SECR2033
Computer Organization
and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.

Module 5

Central Processing Unit
(CPU)

Objectives:

0 To learn the components common to every CPU.

0 Be able to explain how each component in CPU
contributes to instruction cycle.

0 To understand the concept of pipelining in CPU
execution.

0 Be able to understand micro-operations basis for
the design and implementation of the control unit.

Module 5

Central Processing Unit
(CPU)

5.1 Processor Organization

5.2 Register Organization
5.3 Instruction Cycles

9.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

Module 5¢

Central Processing Unit
(CPU)

a Overview

Q Micro-Operation (1)
9.5 Control Unit Operation 5 Control of the Processor

viain

emory

Let’s recall from Module 1

n

Sequencing
Logic

Control Unit
Registers and
Decoders

Control
Memory

William Stanings?z\

Ad Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.35.

Minimal internal

memory, consisting of a ;
set of storage locations, slide T Module 5a

Let’s recall from

L called registers. y,

IS

ALU does the actual Registers

-

computation or ALU
rocessing of data
\ p g /_ Control
unit

Control unit controls the Control Data Address
movement of data and bus ~ bus bus
Instructions into / out of Sveterm

the processor and controls bus

Kthe operation of the ALU Figure: The CPU with the System Bus.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.490. 6

Overview

m Here, we have to know the external interfaces, usually through
a bus, and how interrupts are handled.

m Six items might be termed the functional requirements for a
processor should do and being controlled

1. Operations (opcodes) 4. I/O module interface
2. Addressing modes 5. Memory module interface
3. Registers 6. Interrupts

Control of the Processor
. —

m The basis for the design and implementation of the control unit
are based on the definition of a functional requirements.

m Three-step process leads to a characterization of the control
unit (CU):

1) Define the basic elements of the processor.

2) Describe the micro-operations (uOP) that the
processor performs.

3) Determine the functions that the Control Unit
(CU) must perform to cause the micro-
operations to be performed.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.715.

ALU (Arithmetic Logic Unit)
CU (Control Units)
1/0 (Input Output)

(1) Basic Elements of the.Processor]

® The basic functional elements of the processor are the following :

0 ALU - the functional essence of the computer.
0 CU - causes operations to happen within the processor.

0 Registers — used to store data (also status) internal to the
processor.

Q Internal data paths — used to move data between registers
and between register and ALU.

O External data paths - link registers to memory and 1/O
modules, often by means of a system bus.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.715.

(2) Micro-Operation of the;lt Processor Performs

= All micro-operations (uOP) fall into one of the following
categories :

0 Transfer data from one register to another register.

0 Transfer data from a register to an external interface
(e.g. system bus).

0 Transfer data from an external interface to a register.

0 Perform an arithmetic or logic operation, using registers
for input and output.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.715.

10

™~

This is a functional
description of what the

(3) Control Unit Functions Control Unit (CU) does
¢ - achieved through the
use of control signals Yy

l Tasks of CU

l Sequencing l Execution

The CU causes the processor The CU causes each
to step through a series of micro-operation to be
micro-operations in the proper performed.

sequence, based on the
program being executed.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.715. 11

Control Signals

®
m For the Control Unit (CU) to perform its function, it must have:

Q Inputs that allow it to
determine the state of Clock
the system and,

Instruction Register

a Outputs that allow it to
control the behaviour of
the system.

CuU
Specification

Flags

Control signal from
control bus

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.716-717. 12

Instruction register

] Control signals
>L within CPU
° 3
e I:> E
. . 2
> Control signals =
Control from control bus 5
unit .<
Clock >l ol >
Control signals
to control bus

M Inputs W Outputs

Figure: Block Diagram of the Control Unit

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.716.

o

Table: The inputs of CU specification.

Clock This is how the Control Unit (CU) “keeps time.”

Instruction The opcode and addressing mode of the

Register current instruction are used to determine which
micro-operations to perform during the execute
cycle.

Flags These are needed by the CU to determine the

status of the processor and the outcome of
previous ALU operations.

