SECR2033
Computer Organization
and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.

Module 5

Central Processing Unit
(CPU)

Objectives:

0 To learn the components common to every CPU.

0 Be able to explain how each component in CPU
contributes to instruction cycle.

0 To understand the concept of pipelining in CPU
execution.

0 Be able to understand micro-operations basis for
the design and implementation of the control unit.

Module 5

Central Processing Unit
(CPU)

5.1 Processor Organization

5.2 Register Organization
5.3 Instruction Cycles

9.4 Instruction Pipelining

5.5 Control Unit Operation

5.6 Microprogrammed Control

5.7 Summary

Module 5a

Central Processing Unit
(CPU)

9.1 Processor Organization 5 overview

Overview B
=

m To understand the organization of the processor, let us consider
the requirements placed on the processor, the things that it
must do:

o Fetch instruction: reads an instruction from memory
(register, cache, main memory).

o Interpret instruction: The instruction is decoded to
determine what action is required.

o Fetch data: The execution of an instruction may require
reading data from memory or an I/O module.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.489.

o

o Process data: The execution of an instruction may require
performing some arithmetic or logical operation on data.

o Write data: The results of an execution may require writing
data to memory or an I/O module.

= To do these things, the processor needs a small internal
memory to store some data and instruction temporarily while an
Instruction is being executed.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.489.

Minimal internal

/
ALU does the actual

computation or

. processing of data —

memory, consisting of a
set of storage locations,
- called registers. y,

™S

ALU

movement of data and

Instructions into / out of
the processor and controls
Qhe operation of the ALU

/Control unit controls the/

Registers

Control
unit

Control Data Address
bus bus bus

k/Y\J

System
bus

Figure: The CPU with the System Bus.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.490.

m The computer’s CPU
fetches, decodes, and

executes program
Instructions.

m The two principal parts
of the CPU:

o control unit

Registers

ALU

Control
unit

Control Data Address

bus bus bus
System
bus

Figure: The CPU with the System Bus.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.490.

1)

2)

The data path
consists of an ALU
and storage units
(registers) that are
interconnected by a
data bus that is also
connected to main
memory.

The control unit
provides signals to
tell the data path,
memory, and 1/0
devices what to do
according the
Instructions of the
program.

Arithmetic and logic unit

A

L.
-

Status flags

€

A

Y

Shifter

-

Y

A

A

Y

Complementer [

Y

A

Y

A

Registers

Arithmetic
and

Y

Boolean
logic

Y

Y

Internal CPU bus

A

Y

Control
paths

Figure: Internal Structure of the CPU.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.490.

Internal CPU Bus

m The registers are interconnected, Lot

and connected with main memory
through a common data bus.

m Each device on the bus is

identified by a unigue number that This permits data transfer
IS set on the control lines between these devices without
whenever that device is required use of the main data bus.

to carry out an operation.

m Separate connections are also provided between:

o the accumulator & the memory buffer register, and

o the ALU & the accumulator & memory buffer register.

10

—

External Bus T

m A bus is a set of wires that simultaneously convey a single bit
along each line.

l Bus Lines \
l Data Lines \ l Control Lines \ l Address Lines \

11

Power

[~ C‘P,U) .Address Bus >
[E J <:. Data Bus :> Viai
\ ~ /[] <:| A A Control Bus > Memory

SR222R 222
/O I/0O
Device Device
I/0O Subsystem
\ J

'

Figure: The Components of a Typical Bus

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.149

12

1) Data lines

o convey bits from one device to another.

o The number of lines (32, 64,128) gives the width of the
data bus.

o Example: width = 32 bit, instruction length = 64 bits - this
means the processor must access the memory modules
twice during each instruction cycle.

2) Control lines

determine the direction of data flow, and when each device
can access the bus.

Uses control signals, timing signals, command signals -
memory write, memory read, bus request and bus grant.

13

o

3) Address lines

o determine the location of the source or destination of the
data.

o Example: want to read data in memory, put address on
this bus, go to memory, get the content (i.e. the data) and
put it on to data bus.

14

Module 5a

Central Processing Unit
(CPU)

9.2 Register Organization

0 Overview
a User-Visible Registers

0 Control & Status
Registers

Overview

m Registers form the highest level of the memory hierarchy.
- Small set of high speed storage locations.
o Temporary storage for data and control information.

m Registers hold data that can be readily accessed by the CPU.

m They can be implemented using D flip-flops.
o A 32-bit register requires 32 D flip-flops.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.491.

