
SECR2033

Computer Organization

and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.

Module 5
Central Processing Unit
(CPU)

Objectives:

 To learn the components common to every CPU.

 Be able to explain how each component in CPU

contributes to instruction cycle.

 To understand the concept of pipelining in CPU

execution.

 Be able to understand micro-operations basis for

the design and implementation of the control unit.

2

5.1 Processor Organization

5.2 Register Organization

5.3 Instruction Cycles

5.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

Module 5
Central Processing Unit
(CPU)

3

 Overview

Module 5a
Central Processing Unit
(CPU)

5.1 Processor Organization

5.2 Register Organization

5.3 Instruction Cycles

5.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

4

5

 To understand the organization of the processor, let us consider

the requirements placed on the processor, the things that it

must do:

o Fetch instruction: reads an instruction from memory

(register, cache, main memory).

o Interpret instruction: The instruction is decoded to

determine what action is required.

o Fetch data: The execution of an instruction may require

reading data from memory or an I/O module.

Overview

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.489. 5

5

oProcess data: The execution of an instruction may require

performing some arithmetic or logical operation on data.

oWrite data: The results of an execution may require writing

data to memory or an I/O module.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.489.

 To do these things, the processor needs a small internal

memory to store some data and instruction temporarily while an

instruction is being executed.

6

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.490.

Figure: The CPU with the System Bus.

ALU does the actual

computation or

processing of data

Control unit controls the

movement of data and

instructions into / out of

the processor and controls

the operation of the ALU

Minimal internal

memory, consisting of a

set of storage locations,

called registers.

7

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.490.

Figure: The CPU with the System Bus.

 The computer’s CPU

fetches, decodes, and

executes program

instructions.

 The two principal parts

of the CPU:

o data path

o control unit

8

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.490.

Figure: Internal Structure of the CPU.

1) The data path

consists of an ALU
and storage units

(registers) that are

interconnected by a

data bus that is also

connected to main

memory.

2) The control unit

provides signals to

tell the data path,

memory, and I/O
devices what to do

according the

instructions of the

program.

Control

Unit

9

5
Internal CPU Bus

 The registers are interconnected,

and connected with main memory
through a common data bus.

 Each device on the bus is

identified by a unique number that

is set on the control lines

whenever that device is required

to carry out an operation.

This permits data transfer

between these devices without

use of the main data bus.

 Separate connections are also provided between:

o the accumulator & the memory buffer register, and

o the ALU & the accumulator & memory buffer register.

10

5
External Bus

 A bus is a set of wires that simultaneously convey a single bit

along each line.

Bus Lines

Data Lines Control Lines Address Lines

11

5Bus

Figure: The Components of a Typical Bus

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.149 12

5
1) Data lines

o convey bits from one device to another.

o The number of lines (32, 64,128) gives the width of the

data bus.

o Example: width = 32 bit, instruction length = 64 bits  this

means the processor must access the memory modules

twice during each instruction cycle.

2) Control lines

o determine the direction of data flow, and when each device
can access the bus.

o Uses control signals, timing signals, command signals 
memory write, memory read, bus request and bus grant.

13

5

3) Address lines

o determine the location of the source or destination of the

data.

o Example: want to read data in memory, put address on

this bus, go to memory, get the content (i.e. the data) and

put it on to data bus.

14

 Overview

 User-Visible Registers

 Control & Status

Registers

Module 5a
Central Processing Unit
(CPU)

5.1 Processor Organization

5.2 Register Organization

5.3 Instruction Cycles

5.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

15

5

 Registers form the highest level of the memory hierarchy.

o Small set of high speed storage locations.

o Temporary storage for data and control information.

 Registers hold data that can be readily accessed by the CPU.

 They can be implemented using D flip-flops.

o A 32-bit register requires 32 D flip-flops.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.491.

Overview

16

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.491.

Registers

User-Visible
Registers

Control & Status
Registers

(General Purpose)

May be referenced by

assembly-level instructions

and are thus “visible” to

the user.