Control signal The control bus portion of the system bus
from control bus provides signals to the CU.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.716-717. 14

o

Outputs

Control signal These are two types:
within the

Table: The outputs of CU specification.

[those that cause data to be moved from

rocessor :
P one register to another, and

d those that activate specific ALU functions

Control signals to These are also of two types:

control bus :
d control signals to memory, and

 control signals to the 1/O modules.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.716-717.

15

Micro-Operation (nOP) ..

m The operation of a computer, in executing a program, consists
of a sequence of instruction cycles, with one machine
Instruction per cycle.

m Each instruction cycle is made up of a number of smaller units.

= One subdivision that we found convenient is fetch, indirect,
execute, and interrupt, with only fetch and execute cycles
always occurring.

m Each of the smaller cycles involves a series of steps, each of
which involves the processor registers.

Micro-Operation }

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.709.

16

A program execution consists of the
sequential execution of instructions.

Instruction cycle

Instruction cycle

TN

Fetch Indirect Execute Interrupt
uOP| |uOP| [uOP| |uOP| |uOP

Sub-cycles

-

Each sub-cycle
Involves one or more
shorter operations -

Micro-operations

J

Figure: Constituent Elements of a Program Execution

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.709.

17

Rules for Micro-Operations
Grouping

= Proper sequence must be followed
= MAR € (PC) must precede MBR € (memory)

= Conflicts must be avoided
= Must not read and write same register at same time

= MBR € (memory) and IR € (MBR) must not be in
same cycle / during the same time unit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Execute Cycle
N

m Because of the variety of opcodes, there are a number of different
sequences of micro-operations that can occur

m Instruction decoding

The control unit examines the opcode and generates a sequence of
micro-operations based on the value of the opcode

= A simplified add instruction:
ADD R1, X (which adds the contents of the location X to register

R1)
tl : MAR € (IR(Address)) * In the first step the address portion of the IR is
loaded into the MAR
t2 : MBR € Memory * Then the referenced memory location is read

* Finally th tents of R1 and MBR dded
t3: R1 € (R1) + (MBR) bl;l?hggll%conenso an are adde

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

11 (interrupt)

10 (execute)

\

ICC?

00 (fetch)

/

01 indirect

v

Setup Opcode Read Fetch
interrupt P address intstruction
y Execute Y
ICC=00 instruction ICC=10 Indirect
addressing?
Yes / Interrupt \ n,
for enabled ICC=10 ICC =01
interrupt?
ICC=11 ICC=00
\ 4 ¢ ¢ \ 4 \ 4 \ 4

Figure 20.3 Flowchart for Instruction Cycle

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

MBR (Memory Buffer Register) | MAR (Memory Address Register)

PC (Program Counter)
IR (Instruction Register)
Cro
/. C3 C4 *
PC IR C i | Co
7
Cﬁ —@

AC (Accumulator)
-

ALU (Arithmetic Logic Unit)
Cn
®
0<C, Cy3 . P . CPntrol
Co , Signals
e —

A

ol

4 b

A

.
T

< > Cont.rol « Flags
unit .
.<_
Clock Control ® Terminations
signals of control

signals.
Figure: Data paths and control signals.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.718. 21

MBR (Memory Buffer Register) | MAR (Memory Address Register)
PC (Program Counter)
IR (Instruction Register)

Micro-operations Active Control Signals

t;: MAR < (PC) G,
Fetch: K 1;:[(]? 5((_1324)6?011‘3[s Cr

t;: IR < (MBR) C,

t;: MAR < (IR(Address)) Cg
Indirect: t,: MBR < Memory Cs, Cr

t;: IR(Address) < (MBR(Address)) Cy

t;: MBR < (PC) C
[Ee{ioits tr: MAR « Saye-address

PC <~ Routine-address
t;: Memory <— (MBR) Cio, Cyw

Cr = Read control signal to system bus.

Cw = Write control signal to system bus.