16

Registers

User-Visible Control & Status
Registers Registers
(General Purpose) (Special Purpose)
May be referenced by Used to control the
assembly-level instructions operation of the CPU.
and are thus “visible” to Most are not visible to
the user. the user.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.491.

17

o

(a) .User-VisibIe Registers

m This register will be referenced by means of the machine
language that the processor executes.

m Categories:| _ General purpose

m Data
m Address

m Condition codes

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.491.

18

General purpose registers:
- Can be assigned to a variety of functions.
- Defined to the operations within the instructions.
- Can be used for addressing functions.
- Examples: accumulator, base, count, data.

Data registers:

- Hold data and cannot be used in the calculation of an
operand address.

- Example: accumulator.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.491-492. 19

o

Address registers:

= Hold address information.
= EXxamples: general purpose address registers, segment
pointers, stack pointers, index registers.

Condition codes or Flags:

= Bits set by the processor hardware as a result of operations.
= Can be accessed by a program but not changed directly.
= Examples: Sign Flag (SF), Zero Flag (ZF), Overflow Flag (OF).

= Bit values are used as the basis for conditional jump
instructions.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.492. 20

D0
D1
D2
D3
D4
D35
D6
D7

A0
Al
A2
A3
A4
AS
A6
AT’

Data registers

Address registers

Program status

Program counter

Status register

(a) MC68000

General registers General registers

AX |Accumulator EAX AX
BX Base EBX BX
CX Count ECX CX
DX Data EDX DX

Pointers and index

SP | Stack ptr ESP SP

BP | Base ptr EBP BP

SI [Source index ESI SI

DI | Dest index EDI DI
Segment Program status

CS Code FLAGS register

DS Data IP Instruction pointer

SS Stack

ES Extract (c) 80386—Pentium 4

Program status

Flags

Instr ptr
(b) 8086

Figure: Example Microprocessor Register
Organizations.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.495. 21

-

\.

EAX automatically
used by MUL and

DIV Instructions

-

ECX automatically

used by processor as
. a LOOP counter.

General registers

Accumulator EAX AX
Base EBX BX
Count ECX CX
Data EDX DX
Stack Pointer ESP SP
Base Pointer EBP BP
Source Index ESI SI
Dest. Index DI

Avoid usage for
generic calculation !

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.495.

22

Address registers should be wide enough to hold the longest
address!

Data registers should be wide enough to hold most data types.

Would not want to use 64-bit registers if the vast majority of
data operations used 16 and 32-bit operands.

Related to width of memory data bus.

Solution: Concatenate registers together to store longer
formats (DX:AX)

23

Example: mul ax

Assuming the following DumpRegs. Update the related register
once the instruction executed:

EAX=770C0400 EBX=7FFD7098 ECX=00000000 EDX=00401005
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401025 EFL=00000A82 C(CF=0 SF=1 ZF=0 OF=1

24

. Solutions: mul ax

—> ax = 0400h

- ax * ax = 0400 * 0400 = 0010 0000h
DX : AX

EAX=770C0000 EBX=7FFD7098 ECX=00000000 EDX=00400010
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401025 EFL=00000A82 CF=0 SF=1 ZF=0 OF=1

Multiplicand Multiplier Product

AL reg/mems8 AX

AX reg/memlé DX:AX

25

Example: div Dbx

Assuming the following DumpRegs. Update the related register
once the instruction executed:

EAX=770C0000 EBX=7FFD0020 ECX=00000000 EDX=00400010
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401025 EFL=00000A82 C(CF=0 SF=1 ZF=0 OF=1

26

. Solutions: div bx
o

- dx : ax = 00100000h, bx = 0020h
- [dx :ax]/ bx =100000 /0020 = 0000 8000h
DX : AX

EAX=770C8000 EBX=7FFD0020 ECX=00000000 EDX=00400000
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401025 EFL=00000A82 C(CF=0 SF=1 ZF=0 OF=1

Djvidend Divisor Quotient Remainder

AX reg/mems8 AL AH
DX:AX reg/mem1l6 AX DX

27

(b) Consrol & Status Registers

m There are a variety of processor registers that are employed to
control the operation of the processor.

m Most of these, on most machines, are not visible to the user.

= Some of them may be visible to

machine instructions executed Different machines
In @ control or operating system will have different
mode. reqister organizations
and use different
terminoloqy.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.493. 28

CPU (Control Processing Unit)

PC = The address of the next VO Inputioutput
instruction to be executed

o

Table: Four essential registers for instruction execution.

Program Counter The address of an instruction to be
(PC) fetched.