(Special Purpose)

Used to control the

operation of the CPU.

Most are not visible to

the user.

17

5

 This register will be referenced by means of the machine

language that the processor executes.

(a) User-Visible Registers

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.491.

 Categories:

18

5

General purpose registers:

o Can be assigned to a variety of functions.

o Defined to the operations within the instructions.

o Can be used for addressing functions.

o Examples: accumulator, base, count, data.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.491-492.

Data registers:

o Hold data and cannot be used in the calculation of an

operand address.

o Example: accumulator.

19

5

Address registers:

 Hold address information.

 Examples: general purpose address registers, segment

pointers, stack pointers, index registers.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.492.

Condition codes or Flags:

 Bits set by the processor hardware as a result of operations.

 Can be accessed by a program but not changed directly.

 Examples: Sign Flag (SF), Zero Flag (ZF), Overflow Flag (OF).

 Bit values are used as the basis for conditional jump

instructions.

20

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.495.

Figure: Example Microprocessor Register

Organizations.

IP

21

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.495.

EAX automatically

used by MUL and

DIV instructions

Accumulator

Base

Count

Data

ECX automatically

used by processor as

a LOOP counter.

Stack Pointer

Base Pointer

Source Index

Dest. Index

Avoid usage for

generic calculation !

22

5

 Address registers should be wide enough to hold the longest

address!

 Data registers should be wide enough to hold most data types.

 Would not want to use 64-bit registers if the vast majority of

data operations used 16 and 32-bit operands.

 Related to width of memory data bus.

Design Issue: Register Length

23

 Solution: Concatenate registers together to store longer

formats (DX:AX)

5
mul ax

Assuming the following DumpRegs. Update the related register

once the instruction executed:

Example:

24

EAX=770C0400 EBX=7FFD7098 ECX=00000000 EDX=00401005

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

5

 ax = 0400h

25

EAX=770C0400 EBX=7FFD7098 ECX=00000000 EDX=00401005

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

Solutions:

AX

EAX=770C0000 EBX=7FFD7098 ECX=00000000 EDX=00400010

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

mul ax

 ax * ax = 0400 * 0400 = 10 0000h

DX :

00

5
div bx

Assuming the following DumpRegs. Update the related register

once the instruction executed:

Example:

26

EAX=770C0000 EBX=7FFD0020 ECX=00000000 EDX=00400010

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

5

 dx : ax = 00100000h, bx = 0020h

27

EAX=770C0000 EBX=7FFD0020 ECX=00000000 EDX=00400010

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

Solutions:

AXDX :

EAX=770C8000 EBX=7FFD0020 ECX=00000000 EDX=00400000

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

div bx

 [dx : ax] / bx = 100000 / 0020 = 8000h0000

5

 There are a variety of processor registers that are employed to

control the operation of the processor.

 Most of these, on most machines, are not visible to the user.

(b) Control & Status Registers

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.493.

 Some of them may be visible to

machine instructions executed

in a control or operating system

mode.

Different machines

will have different

register organizations

and use different

terminology.

28

5

Registers Function

Program Counter

(PC)

The address of an instruction to be

fetched.

Instruction Register

(IR)

The instruction most recently fetched.

Memory Address

Register (MAR)

The address of a location in memory.

Memory Buffer

Register (MBR)

A word of data to be written to memory

or the word most recently read.

Table: Four essential registers for instruction execution.

CPU (Control Processing Unit)

I/O (Input/Output)

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.493. 29

PC = The address of the next

instruction to be executed

5

 The four registers just mentioned are used for the movement of

data between the processor and memory.

 Not all processors have internal registers designated as MAR

and MBR  need some equivalent buffering mechanism to

store the bits transferred / read bits to / from the data bus:

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.494.

 The ALU may have direct access to the MBR and user-

visible registers.

 There may be additional buffering registers at the boundary

to the ALU serves as input and output registers for the ALU

and exchange data with the MBR and user-visible

registers.

30

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.84.