Figure: Micro-operation and control signals.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.719. 22

Module 5S¢

Central Processing Unit
(CPU)

a Overview

Q Micro-Operations (2)

a Microprogrammed Control
Unit

Q Address Generation

5.6 Microprogrammed o Microinstruction Format

Control 0 Advantages & Disadvantages

of Microprogramming

Overview

o =
m The term microprogram is an approach to Control Unit (CU)
design that was organized systematically and avoided the

complexities of a hardwired implementation.

® |[n recent years, microprogramming has become less used but
remains a tool available to computer designers.

= Example: Pentium 4 - most of instructions are executed
without the use of microprogramming, but some of
the instructions are executed using microprogramming.

= A wide variety of techniques (a) Hardwired implementation
have been used for CU.
Most of these fall into one of (b) Microprogrammed

two categories: Implementation

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.730. 24

(a) Hardwired Implementfltion

m Sequential circuits.

m The control logic is
implemented with gates, flip-
flops, decoders, and other

digital circuits.

Fast operation, small
(requires less components).

o

o

e

O ptea)

CK2

Figure: Example of sequential circuit.

!

Pt

Needs wiring change (if the
design has to be modified)

25

Figure resource: https://web.sonoma.edu/users/m/marivani/es210/units/images/fig10_1.png (3 Apr 2019)

(b) Microprogrammed ImPIementation

o

m The control information is stored in a control memory.

m the control memory is programmed to initiate the required
sequence of micro-operations (uOP).

_) Systematic, and any Q

required change can be done
by updating the micro-program
In control memory.

Slow operation, requires
more components.

26

Micro-Operations

o

m To implement a Control Unit (CU) as an interconnection of basic
logic elements is no easy task.

m The design must include logic for sequencing through micro-
operations, for executing micro-operations, for interpreting
opcodes, and for making decisions based on ALU flags.

m |t is difficult to design and test such a piece of Disadvantages

hardware. of hardware
Implementation.

m The design is relatively inflexible. For
example, it is difficult to change the design if
one wishes to add a new machine instruction.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.730. 27

o

— Solution:

m An alternative to a hardwired control unit is a microprogrammed
control unit, in which the logic of the CU is specified by a

microprogram (firmware).

= A microprogram consists of a sequence of instructions
(micro-operations) in a microprogramming language.

m A microprogrammed control unit is a relatively simple logic
circuit that is capable of :

(1) sequencing through micro-operations and
(2) generating control signals to execute each micro-operation.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.730. 28

p
How can we use the concept of

microprogramming to implement
a Control Unit (CU)?

.

m Consider that for each micro-operation, the CU is allowed to
generate a set of control signals.

m Thus, for any micro-operation, each control line emanating
from the CU is either on (1) or off (0).

m So we could construct a control word (microinstruction) in
which each bit represents one control line.

m Then each micro-operation would be represented by a different
pattern of 1s and Os in the microinstruction.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.732. 29

Example 20:

o

For fetch instruction, there are many micro-operations.

CONTROL
UNIT

Control Unit sends on (1)
or off (0) signal to the
micro-operation

1/0
[ON/OFF]

FETCH

Micro-operation 1

Micro-operation 2

Micro-oparation 3

Micro-operation 4

1010, 0011, 1100, 1110 will initiate
the different micro-operation to do
the fetch instruction.

30

(Micro-operations)

Motherboard

Control Memory

CPU

Cu

Memory
Memory

Micro-operation 1
Micro-operation 2
Micro-operation 3
Micro-operation 4

Routine 1

Micro-operation 1
Micro-operation 2
Micro-operation 3
Micro-operation 4

Routine 2

Micro-operation 1
Micro-operation 2
Micro-operation 3
Micro-operation 4

Routine 3

. Control Memory

Example routines:
Fetch cycle, execute cycle, interrupt cycle,
ADD, MOV, SUB, MUL, DIV.

31

o

Microprogrammed Control Unit

(Simple description)

¢ S . Control address register
equencing
)]] logic
= The set of micro-operations is

stored in the control memory.

Read

Y

m The control address register
contains the address of the Control
. . memory

next micro-operation to be
read.

