
04: Class and Object
Manipulations

Programming Technique II

(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

Friends of Classes

A friend class is a class that can access the private and protected
members of a class in which it is declared as friend. This is needed when
we want to allow a particular class to access the private and protected
members of a class.

Friends of Classes

 Friend: a function or class that is not a member of a class,
but has access to private members of the class

 A friend function can be a stand-alone function or a member
function of another class

 It is declared a friend of a class with friend keyword in the
function prototype

Friends of Classes

 Stand-alone function:
friend void setAVal(intVal&, int);

// declares setAVal function to be

// a friend of this class

 Member function of another class:
friend void SomeClass::setNum(int num)

// setNum function from SomeClass

// class is a friend of this class

Friends of Classes

 Class as a friend of a class:
class FriendClass

{

...

};

class NewClass

{

public:

friend class FriendClass;

// declares entire class as a friend

// of this class FriendClass

…
};

Friends of Classes
// C++ program to demonstrate the working of friend class

#include <iostream>

using namespace std; // forward declaration

class ClassB;

class ClassA

{ private: int numA; // friend class declaration

friend class ClassB;

public: // constructor to initialize numA to 12

ClassA() : numA(12) {}

};

class ClassB

{ private: int numB;

public: // constructor to initialize numB to 1

ClassB() : numB(1)

{} // member function to add numA // from ClassA and numB from ClassB

int add()

{ ClassA objectA;

return objectA.numA + numB;

} };

int main()

{

ClassB objectB;

cout << "Sum: " << objectB.add();

return 0;

}

Friends of Classes
#include <iostream>

using namespace std;

class Box

{ double width;

public:

friend void printWidth(Box box);

void setWidth(double wid); };

// Member function definition

void Box::setWidth(double wid)

{ width = wid; }

// Note: printWidth() is not a member function of any class.

void printWidth(Box box)

{

/* Because printWidth() is a friend of Box, it can directly access any member

of this class */

cout << "Width of box : " << box.width <<endl; }

// Main function for the program

int main()

{ Box box; // set box width without member function

box.setWidth(10.0);

// Use friend function to print the wdith.

printWidth(box);

return 0; }

Please watch this video:

https://www.youtube.com/watch?v=WCFGNdXSzus

FRIENDS OF CLASS

Pointers to Objects

In C++, a pointer holds the address of an object stored in memory.

The pointer then simply “points” to the object. The type of the object must

correspond with the type of the pointer.

Pointers to Objects

 You can declare a pointer to an object:

Rectangle *rPtr;

 Then, you can access public members via the pointer:
rPtr = &otherRectangle;

rPtrz->setLength(12.5);

(*rPtr).setLength(12.5);

cout << rPtr->getLenght() << endl;

rPtr is now pointing to

the object
otherRectangle

Declaring a pointer which

can only point to an object
of Rectangle

two types of syntax to

access object’s members

via pointer.

Pointers to Objects

Revisit the concept:

 A variable is meant to contain or hold a value.

 A pointer is meant to point to a variable (not to contain
value).
 Declaring a pointer does not create an object. Thus, no constructor

is executed.

 Example:
Rectangle *p;

Rectangle r;

p is not an object but a pointer.

No object is created here. Thus no

constructor is executed.

r is an object of class

Rectangle. The default

constructor is executed here.

Pointers to Objects

 The following declaration does not work: why?
Rectangle *p(); you may think of that a default

constructor will be executed here.

Wrong! A pointer does not have a

constructor, only objects have.

In fact, the compiler assumes this code as a
function prototype named p() which returns a

pointer of type Rectangle i.e.

Rectangle* p();

https://www.youtube.com/watch?v=-GrsH3aKUfA

#include <iostream>

using namespace std;

class Box {

public:

// Constructor definition

Box(double l = 2.0, double b = 2.0, double h = 2.0)

{ cout <<"Constructor called." << endl;

length = l; breadth = b; height = h; }

double Volume()

{ return length * breadth * height; }

private: double length;

// Length of a box

double breadth;

// Breadth of a box

double height;

// Height of a box

};

int main(void)

{

// Declare box1

Box Box1(3.3, 1.2, 1.5);

// Declare box2

Box Box2(8.5, 6.0, 2.0);

// Declare pointer to a class.

