

PART A: OBJECTIVE QUESTIONS (20 MARKS)

1. Which of the following is NOT part of computers classification by size and power?
 - A. Personal computer
 - B. Printer
 - C. Workstations
 - D. Supercomputer

2. Computer organization refers to:
 - A. Physical aspects
 - B. Logical aspects
 - C. Data types
 - D. Instruction set

3. Which of the following is TRUE about computer family?
 - A. Same organization but different architecture
 - B. Same architecture but different organization
 - C. Same organization and same architecture
 - D. Different architecture and different organization

4. The structure of the computer describes
 - A. the way each component operate.
 - B. the way components are interrelated.
 - C. how IBM design its CPU.
 - D. the way OS interact with application programs.

5. Which of the following is NOT part of computer function?
 - A. Control
 - B. Data storage
 - C. Memory size determination
 - D. Data processing

6. Which statement is FALSE for software program execution approach?
 - A. Build into (wired into) computer hardware.
 - B. Control signals through instruction codes.
 - C. Need an interpreter to “speak machine”
 - D. While less speed, it is easily reprogrammable

7. Which of the following is a characteristic of Von Neumann computer model?
 - A. Stored program
 - B. Quad processor
 - C. Genetic computer
 - D. Parallel processing

8. Which of the following is NOT part of computer level hierarchy?
 - A. Digital logic level
 - B. Assembly language level
 - C. Machine level
 - D. Design level

9. Signed numbers are represented as follows EXCEPT:

- A. Signed magnitude
- B. One's complement
- C. Most significant bit
- D. Two's complement

10. What is the decimal equivalent of the 8-bit two's complement number 1110 1101?

- A. -237
- B. -19
- C. -18
- D. 237

11. Give the result for $32_{10} - 40_{10}$ in 8-bit two's complement representation.

- A. 1111 0111
- B. 0000 0111
- C. 0000 1000
- D. 1111 1000

12. Which statement is TRUE for detecting overflow?

- A. Adding two positive numbers gives a positive result
- B. Adding two positive numbers gives a negative result
- C. Adding two negative numbers gives a negative result
- D. Adding a positive and a negative number gives a positive result

13. The ISA Level defines the interface between

- A. users and system software
- B. application software and compilers
- C. compilers and hardware
- D. operating system and compilers

14. An instruction set does NOT always include:

- A. source counter
- B. source operand
- C. destination operand
- D. operation code (opcode) / mnemonic

15. Source and result operand in instruction could be the following EXCEPT:

- A. immediate
- B. CPU registers
- C. main memory
- D. RISC

16. In immediate addressing mode, the value of the operand is

- A. In a register
- B. In a memory location
- C. In a memory location pointed by the content of a register
- D. In the address field of the instruction

