary

Class... | Prop...

P Local Windows Debugger ~

10001001

10101010

00001001

Help

|& Live Share

Ch:8  Col: 11 MIXED

A Add to Source Control «
PM

1/7/2021

LF

£

sepadold  xoqoo)  Jaiojdxg Janies




image18.png
AutoSave E

5
c
<l

Layout Mailings eview View elp d 122 Share 1 Comments

emplate\Debug\Project.exe

LFind
_ &R
Please Enter a decimal integer less than 256

The binary of 20d is 00010100b

>>>Please select the conversion type
1. Binary to Decimal

2. Decimal to Binary

3. Exit

Enter your choice: 2
Please Enter a decimal integer less than 256
The binary of 137d is 10001001b

>>>Please select the conversion type
1. Binary to Decimal
2. Decimal to Binary

Enter your choice: 2
Please Enter a decimal integer less than 256
The binary of 55d is 00110111b

>>>Please select the conversion type
1. Binary to Decimal
2. Decimal to Binary

Enter your choice: 2
Please Enter a decimal integer less than 256
The binary of 221d is 11011101b

English (Unite

I L 320 B -
L Type here to search 1/7/2021 ~




image19.png
File  Edit View Git Project Build Debug Test Analyze Tools Extensions Window  Help

o - - @ <| Debug - win32 ~ P Local Windows Debugger ~ Auto - |2 Live Share &

Il B Microsoft Visual S

00110111b

i>>>Please select the conversion type
§1. Binary to Decimal
o 2. Decimal to Binary

sepadold  xoqoo)  Jaiojdxg Janies

Enter your choice: 2
Please Enter a decimal integer less than 256
The binary of 221d is 11011101b

>>>Please select the conversion type
1. Binary to Decimal
2. Decimal to Binary

Enter your choice: 3

Bye. i
C:\Users\user\Desktop\COA\template\Debug\Project. exe (process 1856) exited with code 0.
Press any key to close this window

Ch:8  Col: 11 MIXED  LF

Class... | Prop...

[J Ready A Add to Source Control «
0 PM

1/7/2021




image1.png
UTM

UNIVERSITI TEKNOLOGI MALAYSIA