Instruction Register The instruction most recently fetched.
(IR)

Memory Address The address of a location in memory.
Register (MAR)

Memory Buffer A word of data to be written to memory
Register (MBR) or the word most recently read.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.493. 29

m The four registers just mentioned are used for the movement of
data between the processor and memory.

m Not all processors have internal registers designated as MAR
and MBR - need some equivalent buffering mechanism to
store the bits transferred / read bits to / from the data bus:

A The ALU may have direct access to the MBR and user-
visible registers.

0 There may be additional buffering registers at the boundary
to the ALU serves as input and output registers for the ALU
and exchange data with the MBR and user-visible
registers.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.494. 30

CPU

PC MAR
IR MBR
I/0 AR
.
Execution
unit 1/0 BR

I/0 Module

Figure: Computer components: The CPU
exchanges data with memory.

Buffers

System
bus

PC

IR
MAR
MBR
I/O AR
I/O BR

Main memory

Instruction

o e e N =D

Instruction

Instruction

Data

Data

Data

Data

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.84. 31

Instruction Pointer

o

m The Extended Instruction Pointer (EIP) register holds the
address of the next instruction to be executed.

m The EIP register corresponds to the Program Counter (PC)
register in other architectures.

m EIP can be manipulated for certain instructions (e.g. call, jmp,
ret) to branch to a new location.

32

Program Status

o

= Many processor designs include a register or set of registers,

often known as the Program Status Word (PSW), that contain
status information and condition codes.

m The ALU has a number of status flags that reflect the outcome
of arithmetic (and bitwise) operations.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.494. 33

Status flags that reflect the
outcome of arithmetic (contents
of the destination operand)

= Common field or flags:

o Zero flag (ZF): set when destination equals zero.

o Sign flag (SF): set when destination is negative.

o Carry flag (CF): set when unsigned value is out of range.
o Overflow flag (OF): set when signed value is out of range.

o Auxiliary flag (AF): set when there is carry from lower nibble
to higher nibble in the lower byte.

o Parity flag (PF): set when there are odd or even number of
1's in the lower byte.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.494.

34

ZF: 0
SF: O
Example 1: Flags :

P J . CF: 0
Assuming that the system uses even parity. OF: 0
> 06h + 54h AF 0

PF: 1

0000 0110 (O6h)
+ 0101 0100 (54h)

0101 1010 (5Ah)

Number of 1s =4 > even
soPF=1

35

LF .
SF :
Example 2: Flags . CE -
Assuming that the system uses odd parity. OF :
> 2Fh + DEh AF:

-

\

0010 1111
+ 1101 1110

(2Fh)
(DEh)

1 0000 1101
N

There is a carry from lower
nibble to higher nibble in the
lower byte 2 so AF =1

There is a carry
out>soCF=1

|

Number of 1s=3 = odd ;
soPF=1

= O » O O

36

ZF :

SF:

Example 3: Flags |
’ J Y CF:

OF :

Assuming that the system uses even parity for: |
a) Aword sized number. .AF ;
b) A doubleword sized number. PF :
- 5433h + 7098h 7E -
SF:

CF:

OF :

AF :

PF :

37

_ _ ZF:. 0O
If the carry into the sign bit
_ Is different from the carry SE 1
. Solutions (a): out of the sign bit, overflow . CE: 0
(and thus an error) has \
occurred. OF:1
a) Aword sized number. JF: 0
PF: 1

- 5433h + 7098h

OLol 0100 0011 0011
+ |OL11 0000 1001 1000

1100 0100 1100 1011

Sign flag (SF): set when destination is negative.

38

il solution (b):

b) A doubleword sized number.

- 00005433h + 00007098h

0000 0000 0000 0000 0101 0100 0011 0011
+ 0000 0000 0000 0OOO0O 0111 0000 1001 1000

0000 0000 0000 0000 1100 0100 1100 1011

LF .
SF .
CF:
OF :
AF :
PF :

, O O O O O

39

The DumpRegs if use word sized numbers:

EAX=770CCACB EBX=7FFD7098 ECX=00000000 EDX=00401005
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401025 EFL=00000A82 C(CF=0 SF=1 ZF=0 OF=1

The DumpRegs if use dword sized numbers:

EAX=0000C4CB EBX=00007098 ECX=00000000 EDX=00401005
ESI=00000000 EDI=00000000 EBP=0012FF94 ESP=0012FF8C
EIP=00401022 EFL=00000202 CF=0 SF=0 ZF=0 OF=0

40

Status flags that reflect the
outcome of arithmetic (contents
of the destination operand)

= Common field or flags:

o Zero flag (ZF): set when destination equals zero.

o Sign flag (SF): set when destination is negative.

o Carry flag (CF): set when unsigned value is out of range.
o Overflow flag (OF): set when signed value is out of range.

o Auxiliary flag (AF): set when there is carry from lower nibble
to higher nibble in the lower byte.

o Parity flag (PF): set when there are odd or even number of
1's in the lower byte.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.494.