F
ig

u
re

:
C

o
m

p
u

te
r

c
o

m
p

o
n

e
n

ts
:
T

h
e

 C
P

U

e
x
c
h

a
n

g
e

s
 d

a
ta

 w
it
h

 m
e

m
o

ry
.

31

5

 The Extended Instruction Pointer (EIP) register holds the

address of the next instruction to be executed.

 The EIP register corresponds to the Program Counter (PC)

register in other architectures.

 EIP can be manipulated for certain instructions (e.g. call, jmp,

ret) to branch to a new location.

Instruction Pointer

32

5

 Many processor designs include a register or set of registers,

often known as the Program Status Word (PSW), that contain

status information and condition codes.

 The ALU has a number of status flags that reflect the outcome

of arithmetic (and bitwise) operations.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.494.

Program Status

33

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.494.

 Common field or flags:

oZero flag (ZF): set when destination equals zero.

oSign flag (SF): set when destination is negative.

oCarry flag (CF): set when unsigned value is out of range.

oOverflow flag (OF): set when signed value is out of range.

oAuxiliary flag (AF): set when there is carry from lower nibble

to higher nibble in the lower byte.

oParity flag (PF): set when there are odd or even number of

1’s in the lower byte.

Status flags that reflect the

outcome of arithmetic (contents

of the destination operand)

34

5

Assuming that the system uses even parity.

 06h + 54h

Example 1: Flags

ZF :

SF :

CF :

OF :

AF :

PF :

0000 0110 (06h)

+ 0101 0100 (54h)

0101 1010 (5Ah)

Number of 1s = 4 even ;

so PF = 1

0

0

0

0

0

1

35

5ZF :

SF :

CF :

OF :

AF :

PF :

Assuming that the system uses odd parity.

 2Fh + DEh

Example 2: Flags

0010 1111 (2Fh)

+ 1101 1110 (DEh)

1 0000 1101

Number of 1s = 3 odd ;

so PF = 1

0

0

1

0

1

1

There is a carry

out  so CF = 1

There is a carry from lower

nibble to higher nibble in the

lower byte  so AF = 1

36

5

ZF :

SF :

CF :

OF :

AF :

PF :

ZF :

SF :

CF :

OF :

AF :

PF :

Assuming that the system uses even parity for:

a) A word sized number.

b) A doubleword sized number.

 5433h + 7098h

Example 3: Flags

37

5ZF :

SF :

CF :

OF :

AF :

PF :

Assuming that the system uses even parity for:

a) A word sized number.

b) A doubleword sized number.

 5433h + 7098h

Solutions (a):

0101 0100 0011 0011

+ 0111 0000 1001 1000

1100 0100 1100 1011

0

1

0

1

0

1

38

If the carry into the sign bit
is different from the carry

out of the sign bit, overflow

(and thus an error) has

occurred.

5

ZF :

SF :

CF :

OF :

AF :

PF :

Assuming that the system uses even parity for:

a) A word sized number.

b) A doubleword sized number.

 00005433h + 00007098h

Solution (b):

0000 0000 0000 0000 0101 0100 0011 0011

+ 0000 0000 0000 0000 0111 0000 1001 1000

0000 0000 0000 0000 1100 0100 1100 1011

39

0

0

0

0

0

1

5

The DumpRegs if use word sized numbers:

The DumpRegs if use dword sized numbers:

EAX=770CC4CB EBX=7FFD7098 ECX=00000000 EDX=00401005

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

EAX=0000C4CB EBX=00007098 ECX=00000000 EDX=00401005

ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C

EIP=00401022 EFL=00000202 CF=0 SF=0 ZF=0 OF=0

40

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.494.

 Common field or flags:

oZero flag (ZF): set when destination equals zero.

oSign flag (SF): set when destination is negative.

oCarry flag (CF): set when unsigned value is out of range.

oOverflow flag (OF): set when signed value is out of range.

oAuxiliary flag (AF): set when there is carry from lower nibble

to higher nibble in the lower byte.

oParity flag (PF): set when there are odd or even number of

1’s in the lower byte.