= When a micro-operation is l'
read from the control memory,
It is transferred to a control
buffer register .

Control buffer register

Figure: Control Unit Microarchitecture

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.733. 32

Control Unit Microarchitecture 5

A sequencing unit loads The control address register
the control address contains the address of the
register and issues a next microinstruction to be
read command. read.

qf_gg:targ sequencing Control Address Register
Con?rol : l‘ﬂﬁc
unit ‘_
| Clock | ¢Con1ro+ Read

signals
The set of Control
microinstructions is Memory
stored In the control

memory.

When a microinstruction is read from

the control memory, it is transferred to a
control buffer register.

Control Buffer Register

Jump to indirect or execute

m Figure shows the programs e

(routines) could be arranged

In a control memory.

Jump to execute

Jump to fetch

Jump to opcode routine

-

\.

The micro-operations in
each routine are to be
executed sequentially.

.

Jump to fetch or interrupt

|/ Jump to fetch or interrupt

g Each routine ends with

branch or jump
Instruction indicating

. Where to go next.

~ 7

Jump to fetch or interrupt

Fetch
cycle
routine

Indirect
cycle
routine

Interrupt
cycle
routine

Execute cycle beginning

AND routine

ADD routine

IOF routine

Figure: Organization of control memory

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.733. 34

(Detail description) . '

Clock

m Comparing this figure
with the previous figure
(simple description), we
see that the control unit
still has the same inputs
(IR, ALU flags, clock)
and outputs (control
signals).

Instruction register

Control
unit

Sequencing
> logic

Decoder

Control address register

¢

Read

Y

Control
memory

!

| Control buffer register |

Next address control

v ¥

Control signals Control signals
within CPU to system bus

HuN [onuo)D pawweaboidosdi Jo buluonoung ainbiH

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.734.

w
(62}

(1) To execute an instruction, the
sequencing logic unit issues a READ
command to the control memory.

| Instruction register |

(2) The word whose
address is specified in
the control address
register is read into the
control buffer register.

(3) The content of the control
buffer register generates control
signals and next-address
Information for the sequencing
logic unit.

(4) The sequencing logic unit loads a
new address into the control address
register based on the next-address
Information from the control buffer
register and the ALU flags.

l Control

Unit

All these
happens during
one clock pulse.

B

Control signals Control signals

within CPU

to system bus

HuN [onuo)D pawweaboidosdi Jo buluonoung ainbiH

w
[op}

ALU Flags syl

Clock

Y

(4) The sequencing logic unit loads a
new address into the control address
register based on the next-address
information from the control buffer
register and the ALU flags.

Read

s
The last step just -~
listed needs ng Y
- elaboration ! B
¥

' . Control address register |
Sequencing
logic ‘

Next address control

Y

Control
memory

Control buffer register

v ¥

Control signals Control signals
within CPU to system bus

37

The last step just ol
listed needs Q'
elaboration ! V

(Next address decision)

m Depending on the value of the ALU flags and the control buffer
register, one of three decisions is made:

(1) Get the next instruction: Add 1 to the control address
register

(2) Jump to a new routine based on a jump micro-operation:
Load the address field of the control buffer register into the
control address register.

(3) Jump to a machine instruction routine: Load the control
address register based on the opcode in the IR.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.734. 38

1. Get the next instruction: Add 1 to __f'j

the control address register L

ump to indirect or execute

2. Jump to a new routine based on
a jump microinstruction:

Jump to execute

Load the address field of the
control buffer register into the

— :

Jump to fetch

control address register

Jump to opcode routine

3. Jump to a machine instruction

Jump to fetch or interrupt

routine;

Load the control address register

—

Jump to fetch or interrupt

based on the opcode in the IR.

Control
Memory

Jump to fetch or interrupt

Fetch
cycle
routine

Indirect
cycle
routine

Interrupt
cycle
routine

Execute cycle beginning

AND routine

ADD routine

I0OF routine

Address Generation

o

m Another viewpoint is to consider the various ways in which the
next address can be derived or computed.

