04: Class and Object
Manipulations

Programming Technique Il
(SCSJ1023)

Adapted from Tony Gaddis and Barret Krupnow (2016), Starting out with
C++: From Control Structures through Objects

innovative e entrepreneurial e global www.utm.my

Friends of Classes

A friend class is a class that can access the private and protected
members of a class in which it is declared as friend. This is heeded when

we want to allow a particular class to access the private and protected
members of a class.

innovative e entrepreneurial e global www.utm.my

Friends of Classes

Friend: a function or class that is not a member of a class,
but has access to private members of the class

A friend function can be a stand-alone function or a member
function of another class

& It is declared a friend of a class with £riend keyword in the
function prototype

innovative e entrepreneurial e global

Friends of Classes

Stand-alone function:
friend void setAval (intVal&, int) ;
// declares setAVal function to be
// a friend of this class

Member function of another class:
friend void SomeClass: :setNum(int num)
// setNum function from SomeClass
// class is a friend of this class

innovative e entrepreneurial e global www.utm.my

Friends of Classes

Class as a friend of a class:
class FriendClass

{

};

class NewClass
{
public:
friend class FriendClass;

// declares entire class as a friend
// of this class FriendClass

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Friends of Classes

#include <iostream>
using namespace std;
class ClassB;

class ClassA

{ private: int numA;
friend class ClassB;
public:

ClassA() : numA(12) {}
};

class ClassB

{ private: int numB;
public:

ClassB() : numB(1)

{3

int add()

{ ClassA objectA,;
return objectA.numA + numB;
y

int main()

{

ClassB objectB;

cout << "Sum: " << objectB.add();
return O;

}

innovative e entrepreneurial e global www.utm.my

Friends of Classes

@ UNIVERSITI TEKNOLOGI muvs/

#include <iostream>
using namespace std;
class Box
{ double width;
public:
friend void printWidth(Box box) ;
void setWidth (double wid); };
// Member function definition
void Box::setWidth (double wid)
{ width = wid; }
// Note: printWidth() is not a member function of any class.
void printWidth (Box box)
{
/* Because printWidth() is a friend of Box, it can directly access any member
of this class */
cout << "Width of box : " << box.width <<endl; }
// Main function for the program
int main ()
{ Box box; // set box width without member function
box.setWidth (10.0) ;
// Use friend function to print the wdith.
printWidth (box) ;
return 0; }

innovative e entrepreneurial e global www.utm.my

Please watch this video:
https://www.youtube.com/watch?v=WCFGNdXSzus

FRIENDS OF CLASS

www.utm.my

@ UNIVERSITI TEKNOLOGI muvs/

Pointers to Objects

In C++, a pointer holds the address of an object stored in memory.
The pointer then simply “points” to the object. The type of the object must
correspond with the type of the pointer.

My Obj

follow address
S

h&yf%r *MyPtr;
get address
MyClass *MyPtr;
-
EMy Ok ;

MyClass MyOkj;

innovative e entrepreneurial e global www.utm.my

Pointers to Objects

You can declare a pointer to an object:
Rectangle *rPtr;

Then, you can access public members via the pointer:
rPtr = &otherRectangle;
rPtrz->setLength(12.5) ;

(*rPtr) .setLength (12.5);
cout << rPtr->getlLenght() << endl;

innovative e entrepreneurial e global www.utm.my

Pointers to Objects

Revisit the concept:

A variable is meant to contain or hold a value.

A pointer is meant to point to a variable (not to contain
value).

¢ Declaring a pointer does not create an object. Thus, no constructor
is executed.

p IS not an object but a pointer.