Status flags that reflect the

outcome of arithmetic (contents

of the destination operand)

41

5

Assuming that the system uses even parity for:

a) 3Ch – 28h

b) 5Ah – 7Fh

Example 4 : Flags

a) 0011 1100

+ 1101 1000

1 0001 0100 (14h)

2’s for 28h

b) 0101 1010

+ 1000 0001

1101 1011 (DBh)

2’s for 7Fh

ZF :

SF :

CF :

OF :

AF :

PF :

ZF :

SF :

CF :

OF :

AF :

PF :

0

0

1

0

1

1

0

1

0

0

0

1

42

Remember how to

do subtraction in

Module2 ?

5

1) Operating system support.

 Certain types of control

information are of

specific utility to the

operating system.

 The register

organization need to

some extent to be

tailored to a particular

operating system .

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.494.

Design Issues of the Control & Status

Register Organization

2) The allocation of control

information between

registers and memory.

 The designer must

decide how much control

information should be in

registers and how much

in memory.

 The usual trade-off of

cost versus speed arises.

43

 Overview

 The Indirect Cycle

 Data Flow

Module 5a
Central Processing Unit
(CPU)

5.1 Processor Organization

5.2 Register Organization

5.3 Instruction Cycles

5.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

44

5

 The processing required for a single instruction is called an

instruction cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.85.

Overview

45

Can you list down all

the instruction cycles ?

5

 The processing required for a single instruction is called an

instruction cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.85.

Overview

- Fetch the instruction;

- Decode it;

- Fetch operands, if required (indirect).

- Perform the operation;

- Store results, if required.

- Recognize pending interrupts.

46

 Fetch cycle

 Execute cycle

 Interrupt cycle

 The instruction processing consists of three (3) stages :

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.92.

 Program execution halts only if :

o the machine is turned off,

o some sort of unrecoverable error occurs, or

o a program instruction that halts the computer is encountered.

Figure: Instruction cycle with interrupt. HALT

47

5
The Indirect Cycle

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497-498.

Figure: The instruction cycle.

 We can think that the

fetching of indirect addresses

 another instruction stages.

Indirect
 The main line of activity

consists of alternating

instruction fetch and

instruction execution activities.

 Following execution, an

interrupt may be processed

before the next instruction

fetch.

48

5

 Another way to view the process is

shown in figure with more correctly

the nature of the instruction cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

F
ig

u
re

:
In

s
tru

c
tio

n
 c

y
c
le

 s
ta

te
 d

ia
g
ra

m
.

49

5
 The exact sequence of

events during an instruction

cycle depends on the design

of the processor.

Data Flow

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497, p.709

Memory Address Register (MAR)

Memory Buffer Register (MBR)

Program Counter (PC)

Instruction Register (IR).

 Conventional format using Register Transfer Language (RTL)

 Example:

Let us assume that a

processor employs:

IP  IP +1

PC  PC +1

50

 Each of the smaller cycles consists of a

series of steps that involves the

processor registers  micro-operations.

Detail in sub-topic:

5.5 and 5.6

5

 An instruction

is read from

memory.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

(a) Fetch Cycle

Figure: Data flow, fetch cycle.

51

5

 The fetch cycle can be written

symbolically using RTL as:

t1: MAR  IP/PC

t2: MBR  [MAR];

IP/PC  IP/PC + 1

t3: IR MBR

t1, t2, t3 are the

timing sequence

RTL (Register Transfer Language)

52

MAR (Memory Address Register)

MBR (Memory Buffer Register)

PC (Program Counter)

IR (Instruction Register)

5

t1: MAR  IP/PC

t2: MBR  [MAR];

IP/PC  IP/PC + 1

t3: IR MBR

53

• The PC contains the

address.

• Content of IP/PC is loaded

to MAR.

• Then transferred to memory

on the address bus.

• Next, CU will activate the

read signal of the memory.