Table: Microinstruction Address Generation Technigues

Explicit Implicit

Two-field Mapping

Unconditional branch Addition

Conditional branch Residual control
The address Is Require additional
explicitly available in logic to generate the
the microinstruction. address.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.743.

40

—

= "Microinstructions are stored in control memory in groups,
which each group specifying a routine.

m "Each computer instruction has its own microprogram routine
to generate micro-operations that execute the instruction.

"Mapping The transformation from the instruction code
bits (opcode) to an address in control memory
where the routine (micro-operation) is located.

p
Mapping is one of several ol
implicit techniques that) w

- commonly used ! o

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.743.
* Mano, Morris M. (1993). Computer System Architecture (3 Edition). p.216.

41

Instruction

Opcode

Operand

Fetch cycle
routine

Indirect cycle
routine

Addition
routine

Subtraction
routine

Control Memory

Figure: Transformation of opcode to microinstruction

42

ROM (Read-Only Memory)

Mapping of Instruction N

m A special type of branch exist when a microinstruction
specifies a branch to the first word in control memory where a
microprogram routine for an instruction is located.

m Two methods:

Using ROM to specify

Direct Mappin
SRS mapping function

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.219. 43

4-bit opcode to a 7-bit address for control memory

For each opcode, there exists a microprogram routine in control memory
that execute the instruction. One simple mapping process that converts the

(a) Direct Mapping

m The status bits for this type of branch are the bits in the

operation code part of the instruction.

Opcode {

to 16 distinct instructions

4 bits opcode can specify up }

Computer instruction:

1 011

address

Mapping bits: 0

X X X X

0

0

Microinstruction address: 0

1 011

0

0

Assume control memory has
128 words, requiring an
address of 7 bits

Figure: Mapping from instruction code to microinstruction address

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.219.

The mapping consists of placing a 0 in MSB of the address, transferring the
four opcode bits and placing the two LSB of the control address register

Example 21:

Mapping from instruction code to microinstruction address.

Opcode

Computer instruction:

1 011

address

Mapping bits: 0

x x x x| 10

o

\
If the mapping
Microinstruction address: 0101110 bits are
= 0| xxxx | 10
J
* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.219. 45

The mapping consists of placing a 0 in MSB of the address, transferring the
four opcode bits and placing the two LSB of the control address register

Example 22:

Mapping from instruction code to

microinstruction address.

—

)

Computer instruction:

O
If the opcode bits are
- 1001
Opcode
1001 address

Mapping bits: 0

x x x x| 10

Microinstruction address:

0100110

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.219.

46

Address
OP-codes of Instructions - gggg W

— — outine
ﬁﬂg 8832 _ 0010 | LDA Routine
: 0011 [STA Routine
LDA 0010 : 0100 |BUN Routine

BUN 0100 Control

Storage

Mapping G
Bits ' 0@010 Address
J 7 10[0000lo10 | ADD Routine

10[0001]010 | AND Routine

A % ", o,
2 L “ s,
) 0 . “
’ ", ", 4,
o s, ., 2
o) “ “,
Y, “y %
0 ‘. ‘
0 “ o,
“ Y, o
‘. e, “ L]
Y & ’,
",
4 % ", .
, v e,

Fﬂ;gi‘gl;;il: fs°:e’ %, ", 10[00101010 [LDA Routine
microprogram routine 5

in control memory that 10@ 010 | STA Routine
execute the

\ instruction. / “ 10[0100J010 |BUN Routine

-

Figure: Direct mapping from instruction code to microinstruction address

(b) Using ROM to Specify Mapping Function

ROM (Read-Only Memory)

= One can extend the concept of direct mapping with more
general rules by using a ROM to specify the mapping function.

m The bits of the instruction specify the
address of a mapping ROM.

= The contents of the mapping ROM gives
the bits for the control address register.

1011 Operand

v

Control Address Register

v

Control Memory

ﬁl’he microprogram\

routine can be
anywhere in the
control memory
- provides
flexibility for
adding instructions
for control memory
as need arise. /

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.219.