17. What is the size of EAX register?

- A. 32 bit
- B. 16 bit
- C. 8 bit
- D. 64 bit

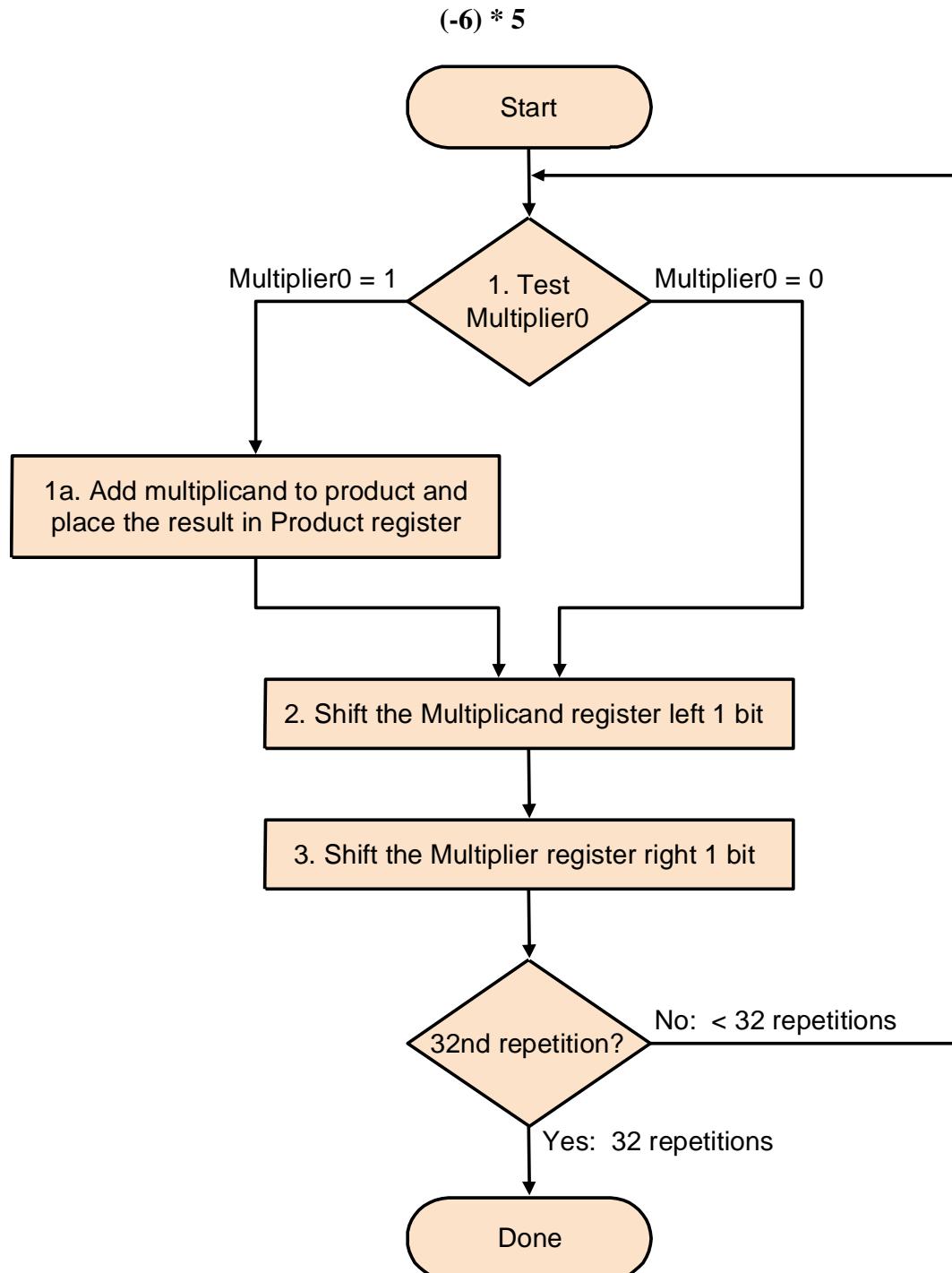
18. Which of the following is TRUE about the instruction pointer register?

- A. Holds individual bits that reflect outcome of some CPU operations
- B. Holds individual bits that control CPU operation
- C. Holds the address of next instruction to be executed
- D. Holds the next operand to be executed