Exam ple: No object is created here. Thus no
constructor is executed.
Rectangle *p;

Rectangle r; r isan object of class
Rectangle. The default

constructor is executed here.

innovative e entrepreneurial e global www.utm.my

Pointers to Objects

The following declaration does not work: why?
Rectangle *p () ;

https://www.youtube.com/watch?v=-GrsH3aKUfA

innovative e entrepreneurial e global

UNIVERSITI TEKNOLOGI MALAYSIA

innovative e

#include <iostream>

using namespace std;

class Box {

public:

// Constructor definition

Box (double 1 = 2.0, double b = 2.0, double h = 2.0)

{ cout <<"Constructor called." << endl;

length = 1; breadth = b; height = h; }

double Volume ()

{ return length * breadth * height; }

private: double length;

// Length of a box

double breadth;

// Breadth of a box

double height;

// Height of a box

}i

int main(void)

{

// Declare boxl

Box Box1 (3.3, 1.2, 1.5);

// Declare box2

Box Box2 (8.5, 6.0, 2.0);

// Declare pointer to a class.

Box *ptrBox;

// Save the address of first object

ptrBox = &Boxl;

// Now try to access a member using member access operator
cout << "Volume of Boxl: " << ptrBox->Volume () << endl;
// Save the address of second object

ptrBox = &Box2;

// Now try to access a member using member access operator
cout << "Volume of Box2: " << ptrBox->Volume () << endl;
return 0;

Dynamically Allocating an Object

We can also use a pointer to dynamically allocate an object.

1 // Define a Rectangle pointer.
4 Rectangle *rectPtr;

/4 Dynamically allocate a Rectangle object.
5 rectPtr = new Rectangle;

f/ Store values in the cobject's width and length.
1 rectPtr-=setWidth(10.0);

Y rectPtr-=setlength(l5.0);

10

11 // Delete the cbject from memory.

12 delete rectPtr;

13 rectPtr = 0:

innovative e entrepreneurial e global www.utm.my

POINTERS TO OBIJECTS

https://www.youtube.com/watch?v=-GrsH3aKUfA

www.utm.my

Arrays of Objects

Arrays of Objects

class InventoryItem ({
private:
char *description; double cost; int units;
public:
InventoryItem() ;
InventoryItem(const char desc]|]);
InventoryItem(const char desc|[],double c, int u);
~InventorylItem() ;

}; // end of class declaration

Objects can be the elements of an array:
InventoryItem inventory[40];

Default constructor for object is used when array is defined

innovative e entrepreneurial e global www.utm.my

Arrays of Objects

Must use initializer list to invoke constructor that takes
arguments:

InventoryItem inventory[3] =
{"Hammer", "Wrench", "Pliers"};.

If the constructor requires more than one argument, the
initializer must take the form of a function call:

Inventoryltem inventory[3] = { InventoryItem("Hammer", 6.95, 12),
Inventoryltem("Wrench", 8.75, 20},
InventoryItem("Pliers”, 3.75, 10} };

innovative e entrepreneurial e global www.utm.my

Arrays of Objects

It isn't necessary to call the same constructor for each object
in an array:

Inventoryltem inventory[3] = { "Hammer",

Inventoryltem("Wrench", 8.75, 20},
"Pliers" };

Objects in an array are referenced using subscripts

Member functions are referenced using dot notation:
inventory[2] .setUnits (30) ;

cout << inventory[2] .getUnits() ;

innovative e entrepreneurial e global www.utm.my

@ UNIVERSITI TEKNOLOGI MALAYSIA

Example -Accessing Objects in an
Array

Program 1

// This program demonstrates an array of class cbjects.
tinclude <iostream>

tinclude <iomanip=

tinclude "Inventoryltem.h"”

using namespace std;

int main()
{
const int NUM ITEMS = 5;
Inventoryltem inventory[NUM ITEMS] =
InventoryItem("Hammer", 6.95, 12},
InventoryItem({ "Wrench", 8.75, 20),
InventoryItem("Fliers”, 3.75, 10},
Inventoryltem({"Ratchet”, 7.95, 14},
Inventoryltem|"Screwdriver”, 2.50, 22) }:

cout << setw(ld4) <<"Inventory Item"
<< getw(B) << "Cost" << setw(8)
<< getw(l6) << "Units On Hand\n";
COUt € M m e wn';

innovative e entrepreneurial e global www.utm.my

xample -Accessing Objects in an
ﬁ/

Array

Program 1
(continued)

for (int 1 = 0; 1 < NUM ITEMS; i++)