48

o

Microinstruction Format

Format

Horizontal Vertical
Microinstruction Microinstruction
Each microinstruction specifies Each microinstruction specifies
many different micro-operations single (or few) micro-operations
to be performed in parallel. to be performed.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.732. 49

|— Microinstruction address
Jump condition
—Unconditional
—Zero
—Overflow
—Indirect bit
System bus control signals
Internal CPU control signals

(a) Horizontal microinstruction

L Microinstruction address
Jump condition

} Function codes

(b) Vertical microinstruction

Figure: Typical Microinstruction formats

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.732.

50

Figure: Computer hardware
configuration

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.221.

51

| =2 Indirect 11 bits
Addressing address field
15 14 11 10 0
I Opcode Address /
(a) Instruction format
/4 bits opcode
can have 16
ossible
i P : Symbol OP-code Description
Instructions
N ADD 0000 AC — AC + M[EA]
BRANCH 0001 if (AC < 0) then (PC — EA)
STORE 0010 M[EA] — AC
EXCHANGE| 0011 AC — M[EA], M[EA] — AC
EA (Effective Address)

Figure: Sample of four computer instructions

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.222. 52

—

Vertical
microinstruction
format

Microinstruction Format

3 3 3 2 2 L
F1 | F2 | F3 | CD | BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field

AD: Address field

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.223.

F1 Micro-op_eration Symbol
000 | None NOP
001 | ACAC+DR ADD
010 | AC« 0 CLRAC
011 | AC«— AC+1 INCAC
100 | AC « DR DRTAC
101 | AR « DR(0-10) DRTAR
110 | AR« PC PCTAR
111 | M[AR] « DR WRITE

Microinstruction
field description:

F1, F2, F3

F2 Micro-operation Symbol
000 | None NOP
001 | AC«—AC-DR SUB
010 | AC«— ACVvDR OR

011 | AC—ACADR AND
100 | DR « M[AR] READ
101 | DR« AC ACTDR
110 | DR« DR +1 INCDR
111 | DR(0-10) « PC PCTDR
F3 | Micro-operation Symbol
000 | None NOP
001 | AC—~ACDDR XOR
010 | AC « AC’ COM
011 | AC «shlAC SHL
100 | AC <« shr AC SHR
101 | PC <« PC+1 INCPC
110 | PC < AR ARTPC
111 | Reserved

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.224.

54

The condition

Microinstruction field description:

for branching CD, BR
CD Condition :Eymbol Comments
00 Always =1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC =0 Z Zero value in AC
BR Symbol Function
J 00 JMP | CAR « AD if condition = 1
CAR « CAR +1 if condition =0
The type : -
of branch 01 CALL | CAR « AD, SBR « CAR + 1 if condition = 1
CAR « CAR + 1 if condition =0
to be used _
\ 10 RET CAR « SBR (Return from subroutine)
11 MAP CAR(2-5) « DR(11-14), CAR(0,1,6) < 0

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.224.

011 | AC<« ACADR AND
100 | DR« M[AR] READ
101 | DR« AC ACTDR

011
100
101

F2 Microoperation Symbol F3 Microoperation Symbol
000 | None NOP 000 [None NOP
001 | AC«—AC-DR SuUB 001 | AC«— AC®DR XOR
010 | AC«ACVvDR OR 010 | AC <« AC’ COM

AC < shl AC SHL
AC « shr AC SHR
PC«<PC+1 INCPC

Example 23: 11| DROAG e Pe POTOR | | 111 | Reserved e
@
A microinstruction with 2 simultaneous micro-operations.
DR M[AR] - > {F2 =100}
PC&EPC+1 W b » {F3=101}
Since no F1 micro-operation, {F1 = 000}
Thus the vertical microinstruction fields:
F1 F2 F3
0001100101 |CD|BR AD
* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.223. 56

Let’s recall;

The two micro-operations
are from t2 of fetch cycle

MBR (Memory Buffer Register) | MAR (Memory Address Register)

PC (Program Counter)
IR (Instruction Register)

Miro-operations Active Control Signals

t;: MAR < (PC) G
Feteh MBR «_ Memary Ca.Cr

t3: IR — (MBR) C,

t;: MAR < (IR(Address)) Cg
Indirect: t,: MBR < Memory Cs, Cr

t;: IR(Address) «<— (MBR(Address)) Cy

t;: MBR <« (PC) C,
[intismmgts t,: MAR « Saye-address

PC < Routine-address
t;: Memory < (MBR) Cio, Cyw

Cr = Read control signal to system bus.