41

Remember how to _
do subtraction in M—S=M+(=S)~" s)>25 | £F:

Module2 ? w Complement SE

. | (negation)) '

Example 4 : Flags . CE -

Assuming that the system uses even parity for: OF :

a) 3Ch-28h AF -

b) 5Ah - 7Fh 2's for 28h j .

/

a) 0011 1100//%44§” ZF :
+ 1101 1000
____________ SF :
1 0001 0100 (14h) CF:
b) 0101 1010/44;;ﬁ;:4:2376r7Fh} OF :
+ 1000 0001 AF :
____________ o
1101 1011 (DBh) AR

~ B O b O O

, O O O +— O

Design Issues of the Control & Status
Register Organization

o

1) Operating system support. 2) The allocation of control
information between

2 Certain types of control registers and memory.
information are of
specific utility to the 2 The designer must
operating system. decide how much control

Information should be in
registers and how much
iIn memory.

2 The register
organization need to
some extent to be
tailored to a particular 2 The usual trade-off of
operating system . cost versus speed arises.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.494. 43

Module 5a

Central Processing Unit
(CPU)

9.3 Instruction Cycles a Overview
0 The Indirect Cycle

Q Data Flow

Overview

m The processing required for a single instruction is called an
Instruction cycle.

ol

99 (Can you list down all

e \the Instruction cycles *

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.85.

45

Overview

m The processing required for a single instruction is called an
Instruction cycle.

m The instruction processing consists of three (3) stages :

QO Fetch cycle Fetch the instruction;

- Decode it;

- Fetch operands, if required (indirect).

O Execute cycle - perform the operation:

- Store results, If required.

Q Interrupt cycle . Recognize pending interrupts.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.85.

46

Fetch cycle

Execute cycle

Interrupt cycle

(START)—L>

Fetch next
instruction

Interrupts
disabled

Figure: Instruction cycle with interrupt.

m Program execution halts only if :
o the machine is turned off,

Execute
instruction

——
Interrupts

Check for
interrupt;
process interrupt

enabled

~ HALT

o some sort of unrecoverable error occurs, or
o a program instruction that halts the computer is encountered.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.92.

47

The Indirect Cycle

m We can think that the
fetching of indirect addresses
—> another instruction stages.

m The main line of activity
consists of alternating
instruction fetch and
Instruction execution activities.

Interrupt

Y

Execute

m Following execution, an
interrupt may be processed
before the next instruction

Figure: The instruction cycle.
fetch.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.497-498.

48

Indirection Indirection

Instruction
fetch

Multiple
operands

Multiple
results

Data
Operation

operation
decoding

Return for string

or vector data

No
interrupt

Instruction complete,
fetch next instruction

Interrupt
check

Interrupt

= Another way to view the process is
shown in figure with more correctly
the nature of the instruction cycle.

‘wrelbelp ayels 91942 uononasul :2inbi4

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497.

49

Data Flow ¥

® The exact sequence of ® -
events during an instruction
cycle depends on the design
of the processor.

Memory Address Register (MAR)
Memory Buffer Register (MBR)
Program Counter (PC)
Instruction Register (IR).

processor employs:

{ Let us assume that a

' m Each of the smaller cycles consists of a
series of steps that involves the
processor registers - micro-operations.

5.5and 5.6

Detail in sub-topic: }

m Conventional format using Register Transfer Language (RTL)

m Example: [P« IP+1

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.497, p.709 50

(a) Fetch Cycle

o
m An instruction CPU
is read from
memory. PC ——>MAR > EN
< Memory
=P
Control >
unit

IR K——MBRK

Address Data Control
bus bus bus

Figure: Data flow, fetch cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497. 51

RTL (Register Transfer Language)

MAR (Memory Address Register)
MBR (Memory Buffer Register)
PC (Program Counter)

IR (Instruction Register)

o

m The fetch cycle can be written t,: MAR < IP/PC
symbolically using RTL as: t,: MBR < [MAR]:

IP/PC < IP/PC + 1
t;, IR € MBR

t,, t,, t; are the
timing sequence

The PC contains the
address.

Content of IP/PC is loaded
to MAR.