• Instruction is accessed from

the memory and transfer to

CPU on the data bus.

• This instruction address will

be loaded into MBR.

• Instruction in MBR is loaded

into IR.

• The opcode of the instruction

will be decoded and translated

so as to determine the micro-

operations for the particular

instruction.

MAR (Memory Address Register)

MBR (Memory Buffer Register)

PC (Program Counter)

IR (Instruction Register)

CU (Control Unit)

• At the same time, IP/PC will

be incremented (point to the

next instruction).

5

 Once the fetch

cycle is over,

the control unit

examines the

contents of the

IR to determine

if it contains an

operand

specifier using

indirect

addressing.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

(a) Fetch Cycle: Indirect Cycle

Figure: Data flow, indirect cycle.

54

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

5

 The fetch cycle

(Indirect addressing)
can be written

symbolically using

RTL as:

t1, t2 , t3 are the

timing sequence

RTL (Register Transfer Language)

55

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

t1: MAR  IR[Operand/Address]

t2: MBR Mem[MAR];

t3: IR[operand] MBR

5

56

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

• The IR contains the

indirect address that

loaded to MAR.

• Then transferred to

memory on the

address bus.

• Next, CU will activate

the read signal of the

memory.

• Data (operand) is accessed

from the memory and transfer

to CPU on the data bus.

• This data will be loaded into

MBR.

CU (Control Unit)

t1: MAR  IR[Operand/Address]

t2: MBR Mem[MAR];

t3: IR[operand] MBR

• Data in MBR is loaded into IR.

• The opcode of the instruction

will be decoded and translated

so as to determine the micro-

operations for the particular

instruction.

5
Example 5: Indirect cycle

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

Figure: Data flow, indirect cycle.

ADD AX,[2400]

57

Involve with

fetching data

from memory

before initiating

the execution

cycle.

5
Example : Indirect cycle

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

Figure: Data flow, indirect cycle.

(4) The address is

moved into MAR,

(1) The control unit

request a memory read,

Control

Unit

(3) Then copied into MBR

Add AX,[2400]

(2) and the result is

placed onto the data bus

(5) then placed on

the address bus

2400

58

MAR (Memory Address Register)

MBR (Memory Buffer Register)

5

Type of Opcode Operation

Processor-memory Data transfer between CPU and main

memory.

Processor I/O Data transfer between CPU and I/O module.

Data processing Some arithmetic or logical operation on data.

Control Alteration of sequence of operations.

e.g. jump Combination of above

CPU (Control Processing Unit)

I/O (Input/Output)

 The opcode of the instruction in IR will be decoded and

related control signals will be generated.

(b) Execute Cycle

59

IR (Instruction Register)

5

Example of

program

execution

(contents of

memory and

registers in

hexadecimal)

Example 6:

[940]+[941]

 [941]

60

5
Example :

[940]+[941]

 [941]

Step 1:

• PC = 300 (address of

1st instruction.

• The value 1940 (in hex)

is loaded into the IR.

• PC is incremented.

Step 2:

• The first 4 bits (1h) in the IR

indicate that the AC is to be loaded.

• The remaining 12 bits specify the

address (940) from which data is to

be loaded.  go to 940 and get

data (0003) to load into AC.

61

PC (Program Counter)

IR (Instruction Register)

AC (Accumulator)

5
Example :

[940]+[941]

 [941]

Step 3:

• The next instruction (5941) is

fetched from location 301.

• the PC is incremented.

Step 4:

• The old contents of the AC (0003) and

the contents of location 941 (0002)are

added.

• and the result (0005) is stored in the AC.
62

PC (Program Counter)

IR (Instruction Register)

AC (Accumulator)

5
Example :

[940]+[941]

 [941]

Step 5:

• The next instruction (2941)

is fetched from location 302.

• the PC is incremented.

Step 6:

• The contents of the AC

are stored in location 941.