Cw = Write control signal to system bus.

Figure: Micro-operation and control signals.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.719. 57

F1:
F2:
F3:

No more than 3 micro-
operations can be chosen for a
single microinstruction.

DR ¢« M[AR]

PC < PC+1
F1 Microoperation Symbol
000 | None NOP
001 | AC—~AC+DR ADD
010 | AC«0 CLRAC
011 | AC« AC +1 INCAC
100 | AC < DR DRTAC
101 | AR« DR(0-10) DRTAR
110 | AR« PC PCTAR
111 | M[AR] « DR WRITE

F2 Microoperation Symbol
000 | None NOP
001 | AC—AC-DR SUB
010 | AC—ACVvDR OR

011 | AC«— ACADR AND
100 | DR <~ M[AR] READ
101 | DR« AC ACTDR
110 | DR« DR+ 1 INCDR
111 | DR(0-10) « PC PCTDR
F3 Microoperation Symbol
000 | None NOP
001 | ACAC®DR XOR
010 | AC < AC’ COM
011 | AC <« shl AC SHL
100 | AC <« shr AC SHR
101 | PC« PC+1 INCPC
110 | PC < AR ARTPC
111 | Reserved

58

Partial Symbolic Microprogram

Label Microops CD BR AD

ORG 0

ADD: NOP | CALL INDRCT
READ) JMP NEXT
ADD U JMP FETCH
ORG 4

BRANCH: NOP S JMP OVER
NOP U JMP FETCH

OVER: NOP | CALL INDRCT
ARTPC U JMP FETCH
ORG 8

STORE: NOP | CALL INDRCT
ACTDR U JMP NEXT
WRITE U JMP FETCH
ORG 12

EXCHANGE: NOP | CALL INDRCT
READ U JMP NEXT
ACTDR, DRTAC U JMP NEXT
WRITE U JMP FETCH
ORG 64

FETCH: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP

INDRCT: READ U JMP NEXT
DRTAR U RET

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.228.

59

Address Binary Microinstruction
Micro Routine Decimal _Binary F1 F2 F3 CD BR AD
ADD 0 0000000 000 000 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010
2 0000010 001 000 000 00 00 1000000
3 0000011 000 000 000 00 00 1000000
BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000
6 0000110 000 000 000 01 01 1000011
7 0000111 000 000 110 00 00 1000000
STORE 8 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010
10 0001010 111 000 000 00 00 1000000
11 0001011 000 000 000 00 00 1000000
EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 000 000 00 00 0001110
14 0001110 100 101 000 00 00 0001111
15 0001111 111 000 000 00 00 1000000
FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010
66 1000010 101 000 000 00 11 0000000
INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

This microprogram can be implemented using ROM

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.230.

60

Address Binary Microinstruction
Micro Routine Decimal _Binary F1 F2 F3 CD BR AD
ADD 0 0000000 000 000 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010
2 0000010 001 000 000 00 00 1000000
3 0000011 000 000 000 00 00 1000000
BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000
6 0000110 000 000 000 01 01 1000011
7 0000111 000 000 110 00 00 1000000
STORE 8 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010
10 0001010 111 000 000 00 00 1000000
11 0001011 000 000 000 00 00 1000000
EXCHANGE 12 0001100 000 000 000 01 01 1000011
t;: MAR < (PC) 13 0001101 001 000 000 00 00 0001110
t MBR < Memory 14 0001110 100 101 000 00 00 0001111
PC < (PC) + 1 15 0001111 111 000 000 00 00 1000000
— t5: IR < (MBR)
FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010
66 1000010 101 000 000 00 11 0000000
INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

This microprogram can be implemented using ROM

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.230.