Then transferred to memory
on the address bus.

Next, CU will activate the
read signal of the memory.

CU (Control Unit)
MAR (Memory Address Register) i
MBR (Memory Buffer Register)

PC (Program Counter)
IR (Instruction Register)

Instruction I1s accessed from
the memory and transfer to
CPU on the data bus.

This instruction address will
be loaded into MBR.

oty MAR & IP/PC
t, MBR < [MAR];
IP/PC € IP/PC + 1

ﬁtg: IR ¢ MBR

At the same time, IP/PC will
be incremented (point to the
next instruction).

Instruction in MBR is loaded
into IR.

The opcode of the instruction

will be decoded and translated

so as to determine the micro-

operations for the particular
Instruction.

53

(a) Fetch Cycle: Indirect Ciycle

m Once the fetch

cycle is over,
the control unit
examines the
contents of the
IR to determine
if it contains an
operand
specifier using
Indirect
addressing.

CPU

——— > MAR

MAR (Memory Address Register)
MBR (Memory Buffer Register)
IR (Instruction Register)

o

Control
unit

Memory

MBR

Address Data Control
bus bus bus

Figure: Data flow, indirect cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497. 54

m The fetch cycle
(Indirect addressing)
can be written
symbolically using
RTL as:

{ t;, t,, t; are th

e
timing sequencﬂ

RTL (Register Transfer Language)
MAR (Memory Address Register)

MBR (Memory Buffer Register)
IR (Instruction Register)

MAR < IR[Operand/Address]
MBR < Mem[MAR];
IR[operand] € MBR

—

55

The IR contains the
Indirect address that

CU (Control Unit)
MAR (Memory Address Register) i
MBR (Memory Buffer Register)

IR (Instruction Register)

loaded to MAR.

MAR < IR[Operand/Address]
MBR < Mem[MAR];
IR[operand] € MBR

Then transferred to —e t

memory on the ol
address bus. _
Next, CU will activate ks

the read signal of the
memory.

.

Data (operand) is accessed
from the memory and transfer
to CPU on the data bus.

This data will be loaded into
MBR.

Data in MBR is loaded into IR.
The opcode of the instruction

will be decoded and translated

so as to determine the micro-

operations for the particular
Instruction.

56

Example 5: Indirect cycle

@
Involve with CPU
fetching data
from memory ——— > MAR > BN
before initiating < Memory
the execution >

Control

cycle. unit >

MBR

ADD AX, [2400]

o

Address Data Control
bus bus bus

Figure: Data flow, indirect cycle.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497.

57

[(1) The control unit } [(2) and the result is }

request a memory read, placed onto the data bus

CPU
2400 —

[(5) then placed on} = Memory

the address bus

-

(4) The address is MER

[moved iInto MAR, <¥]
Add AX, [2400] Address Data Control
bus bus bus

MAR (Memory Address Register) [(3) Then COpIed II’]'[O MBR }

MBR (Memory Buffer Register)

58

CPU (Control Processing Unit)
1/0 (Input/Output)

IR (Instruction Register)

(b) Execute Cycle N

m The opcode of the instruction in IR will be decoded and

related control signals will be generated.

Type of Opcode

Processor-memory Data transfer between CPU and main

memory.

Processor I/O

Data transfer between CPU and I/O module.

Data processing

Some arithmetic or logical operation on data.

Control

Alteration of sequence of operations.
e.g. jump Combination of above

59

Memory CPU registers Memory CPU registers
300{1 9 4 0 3 0 0|PC 30011 9 4 3 0 1(PC
30159411 AC| 3015 9 4 0 0 0 3]AC
30212 9 4 1 1 9 4 0|IR [302(2 9 4 1 9 4 0|]IR
Example 6: . .
@ %00 0 0 3 940 (0 0 O
941 (0 0 0 2 941 (0 0 O
Example of Step 1 Step 2
prog ram Memory CPU registers Memory CPU registers
execution 300[1 9 4 0 30 1|PC 300 (1 9 4 3 0 2|PC
(Contents of 30115 9 4 1—1»0 0 0 3|]AC[301(5 9 4 1 0 0 0 50AC
30212 9 4 1 59 4 1|IR |302(2 9 4 1 5 9 4 1|\IR
memory and . .
registers in 940 [0 0 0 3 940 [0 0 0 34+2=5
hexadecimal) 94110 0 0 2 94110 0 O SR
Step 3 Step 4
[94 O] + [94 1] Memory CPU registers Memory CPU registers
> [941] 300{1 9 4 0 3 0 2(PC 30011 9 4 3 0 3(PC
301 |5 9 4 1 0 00 S|AC|301(5 9 4 0 00 5|AC
30212 9 4 > 2 9 4 1|IR [302]|2 9 4 2 9 4 1]|IR
940 (0 0 0 3 940 (0 0 O
941(0 0 0 2 941 (0 0 O
Step 5 Step 6