Box *ptrBox;

// Save the address of first object

ptrBox = &Box1;

// Now try to access a member using member access operator

cout << "Volume of Box1: " << ptrBox->Volume() << endl;

// Save the address of second object

ptrBox = &Box2;

// Now try to access a member using member access operator

cout << "Volume of Box2: " << ptrBox->Volume() << endl;

return 0;

}

Dynamically Allocating an Object

We can also use a pointer to dynamically allocate an object.

POINTERS TO OBJECTS

https://www.youtube.com/watch?v=-GrsH3aKUfA

Arrays of Objects

Arrays of Objects

 Objects can be the elements of an array:
InventoryItem inventory[40];

 Default constructor for object is used when array is defined

class InventoryItem {

private:

char *description; double cost; int units;

public:

InventoryItem();

InventoryItem(const char desc[]);

InventoryItem(const char desc[],double c, int u);

~InventoryItem();

:

}; // end of class declaration

Arrays of Objects

 Must use initializer list to invoke constructor that takes
arguments:

InventoryItem inventory[3] =

{"Hammer", "Wrench", "Pliers"};.

 If the constructor requires more than one argument, the
initializer must take the form of a function call:

Arrays of Objects

 It isn't necessary to call the same constructor for each object
in an array:

 Objects in an array are referenced using subscripts

 Member functions are referenced using dot notation:
inventory[2].setUnits(30);

cout << inventory[2].getUnits();

Example -Accessing Objects in an
Array

Program 1

Example -Accessing Objects in an
Array

Program 1

(continued)

#include<iostream>

using namespace std;

class Arafat

{ private:

string name; int age;

public:

void getName() { cout<<"Your name is : " << name << "\n"; } void setName() { cout<<"Enter your name : ";

cin>>name; } int setAge() { cout<<"Enter your age : "; cin>>age; }

void getAge() { cout<<"Your age is : " << age << "\n"; } };

int main()

{ int size = 4;

Arafat array[size];

//Array holding 4 object references of type, Arafat.

//Setting the name and age of properties of each object of Arafat class, stored in an array

for(int i=0; i<size; i++)

//accessing array elements using length variable in for-loop

{ array[i].setName(); array[i].setAge(); }

//Getting the name and age of properties of each object of Arafat class, stored in an array

for(int i=0; i<size; i++)

//accessing array elements using length variable in for-loop

{ array[i].getName(); array[i].getAge(); } }

Arrays of Objects (Example)

ARRAYS OF OBJECTS

https://www.youtube.com/watch?v=eSpp3wXDMVE

Objects and Functions

Objects as Function Parameters

Passing Objects to Functions

 Can pass an object to a function in 3 ways:
 Pass-by-value

 Pass-by-reference

 Pass-by-reference via pointer

To pass an object as an argument we write the object name as the argument
while calling the function the same way we do it for other variables

function_name(object_name);

Example 1: Pass-By-Value
#include <iostream>

using namespace std;

class Circle

{ private: double radius;

public:

Circle(double r){radius=r;}

double getRadius(){return radius;}

double getArea(){return radius*radius*3.14;}

};

void printCircle(Circle a)

{ cout<<a.getRadius()<<" "<<a.getArea();}

int main()

{ Circle ab(5.5);

printCircle(ab);

return 0;

}
27

class Count

{ public: int num;

Count(int c){num = c;}

Count(){num=0;}

};

void increment(Count c)

{ c.num++; }

int main()

{ Count myCount;

for(int i=0;i<10;i++)

increment(myCount);

cout<<myCount.num;

return 0;

}
28

Example 2: Pass-By-Value

Example 1: Pass-By-Reference
#include <iostream>

using namespace std;

class Circle

{ private: double radius;

public:

Circle(double r){radius=r;}

double getRadius(){return radius;}

double getArea()

{return radius*radius*3.14;}

};

void printCircle(Circle &a)