61

Example 24: Calculation example. I
@

A system uses a control memory of 1024 words of 32 bits each.
The microinstruction has 3 fields and a 16-bit micro-operations.

a) How many bits are there in the branch address field and the
selection field?

b) If there are 16 status in the system, how many bits of the
branch logic are used to select a status bit?

c) How many bits are left to select an input for the multiplexers?

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.235.

62

Solution :

o

The keywords:

A system uses a control memory of 1024 words of 32 bits each.
The microinstruction has 3 fields and a 16-bit micro-operations

- 16 bits - 16 bits -

Select Address Microoperations

The CD — |
and BR 32 bits
The F1, F2, F3

Figure: The microinstruction diagram

63

The Control memory has 1024 words (21°). Thus, the required
address field for each word is 10 bits.

The selection field consists of status bits and branch bits.
The selection field will be: 32 — (16 + 10) = 6 bits

The micro-operations
total bits
Th

e bit for
address field

64

a) How many bits are there in the branch address field and the
selection field?

» The address field will be: 10 bit (21° = 1024 words)
» The selection field will be: 32 — (16+10) = 6 bits

b) If there are 16 status in the system, how many bits of the
branch logic are used to select a status bit?

» 16 status means 4 bits are required for it (24)

c) How many bits are left to select an input for the multiplexers?

» Input for the multiplexer = selection field bits — status bits
=6—4 =2 Dbits

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.235.

65

CISC (Complex Instruction Set Computing)

o

Advant?ges & Disadvantages
of Microprogramming

&/ Q

QO It simplifies the design of 0O It will be somewhat slower
the control unit. than a hardwired unit of

QO Thus, it is both cheaper compa%e technology
and less error prone to
Implement. _ _

a Despite this, N\

0 The decoders and microprogramming is the
sequencing logic unit are dominant technique for
very simple pieces of logic. implementing CU in pure

CISC architectures, due to its

__ease of implementation.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.737. 66

Summary3 W
LA

m Explained the concept of micro-operations and define the
principal instruction cycle phases in terms of micro-operations.

m Discussed how micro-operations are organized to control a
processor.

m Understand hardwired control unit organization.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.708. 67

Review Questions
]

5.1. Explain the steps in the fetch-decode-execute cycle. Your
explanation should include what is happening in the
various register.

5.2. Write an assembly language program to evaluate the
expression. 4w« B+ xD

5.3. Write the following code segment in an assembly

language:
(a) X = 1; (b) Sum := O;
while X < 10 do for X := 1 to 10 do
X : =X+ 1; Sum := Sum + X;

endwhile;

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.195

5.4.

5.D.

5.6.

What is the different between a microprocessor and
microprogram? Is it possible to design a microprocessor
without a microprogram? Are all microprogrammed
computers also microprocessor?

Explain the different between hardwired and
microprogrammed control. Is it possible to have a
hardwired control associated with a control memory?

Define the following:
(@) Microoperation. (c) Microprogram.

(b) Microinstruction. (d) Microcode.

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.235.

69

5.6. Given the mapping bit from instruction code to
microinstruction address as 0 xxxx 00. Give the

microinstruction address for the following operation code.
(a) 0010 (b) 1011 (c) 1111

5.7. Using the table of symbol and binary code for
microinstruction fields, give the 9-bit microoperation field
for the following microoperations:

(@) AC —~AC+1, DR~ DR+1

(b) PC — PC+1, DR — M| AR]
(¢) DR — AC, AC — DR

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.235-236; Table p.224

70

5.8. Using the table of symbol and binary code for
microinstruction fields, convert the following symbolic

microoperations to register transfer statement and to
binary:

(@) ' READ, INCPC
(b) ACTDR, DRTAC
(c) ARTPC, DRTAC, WRITE

* Mano, Morris M. (1993). Computer System Architecture (3" Edition). p.236; Table p.224 71