60

Memory CPU registers Memory CPU registers
300 | 1 4 3 0 0|PC 300(1 9 4 0 3 0 1|PC
301 |5 411 AC|301|5 9 4 1 0 0 0 3|]AC
[940]1+[941] [302(2 9 4 1 1 9 4 0|]IR [302(2 9 4 1 1 94 0[IR
2> [941] z .
@ 940 |0 0 94010 0 O 3
PC (Program Counter) 941 |1 0 0 94110 0 O 2
IR (Instruction Register)
AC (Accumulator) Stepl Step2
Step 1: Step 2:

PC = 300 (address of

1st Instruction.

The value 1940 (in hex)
IS loaded into the IR.

PC IS Incremented.

« The first 4 bits (1h) in the IR
Indicate that the AC is to be loaded.

 The remaining 12 bits specify the
address (940) from which data is to
be loaded. - go to 940 and get
data (0003) to load into AC.

61

[940]+[941]

Step 3.

* The next instruction (5941) Is

2> [941] fetched from location 301.
Y » the PC is incremented.
PC (Program Counter)
IR (Instruction Register)
AC (Accumulator)
Memory CPU registers Memory CPU registers
30011 9 4 0 3 0 1|PC 30001 9 4 0 3 0 2|PC
3015941—1»0003AC301594 0 00 5}{AC
302(2 9 4 1 59 4 1|IR 3022941(5941>IR
940 (0 0 0 3 940 (0 0 O 3 3+2=5
941 (0 0 0 2 94110 0 0 2
Step 3 Step 4
Step 4.

 The old contents of the AC (0003) and
the contents of location 941 (0002)are

added.

« and the result (0005) is stored in the AC.

62

[940]+[941]

9

[941]

PC (Program Counter)
IR (Instruction Register)
AC (Accumulator)

Step 5.

The next instruction (2941)

IS fetched from location 302.
the PC Is iIncremented.

Step 6.

The contents of the AC
are stored in location 941.

Memory

30011 9

301 5

O [\O

302 (2

R

CPU registers

3 02

PC

940 | 0

SIS

941 10

SN

Step 5

Y

0 00
2 9 4

5
1

AC
IR

Memory

30011 9

301 |5

O [\©

302 |2

||~

940 1 0

oo

941 10

=||=)

Step 6

CPU registers

3 03

PC

000
2 9 4

5
1

AC
IR

63

[940]+[941]
-2 [941]

Summary

The PC contains 300, the address of the first
Instruction. This instruction (the value 1940 in
hexadecimal) is loaded into the instruction
register IP and the PC is incremented.

The first 4 bits in the IR indicate that the AC is to
be loaded. The remaining 12 bits specify the
address (940) from which data are to be loaded.

The next instruction (5941) is fetched from
location 301 and the PC is incremented.

The old contents of the AC and the contents of
location 941 are added and the result is stored In
the AC.

The next instruction (2941) is fetched from
location 302 and the PC is incremented.

The contents of the AC are stored in location 941.

64

Example 7a: Fetch cycle

CPU
— 100 ——— 100 —

PC MAR

NUM

MOV AX, NUM

MOV AX, [450]

MOV AX, [450]

bus

bus

o

100 MOV AX, [450]
XXX 7777
450 DDDA
YYY BEEB

Address Data Control

bus

100 = MOV AX, [450]

65

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497.

o

Example 7b: Indirect cycle MOV AX, NUM
o
CPU
450

MAR :> 100 MOV AX, [450]

| 3 HEX s

$ 450 OO00A

W e Y BRea

450 > 000A

MBRﬁ p—

—

[4501 000A

IR

MOV AX,

Address Data Control
bus bus bus

E AX = 000A }

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.497 66

100 MOV AX, [450]

AR LEEE
450 OO0
Example 7c: MOV AX, NUM|[ww BEEE
@
Clock | IP/PC | MAR | MBR IR AX Micro-operation
ty 100 IP/PC =100
t, Fetch cycle:
100 MAR < IP/PC;
t MBR € [MAR];
> | 101 4450 IPIPC & IP/PC +1;
t, IR ¢ MBR
4450 Indirect cycle;
t MAR&
) 450 IR[operand/address];
te MBR € Mem[MAR];
000A Execution cycle:
ts 000A | AX € MBR;