{
cout =< setw(ld4) << inventory[i].getDescription();
cout =< setw(d) << inventory[i].getlost();
cout << setw(7) << inventory[i].getUnits() << endl;
h

return 0:

Program Output

Inventory Item Cost Units On Hand
Hammer B.95 12
Wrench 8.75 20
Pliers 3.75 10
Ratchet 7.95 14
Screwdriver 2.5 22

innovative e entrepreneurial e global www.utm.my

Y UNIVERSITI TEKNOLOGI MALAYSIA

Arrays of Objects (Example)

#include<iostream>
using namespace std;
class Arafat
{ private:
string name; int age;
public:
void getName() { cout<<"Your name is : " << name << "\n"; } void setName() { cout<<"Enter your name : ";
cin>>name; } int setAge() { cout<<"Enter your age : "; cin>>age; }
void getAge() { cout<<"Your age is : " << age <<"\n"; } };
int main()
{ intsize = 4;
Arafat array[size];
//Array holding 4 object references of type, Arafat.
//Setting the name and age of properties of each object of Arafat class, stored in an array

for(int i=0; i<size; i++)

/laccessing array elements using length variable in for-loop

{ array[i].setName(); array[i].setAge(); }

//Getting the name and age of properties of each object of Arafat class, stored in an array

for(int i=0; i<size; i++)
/laccessing array elements using length variable in for-loop
{ array[i].getName(); array[i].getAge(); } }

innovative e entrepreneurial e global www.utm.my

ARRAYS OF OBJECTS

https://www.youtube.com/watch?v=eSpp3wXDMVE

www.utm.my

Objects and Functions

Objects as Function Parameters

Passing Objects to Functions

Can pass an object to a function in 3 ways:
¢ Pass-by-value
¢ Pass-by-reference
¢ Pass-by-reference via pointer

To pass an object as an argument we write the object name as the argument
while calling the function the same way we do it for other variables

function_name(object_name);

innovative e entrepreneurial e global www.utm.my

#include <iostream>
using namespace std;
class Circle
{ private: double radius;
public:
Circle (double r) {radius=r;}
double getRadius () {return radius;}
double getArea () {return radius*radius*3.14;}
I
void printCircle(Circle a)

{ cout<<a.getRadius () <<" "<<a.getArea ()}

int main ()
{ Circle ab(5.5);
printCircle (ab) ;

return 0O;

UTM
@ ''''''''''''''''''''''' /Example 2: PaSS'By'Value

—

class Count

{ public: int num;
Count(int c¢) {num = c;}
Count () {num=0;}

};

void increment (Count c)

{ c.num++; }

int main ()
{ Count myCount;
for (int i=0;i1<10;1i++)
increment (myCount) ;
cout<<myCount.num;

return O;

innovative e entrepreneurial e global www.utm.my

@MIL;MA/E(ampIe 1: Pass-By-Reference
’ #include <iostream>

using namespace std;
class Circle
{ private: double radius;
public:
Circle(double r){radius=r; }
double getRadius () {return radius;}
double getArea ()
{return radius*radius*3.14;}
i
void printCircle (Circle &a)
{ cout<<a.getRadius () <<" "<<a.getArea ()}
int main ()
{ Circle ab(5.5);
printCircle (ab) ;

return 0;

innovative e entrepreneurial e global www.utm.my

@MXM}ﬁample 2: Pass-By-Reference
ﬁ/

class Count

{ public: int num;
Count(int c¢) {num = c;}
Count () {num=0;}

};

void increment (Count &c)

{ c.num++; }

int main ()
{ Count myCount;
for(int i=0;i<10;i++)
increment (myCount) ;
cout<<myCount.num;

return 0O;

innovative e entrepreneurial e global www.utm.my

#include <iostream>
using namespace std;
class Circle
{ private: double radius;
public:
Circle (double r) {radius=r;}
double getRadius () {return radius;}
double getArea () {return radius*radius*3.14;}
I
void printCircle(Circle *a)
{ cout<<a->getRadius () <<" "<<a->getArea ()}
int main ()
{ Circle ab(5.5);
printCircle (&ab) ;

return 0O;