19. Given the instruction ADD AX, [[OP1]] what kind of addressing mode does the instruction use?

- A. Immediate
- B. Indirect
- C. Stack
- D. Displacement

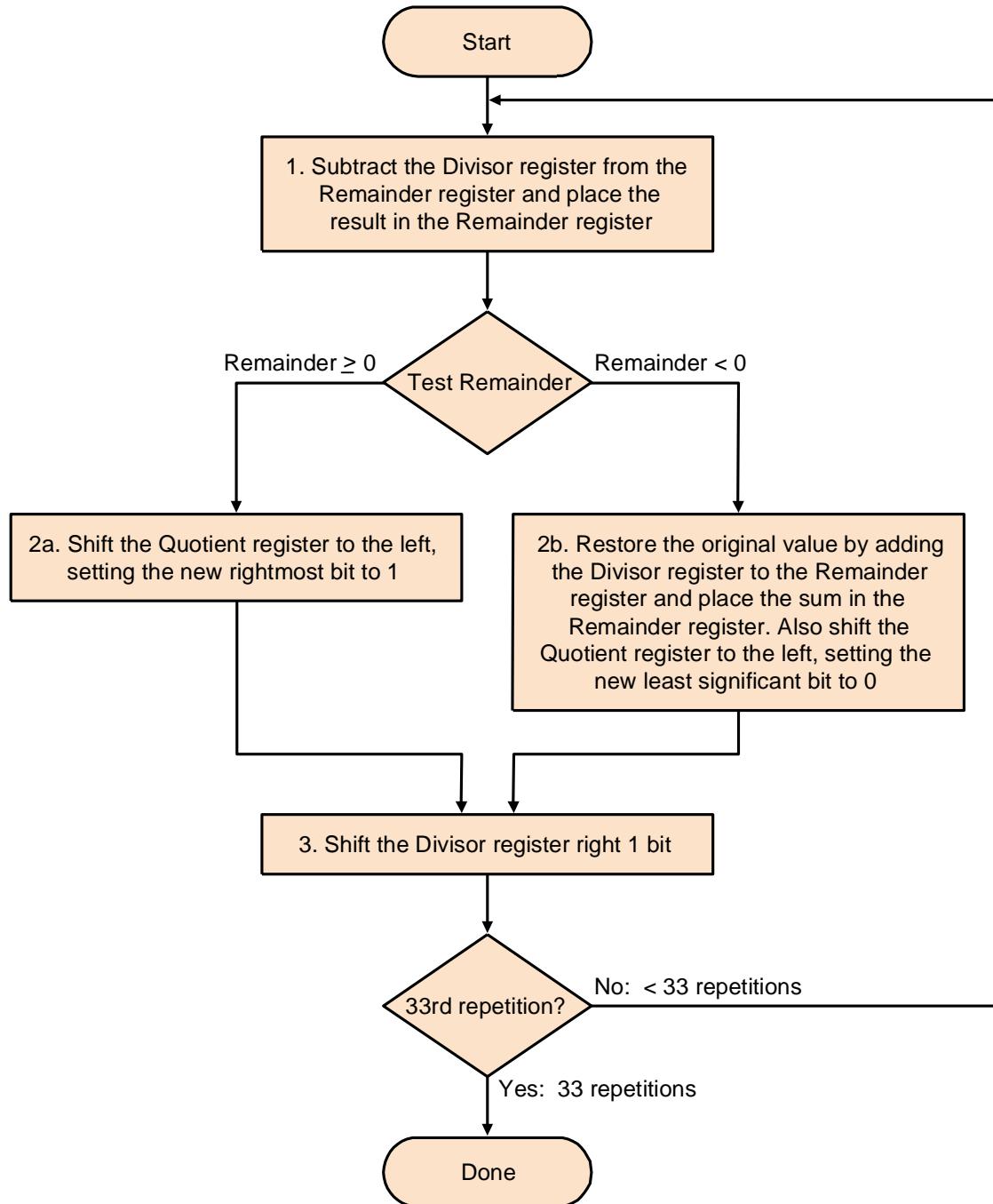
20. The format of the ISA shown below is known as:


Opcode (8 bits)	Operand Reference (12 bits)	Operand Reference (12 bits)
-----------------	-----------------------------	-----------------------------

- A. Zero-address instruction
- B. One-address instruction
- C. Two-address instruction
- D. Three-address instruction

PART B: STRUCTRED QUESTIONS (40 MARKS)

Question 1 (13 MARKS)


a). Using 4 bits numbers, complete the following table by referring to first version of hardware multiplication flowchart. **Show all your workings.** [6 marks]

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial values	0101	1111010	00000000

b). Using 4 bits numbers, complete the following table by referring to first version of hardware division flowchart. **Show all your workings.** [7 marks]

7 / 2

Iteration	Step	Quotient (Q)	Divisor (D)	Reminder (R)
0	Initial values	0000	0010 0000	0000 0111

Question 2 (16 MARKS)

a). Construct IEEE 754 single precision format representation for the decimal number **0.40625₁₀**. **Show all your workings.** [6 marks]

b). Convert IEEE 754 single precision floating point number in format given below to equivalent **decimal number**. **Show all your workings.** [5 marks]

1 bit	8 bits	23 bits
1	01111011	0110000000000000....000

c). You have two binary floating point numbers as follows:

$$\mathbf{C} = 1.1011_2 \times 2^{-3}$$

$$\mathbf{D} = -1.0001_2 \times 2^{-4}$$

Calculate the results for **C + D**. Use exponent without bias. Assume 5 binary digits for significand and 2 binary digits for exponent. **Show all your workings.** [5 marks]