{ cout<<a.getRadius()<<" "<<a.getArea();}

int main()

{ Circle ab(5.5);

printCircle(ab);

return 0;

}

29

class Count

{ public: int num;

Count(int c){num = c;}

Count(){num=0;}

};

void increment(Count &c)

{ c.num++; }

int main()

{ Count myCount;

for(int i=0;i<10;i++)

increment(myCount);

cout<<myCount.num;

return 0;

}
30

Example 2: Pass-By-Reference

Pass-By-Reference via Pointer
#include <iostream>

using namespace std;

class Circle

{ private: double radius;

public:

Circle(double r){radius=r;}

double getRadius(){return radius;}

double getArea(){return radius*radius*3.14;}

};

void printCircle(Circle *a)

{ cout<<a->getRadius()<<" "<<a->getArea();}

int main()

{ Circle ab(5.5);

printCircle(&ab);

return 0;

}
31

class Count

{ public: int num;

Count(int c){num = c;}

Count(){num=0;}

};

void increment(Count *c)

{ c->num++; }

int main()

{ Count myCount;

for(int i=0;i<10;i++)

increment(&myCount);

cout<<myCount.num;

return 0;

}
32

Example 2: Pass-By-Reference
via Pointer

Returning Objects from Functions

Syntax:
return object_name;

https://www.youtube.com/watch?v=FX-g9Zwinlw

#include <iostream>

using namespace std;

class ClassName {

private: int x, y;

public:

ClassName readData()

{

ClassName temp;

cout << "please input x and y "<<endl;

cin>>x;

cin>>y;

temp.x=x+2;

temp.y=y*3;

return temp;

}

void display(){ cout << " x: " << x << endl << " y " << y <<endl;

}

};

int main()

{

ClassName o1, o2;

o2 = o1.readData();

o1.display();

o2.display();

return 0;

}

Example

Operator Overloading

https://www.youtube.com/watch?v=DVMZPOt816E

Operator Overloading

 Operators such as =, +, and others can be redefined when
used with objects of a class

 The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,

operator+ to overload the + operator, and

operator= to overload the = operator

 Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

 Overloaded operator function definition goes with other
member functions

Operator Overloading

Operators such as =, +, and others can be redefined
when used with objects of a class. Prototype:

void operator=(const SomeClass &rval)

 Operator is called via object on left side

return
type

function
name

parameter for
object on right

side of operator

Invoking an Overloaded Operator

 Operator can be invoked as a member function:
object1.operator=(object2);

 It can also be used in more conventional manner:
object1 = object2;

class PersonInfo
{
private:

char *name; int age;
public:

PersonInfo(char *n, int a) // Constructor
{ name = new char[strlen(n) + 1];
strcpy(name, n); age = a; }

// Copy Constructor
PersonInfo(const PersonInfo &obj)

{ name = new char[strlen(obj.name) + 1];
strcpy(name, obj.name);
age = obj.age; }

~PersonInfo() // Destructor
{ delete [] name; }

// Accessor functions
const char *getName()

{ return name; }

int getAge()
{ return age; }

// Overloaded = operator
void operator=(const PersonInfo

&right)
{ delete [] name;
name = new

char[strlen(right.name) + 1];
strcpy(name, right.name);
age = right.age; } };

PersonInfo person1("Molly McBride", 27);
PersonInfo person2 = person1;

Example: operator=

 Overloaded operator can return a value

Returning a Value

class Point2d

{

public:

double operator-(const point2d &right)

{ return sqrt(pow((x-right.x),2)

+ pow((y-right.y),2)); }

...

private:

int x, y;

};

Point2d point1(2,2), point2(4,4);

// Compute & display distance between 2 points

cout << point2 – point1 << endl;

// displays 2.82843

Returning a Value

 Return type the same as the left operand supports notation
like:

object1 = object2 = object3;

 Function declared as follows:
const SomeClass operator=(const someClass &rval)

 In function, include as last statement:
return *this;

Example
// Overloaded = operator
const PersonInfo PersonInfo::operator=(const PersonInfo

&right)
{

delete [] name;
name = new char[strlen(right.name) + 1];
strcpy(name, right.name);
age = right.age;

return *this;
}

PersonInfo person1("Molly McBride", 27);
PersonInfo person2, person3;
person3=person2=person1;

The this Pointer

 this: predefined pointer available to a class’s member
functions

 Always points to the instance (object) of the class whose
function is being called

 Is passed as a hidden argument to all non-static member
functions

 Can be used to access members that may be hidden by
parameters with same name

Example: this Pointer

class SomeClass

{

private:

int num;

public:

void setNum(int num)

{ this->num = num; }

...