63

PC (Program Counter)

IR (Instruction Register)

AC (Accumulator)

5
Example :

[940]+[941]

 [941]

1. The PC contains 300, the address of the first

instruction. This instruction (the value 1940 in

hexadecimal) is loaded into the instruction

register IP and the PC is incremented.

2. The first 4 bits in the IR indicate that the AC is to

be loaded. The remaining 12 bits specify the

address (940) from which data are to be loaded.

3. The next instruction (5941) is fetched from

location 301 and the PC is incremented.

4. The old contents of the AC and the contents of

location 941 are added and the result is stored in

the AC.

5. The next instruction (2941) is fetched from

location 302 and the PC is incremented.

6. The contents of the AC are stored in location 941.

Summary

64

5
MOV AX, NUMExample 7a: Fetch cycle

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

100 100

100  MOV AX,[450]

NUM

MOV AX,[450]

MOV AX,[450]

Control

Unit

65

5
MOV AX, NUMExample 7b: Indirect cycle

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

MOV AX,[450]

Control

Unit

450

000A

AX = 000A

450  000A

000A

IR

66

5

Clock IP/PC MAR MBR IR AX Micro-operation

t0
IP/PC = 100

t1
Fetch cycle:

MAR  IP/PC;

t2
MBR  [MAR];

IP/PC  IP/PC +1;

t3
IR MBR

Indirect cycle;

t4
MAR

IR[operand/address];

t5
MBR Mem[MAR];

Execution cycle:

t6
AX MBR;

Example 7c: MOV AX, NUM

67

100

100

4450101

4450

450

000A

000A

5

Clock IP/PC MAR MBR IR AX Micro-operation

t0
IP/PC = 100

t1
Fetch cycle:

MAR  IP/PC;

t2
MBR  [MAR];

IP/PC  IP/PC +1;

t3
IR MBR

Indirect cycle;

t4
MAR

IR[operand/address];

t5
MBR Mem[MAR];

Execution cycle:

t6
AX MBR;

Example 7c: MOV AX, NUM

68

100

100

4450101

4450

450

000A

000A

100

101

101

101

101

100

100

450

450

4450

4450 4450

4450

4450000A

5
Trace the execution of the instruction.

69

Example 8:

PC MAR

IR MBR

0100 0100

mov ax,N

mov ax,N

0101

mov ax,[0103]

5

70

MAR

MBR

mov ax,N

0103

N = 9A

(Indirect addressing)

9A

5
Exercise 5.1 :

71

Based on previous example, complete

the following table in tracing the

execution of the instruction.

Clock IP/PC MAR MBR IR _____ Micro-operation

t0
IP/PC = _____

t1
Fetch cycle:

MAR  IP/PC;

t2
MBR  [MAR];

IP/PC  IP/PC +1;

t3
IR MBR

Indirect cycle;

t4
MAR

IR[operand/address];

t5
MBR Mem[MAR];

Execution cycle:

t6
______ MBR;

5
Solution 5.1 :

72

Clock IP/PC MAR MBR IR Micro-operation

t0
IP/PC = _____

t1
Fetch cycle:

MAR  IP/PC;

t2
MBR  [MAR];

IP/PC  IP/PC +1;

t3
IR MBR

Indirect cycle;

t4
MAR

IR[operand/address];

t5
MBR Mem[MAR];

Execution cycle:

t6
______ MBR;

0100

0100

mov ax,N0101

0103

9A

9A

mov ax,N

0100

AX

AX

5

 Watch this video that illustrates the fetch control cycle in details

 https://www.youtube.com/watch?v=jFDMZpkUWCw

Fetch Control Cycle

73

https://www.youtube.com/watch?v=jFDMZpkUWCw

5
Exercise 5.2 :

74

Trace the execution of the instruction by showing

all the changes in CPU registers (control and

general purpose registers) as well as the micro-

operations related to the instructions. Use the

given initial table.