o7

100 MOV AX, [450]

AR LEEE
450 OO0
Example 7c: MOV AX, NUM|[ww BEEE
@
Clock | IP/PC | MAR | MBR IR AX Micro-operation
t, | 100 IP/PC = 100
t, Fetch cycle:
1001 100 MAR < IP/PC;
t MBR < [MAR];
? | 101} 100 4450 IPIPC € IP/PC +1;
t, IR € MBR
101 | 1001445014450 Indirect cycle;
t MAR &
) 101) 450 1445014450 IR[operand/address];
5 | 101 | 450 |000A[4450 MBR < Mem[MAR];
Execution cycle:
ts 101 | 450 |000A|4450|000A |AX € MBR;

68

Example 8: Trace the execution of the instruction.

CPU
PC MAR
0101 _> 0100
Control
unit
IR MBR

mov ax,[OlO3]<:#: mov ax, N

VaIlv;

Address Data Control

bus

bus

bus

Offset:
0100:
0101:
0102:
0103:
0104:

o

Value:

mov ax, N

00

4F

69

(Indirect addressing)

CPU

MAR

— >

0103

Control

unit

Vv

MBR

9A

Address Data Control

bus

bus

bus

Offset:
0100:
0101:
0102:
0103:
0104:

Value:

o

mov ax,N

00

4F

N = 9A

70

. Exercise 5.1 :

Based on previous example, complete
the following table in tracing the
execution of the instruction.

@
Clock | IP/PC | MAR MBR IR L Micro-operation
t, IPIPC=_
t, Fetch cycle:
MAR < IP/PC;
t, MBR < [MAR];
IP/PC < IP/PC +1;
t, IR < MBR
Indirect cycle;
t, MAR €
IR[operand/address];
te MBR € Mem[MAR]:
Execution cycle:
te < MBR;

. Solution 5.1 :

o

®
Clock | IP/PC | MAR MBR IR AX Micro-operation
t, 0100 IP/PC=0100
t, Fetch cycle:
0100 MAR < IP/PC;
A IO MBR < [MAR];
' IP/PC < IP/PC +1;
t; o aw IR < MBR
' Indirect cycle;
t MAR €
* 0103 IR[operand/address];
te ; MBR € Mem[MAR]:
A Execution cycle:
ts 9A AX & MBR;

Fetch Control Cycle

m Watch this video that illustrates the fetch control cycle in detai

m https://www.youtube.com/watch?v=|FDMZpkUWCw

The Processor’s Registers o
0
Control Unit 0
2
3
0
control bus
Program Counter 0
0
Accumulator Current Instruction
Register
Memory Address
Register 0
Memory Data 0
Register
LOAD 10
| Cemcmm————— ADD 11
STORE 12
0

10
11
12
13
14

98

100
101
102

—

.

73

https://www.youtube.com/watch?v=jFDMZpkUWCw

Activity 1

. Exercise 5.2 :

Trace the execution of the instruction by showing
all the changes in CPU registers (control and

general purpose registers) as well as the micro-

operations related to the instructions. Use the
given initial table.

Memory address

Memory Content

Instruction/Data

39D A450 L1: XCHG CX, NUM
39E B451 SUB VAL1,CX
39F C39D JMP L1:
450 100 NUM
451 500 VALI
Clock | IP/PC | MAR | MBR | IR CX | NUM | VAL1 | Micro-operation
t, 200 | 100

74

MAR (Memory Address Register) f\/Ielfnory address Memory Content Instruction/Data
e ey | 39D A0 |LLXCHG CXLNUM
39E B451 SUB VAL1.CX
39F C39D IMPLI:
. Solution 5.2: . = — —
451 500 VALI
Clock | IP/PC | MAR | MBR | IR CX | NUM | VAL1 Micro-operation
t, 39D 200 100 IP/PC =39D
b 39D MAR € IP/PC
t, MBR < [MAR]
IP/PC < IP/PC +1
t IR < MBR
t, MAR < IR[address]
t. MBR < [MAR]
t; Exchange:
t CX €-> MBR
:
tg [MAR] € MBR

75

MAR (Memory Address Register) f\/Ielfnory address Memory Content Instruction/Data
o ey e | FRENSAIE & s
39E B431 SUB VAL1.CX
39F C39D JIMPLI:
450 100 NUM
451 500 VALI
Clock | IP/PC | MAR | MBR | IR CX | NUM | VAL1 Micro-operation
t, IP/PC = 39E
t, MAR & IP/PC
t MBR < [MAR]
IP/PC < IP/PC +1
t IR < MBR
tis MAR < IR[address]
t MBR < [MAR]
ts Subtract:
VAL1=VALI1l-CX
t, [MAR] < MBR