};

Exercise

• Write definition of the 2 overloaded operator functions

• Write an appropriate main function to test the class.

class Rectangle {

int height, width;

public:

Rectangle(int a=0,int b=0)

{height=b; width=a;}

int getWidth() { return width;}

int getHeight() { return height;}

friend Rectangle operator+(Rectangle,Rectangle);

Rectangle operator-(Rectangle);

};

Notes on
Overloaded Operators

 Can change meaning of an operator

 Cannot change the number of operands of the operator

 Only certain operators can be overloaded. Cannot overload
the following operators:

?: . .* :: sizeof

C++ operators that may be
overloaded

47

Overloading Types of Operators

 ++, -- operators overloaded differently for prefix vs. postfix
notation

 Overloaded relational operators should return a bool value

 Overloaded stream operators >>, << must return reference
to istream, ostream objects and take istream,
ostream objects as parameters

Example: Relational Operators
class FeetInches {
private:

int feet; int inches;
void simplify();

public:
FeetInches(int f = 0, int i = 0);
void setFeet(int f);
void setInches(int i);
int getFeet() const;
int getInches() const;
FeetInches operator + (const FeetInches &); // Overloaded +
FeetInches operator - (const FeetInches &); // Overloaded -
FeetInches operator ++ (); // Prefix ++
FeetInches operator ++ (int); // Postfix ++
bool operator > (const FeetInches &); // Overloaded >
bool operator < (const FeetInches &); // Overloaded <
bool operator == (const FeetInches &); // Overloaded ==

friend ostream &operator << (ostream &, const FeetInches &);
friend istream &operator >> (istream &, FeetInches &);

};

Example: Prefix and Postfix

//Overloading prefix ++

FeetInches FeetInches::operator ++ ()

{

++inches;

simplify();

return *this;

}

//Overloading postfix ++

FeetInches FeetInches::operator ++ (int)

{

FeetInches temp(feet, inches);

inches++;

simplify();

return temp;

}

FeetInches first, second(1,5);

first=++second;
first=second++;

Dummy parameter

Copy to store data before increment

Example: Relational Operator

bool FeetInches::operator > (const FeetInches &right){

bool status;

if (feet > right.feet)

status = true;

else if (feet == right.feet && inches > right.inches)

status = true;

else

status = false;

return status;

}
FeetInches first, second;
//setting first & second here
if (first > second)

cout << "first is greater than second.\n";

Example: >> and <<

ostream &operator<<(ostream &strm, const FeetInches &obj){

strm << obj.feet << " feet, " << obj.inches << " inches";

return strm;

}

istream &operator >> (istream &strm, FeetInches &obj)

{ // Prompt the user for the feet.

cout << "Feet: "; strm >> obj.feet;

// Prompt the user for the inches.

cout << "Inches: "; strm >> obj.inches;

// Normalize the values.

obj.simplify();

return strm;

}

FeetInches first;
//setting first feet=6 lnches=5
cin>>first;
cout << first;

Overloaded [] Operator

 Can create classes that behave like arrays, provide bounds-
checking on subscripts

 Must consider constructor, destructor

 Overloaded [] returns a reference to object, not an object
itself

Object Conversion

Object Conversion

 Can change meaning of an operatorType of an object can be
converted to another type

 Automatically done for built-in data types

 Must write an operator function to perform conversion

 To convert an FeetInches object to an int:

FeetInches::operator int() {return feet;}

 Assuming distance is a FeetInches object, allows
statements like:

FeetInches distance;

int d = distance;