Clock IP/PC MAR MBR IR CX NUM VAL1 Micro-operation

t0
200 100

Activity 1

5

75

Clock IP/PC MAR MBR IR CX NUM VAL1 Micro-operation

t0
200 100

t1

t2

t3

t4

t5

t6

t7

t8

Solution 5.2 :

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

39D IP/PC = 39D

39D MAR  IP/PC

MBR  [MAR]

IP/PC  IP/PC + 1

IR MBR

MAR  IR[address]

MBR  [MAR]

Exchange:

CX MBR

[MAR] MBR

5

76

Clock IP/PC MAR MBR IR CX NUM VAL1 Micro-operation

t9

t10

t11

t12

t13

t14

t15

t16

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

IP/PC = 39E

MAR  IP/PC

MBR  [MAR]

IP/PC  IP/PC + 1

IR MBR

MAR  IR[address]

MBR  [MAR]

Subtract:

VAL1=VAL1– CX

[MAR] MBR

5

77

Clock IP/PC MAR MBR IR CX NUM VAL1 Micro-operation

t17

t18

t19

t20

t21

MAR (Memory Address Register)

MBR (Memory Buffer Register)

IR (Instruction Register)

IP/PC = 39F

MAR  IP/PC

MBR  [MAR]

IP/PC  IP/PC + 1

IR MBR

Execute JMP:

IP/PC  L1

5
(c) Interrupt Cycle

 All computers provide a way of interrupting the fetch-decode-

execute cycle.

 Interrupts occur when:

o A user break (e.g., Control+C) is issued.

o I/O is requested by the user or a program.

o A critical error occurs.

 Interrupts can be caused by hardware or software.

 Software interrupts are also called traps.

78

5
 Interrupt processing involves adding another step

to the fetch-decode-execute cycle as shown below:

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.168

Figure: Modified Instruction Cycle to Check for Interrupt

79

5
 The current contents of the PC must be saved so that the

processor can resume normal activity after the interrupt.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

Figure: Data flow, interrupt cycle.

80

5
 The current contents of the PC must be saved so that the

processor can resume normal activity after the interrupt.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.497.

Figure: Data flow, interrupt cycle.

PC

(1) The current content of

PC must be saved  to

come back after interrupt.

(2) The contents of PC is

transferred to MBR, then

placed on data bus, to be

written into memory

(3) The special place in memory to

keep this is given by CU to MAR ,

then placed on address bus.

(4) Kept in

a stack.

(5) PC is

loaded with

the address of

the interrupt

routine.

81

5

 Virtually all computers provide a mechanism by which other

modules (I/O, memory) may interrupt the normal processing of

the processor *.

 Interrupts let the CPU execute its normal instruction sequence

and pause to service the external devices ONLY when they

signal (the interrupts) that they are ready for the CPU’s

attention.

* William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.89.

Interrupt

82

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.90.

Figure: Program Flow of Control without and with Interrupts

.
83

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.93.

Figure: Program Timing:

Short I/O Wait (b).

• To appreciate the

gain in efficiency,

consider the

timing diagram

based on the flow

of control in

previous figures.

User program

code segments

are shaded green.

I/O program

code segments

are shaded gray.

5

5

84

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.94.

Figure: Program Timing:

Long I/O Wait (c).

• The more typical

case, especially for a

slow device such as a

printer  the I/O

operation will take

much more time than

executing a sequence

of user instructions.

User program

code segments

I/O program

code segments

5

5

85

5

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.93.

Figure: Class of interrupts.

Program Generated by some condition that occurs as a result of an instruction

execution, such as arithmetic overflow, division by zero, attempt to

execute an illegal machine instruction, or reference outside a user's

allowed memory space.

Timer Generated by a timer within the processor. This allows the operating

system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an

operation, request service from the processor, or to signal a variety of error

conditions.

Hardware failure Generated by a failure such as power failure or memory parity error.

86

5

 The major components of a computer system are its control

unit, registers, memory, ALU, and data path.

 Computers run programs through iterative fetch-decode-

execute cycles  Summarize the instruction cycle.

 Distinguish between user-visible and control/status registers,

and discuss the purposes of registers in each category.

Summary 1

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.489. 87

88