@H@Mﬂample 2: Pass-By-Reference
4 via Pointer

class Count
{ public: int num;
Count (int c¢) {num = c;}
Count () {num=0;}
};
void increment (Count *c)
{ c->num++; }
int main ()
{ Count myCount;
for(int i=0;i<10;i++)
increment (&myCount) ;
cout<<myCount.num;

return 0O;
}

innovative e entrepreneurial e global www.utm.my

Returning Objects from Functions

https://www.youtube.com/watch?v=FX-g9Zwinlw

www.utm.my

©®UT™ Example

#include <iostream>
using namespace std;
class ClassName {
private: 1int x, y;
public:

ClassName readData()

ClassName temp;

cout << "please input x and y "<<endl;
cin>>x;

cin>>y;

temp.x=x+2;

temp.y=y*3;

return temp;
void display(){ cout << " x: " << x << endl << " y " << y <<endl;

}i

int main()

{
ClassName ol, 02;
02 = ol.readData();
ol.display();
o2.display ()

return 0;

innovative e entrepreneurial e global www.utm.my

Operator Overloading

https://www.youtube.com/watch?v=DVMZPOt816E

innovative e entrepreneurial e global www.utm.my

Operator Overloading

Operators such as =, +, and others can be redefined when
used with objects of a class

The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,

operator+ to overload the + operator, and
operator=to overload the = operator

Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

Overloaded operator function definition goes with other
member functions

innovative e entrepreneurial e global www.utm.my

Operator Overloading

&> Operators such as =, +, and others can be redefined
when used with objects of a class. Prototype:

void operator=(const SomeClass &rval)

. parameter for
return function object on right

type name side of operator

Operator is called via object on left side

innovative e entrepreneurial e global www.utm.my

Invoking an Overloaded Operator

Operator can be invoked as a member function:
objectl.operator=(object2) ;

It can also be used in more conventional manner:
objectl = object2;

innovative e entrepreneurial e global www.utm.my

Example: operator=

class Personinfo
{
private:
char *name; int age;
public:
Personinfo(char *n, int a) // Constructor
{ name = new char[strlen(n) + 1];
strcpy(name, n); age=a;}

// Copy Constructor
Personinfo(const Personinfo &obj)
{ name = new char[strlen(obj.name) + 1];
strcpy(name, obj.name);
age = obj.age; }

~Personlinfo() // Destructor
{ delete [] name; }

innovative e entrepreneurial e global

// Accessor functions
const char *getName()
{ return name; }

int getAge()
{ return age; }

// Overloaded = operator

void operator=(const Personinfo
&right)

{ delete [] name;

name = new
char[strlen(right.name) + 1];

strcpy(name, right.name);
age =right.age; } };

www.utm.my

Returning a Value

Overloaded operator can return a value

class Point2d

{
public:

double operator- (const point2d &right)

{ return sqrt(pow((x-right.x) ,h2)
+ pow((y-right.y) ,2)); }

private:
int x, y;
};
Point2d pointl (2,2), point2(4,4);
// Compute & display distance between 2 points

cout << point2 - pointl << endl;

// displays 2.82843

Returning a Value

Return type the same as the left operand supports notation
like:
objectl = object2 = object3;

Function declared as follows:
const SomeClass operator=(const someClass &rval)

& In function, include as last statement:

return *this;

innovative e entrepreneurial e global www.utm.my

Example

// Overloaded = operator

const Personinfo Personinfo::operator=(const Personinfo
&right)
{

delete [] name;
name = new char[strlen(right.name) + 1];
strcpy(name, right.name);

age = right.age;
retur

innovative e entrepreneurial e global www.utm.my

The this Pointer

this: predefined pointer available to a class’s member
functions

Always points to the instance (object) of the class whose
function is being called

Can be used to access members that may be hidden by
parameters with same name

Is passed as a hidden argument to all non-static member
functions

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIIIIII

7 Example: this Pointer

class SomeClass
{
private:
int num;
public:
void setNum(int num)

{ this->num = num; }

};

innovative e entrepreneurial e global www.utm.my

uuuuuuuuuuuuuuuuuuuuuuu SIA E [)

* Write definition of the 2 overloaded operator functions
* Write an appropriate main function to test the class.

class Rectangle {
int height, width;
public:
Rectangle (int a=0,int b=0)
{height=b; width=a;}
int getWidth() { return width;}
int getHeight () { return height;}
friend Rectangle operator+ (Rectangle,Rectangle) ;

Rectangle operator- (Rectangle) ;

};

innovative e entrepreneurial e global www.utm.my

Notes on

Overloaded Operators

& Can change meaning of an operator

Cannot change the number of operands of the operator

Only certain operators can be overloaded. Cannot overload
the following operators:

?: . L x :: sizeof

innovative e entrepreneurial e global

C++ operators that may be

overloaded
+ - w / % .
> += -= k= /= %=
<<= == 1= <= p & &
& | ~ l = <
"= b= | = << > ==
| | ++ - o ' -

[] () new delete

Overloading Types of Operators

++, —— operators overloaded differently for prefix vs. postfix
notation

Overloaded relational operators should return a bool value

Overloaded stream operators >>, << must return reference
to istream, ostreamobjects and take istream,
ostream objects as parameters

innovative e entrepreneurial e global www.utm.my

LIZ!IM/ExampIe: Relational Operators

’ class FeetInches {

private:
int feet; int inches;
void simplify();
public:
Feetinches(intf =0, inti = 0);
void setFeet(int f);
void setIinches(int i);
int getFeet() const;
int getinches() const;
Feetinches operator + (const Feetinches &); // Overloaded +
Feetinches operator - (const Feetinches &); // Overloaded -
Feetinches operator ++ (); // Prefix ++

bool operator > (const Feetinches &); /f Overloaded >
bool operator < (const Feetinches &); /f Overloaded <
bool operator == (const Feetinches &); /Y Overloaded ==

friend ostream &operator << (ostream &, const Feetinches &);
friend istream &operator >> (istream &, Feetinches &);

}.
’
innovative e entrepreneurial e global www.utm.my

Example: Prefix and Postfix

//Overloading prefix ++
FeetIinches Feetinches::operator ++ ()

{

++inches;

simplify();
return *this;

}
//Overloading postfix ++

Feetinches Feetinches::operator ++ (int) Dummy parameter

{

FeetIinches temp(feet, inches); Copy to store data before increment
inches++;
simplify();
return temp;

}

innovative e entrepreneurial e global www.utm.my

IIIIIIIIIIIIIIIIIIIIII

Example: Relational Operator

bool Feetinches::operator > (const Feetinches &right){
bool status;
if (feet > right.feet)
status = true;
else if (feet == right.feet && inches > right.inches)
status = true;
else

status = false;
return status;

innovative e entrepreneurial e global www.utm.my

Example: >> and <<

ostream &operator<<(ostream &strm, const FeetIinches &obj){
strm << obj.feet << " feet, " << obj.inches << " inches";
return strm;
}
istream &operator >> (istream &strm, Feetinches &obj)
{ // Prompt the user for the feet.
cout << "Feet: "; strm >> obj.feet;
// Prompt the user for the inches.
cout << "Inches: "; strm >> obj.inches;
// Normalize the values.
obj.simplify();
return strm;

}

innovative e entrepreneurial e global www.utm.my

Overloaded [] Operator

Can create classes that behave like arrays, provide bounds-
checking on subscripts

Must consider constructor, destructor

Overloaded [] returns a reference to object, not an object
itself

innovative e entrepreneurial e global www.utm.my

Object Conversion

Object Conversion

Can change meaning of an operatorType of an object can be
converted to another type

Automatically done for built-in data types
Must write an operator function to perform conversion

To convert an FeetInches object toan int:

FeetInches: :operator int() {return feet;}

Assuming distance is a Feet Inches object, allows
statements like:

Feetinches distance;
int d = distance;

innovative e entrepreneurial e global www.utm.my