76

MAR (Memory Address Register) f\/Ielfnory address Memory Content Instruction/Data
oy S e | ™" TG G
39E B431 SUB VAL1.CX
39F C39D JIMPLI:
450 100 NUM
451 500 VALI
Clock | IP/PC | MAR | MBR | IR CX | NUM | VAL1 Micro-operation
by IP/PC = 39F
tg MAR & IP/PC
ts MBR < [MAR]
IP/PC < IP/PC +1
o IR € MBR
to, Execute JMP:
IP/PC < L1

77

(c) Interrupt Cycle

o

= All computers provide a way of interrupting the fetch-decode-
execute cycle.

m Interrupts occur when:

o A user break (e.g., Control+C) is issued.
o 1/O is requested by the user or a program.
o A critical error occurs.

m Interrupts can be caused by hardware or software.

- Software interrupts are also called traps.

78

—

m Interrupt processing involves adding another step
to the fetch-decode-execute cycle as shown below: N

Has an
interrupt been
issued?

Yes No

v

Perform fetch-
decode-execute
cycle

Process the
interrupt

Figure: Modified Instruction Cycle to Check for Interrupt

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.168 79

m The current contents of the PC must be saved so that the
processor can resume normal activity after the interrupt.

CPU

PC

MAR

i

Control
Unit

> MBR

>

Figure: Data flow, interrupt cycle.

VAVAY,

Memory

Address Data Control

bus

bus

bus

—

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.497.

80

(1) The current content of
PC must be saved - to
come back after interrupt.

CPU

(3) The special place in memory to
keep this is given by CU to MAR ,
then placed on address bus.

(5) PCis
loaded with
the address of
the interrupt
routine.

MAR ::>
— > Memory
s W)
Control
Unit > .
(4) Kept in
a stack.

(2) The contents of PC is
transferred to MBR, then
placed on data bus, to be
written into memory

Address Data Control
bus bus bus

81

o

Interrupt

= Virtually all computers provide a mechanism by which other
modules (I/O, memory) may interrupt the normal processing of
the processor "

m Interrupts let the CPU execute its normal instruction sequence
and pause to service the external devices ONLY when they
signal (the interrupts) that they are ready for the CPU'’s
attention.

* William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.89. 82

User
Program

WRITE

I/0
Program
[
| I//fi
|
| ///}/{ | @
| 7 / | :
Vol 1/0
v / : |Command
/ |
| &= / | |
| ~ |
| RN 3 : ®
| / ~
| J S
A ! =5
| / /
[/
oy
: /’ //
v,
v/
»

- — — ————— — ———

User I/0
Program Program
—_ , et =arli
| 4
@ | //;l | | @
| N Y *
I T
Lo - f . Command
WRITE «-" 7,
— | o
' /
L/
(R /
/
X Y\\///
| J?x\
N o Interrupt
@ Ly s > Handler
// N\ e —
e V// \\/4: :
WRITE 5‘ 2 ©
—_ v\\I o
/2 Y
/7
: // .7
*/ s
///

User I/O0
Program Program
=", f 7 T
| R
1} |
ol i A @
| s
L j 10
- A=l Command
WRITE «-~7 //
— /
e
| &
/
l a
|)
o | //
Ly
Ly !
L H Interrupt
i Handler
/ -
—— YL/ /,—”1}/ |
WRITE /-J. i ®
_— | -
| 74 // = N
| /7
| I/
A
A
&l
| 1)
L
v/
— II//
WRITE ¥

X

(a) No interrupts

(b) Interrupts; short I/0O wait

= interrupt occurs during course of execution of user program

(c) Interrupts; long I/0 wait

Figure: Program Flow of Control without and with Interrupts

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.90.

83

« To appreciate the
gain in efficiency,
consider the
timing diagram
pased on the flow
of control in
previous figures.

-

User program
code segments
are shaded green.

\.

-

|/O program
code segments

\are shaded gray.

s

Y

/2

Time

o)
o)
__§
o}
©
o)
I

|

(a) Without interrupts

I/0 operation;
processor waits

I/0 operation;
processor waits

concurrent with
processor executing

[I/0O operation

concurrent with

I/0 operation
processor executing

2loje|cjejeje|ole

(b) With interrupts

Figure: Program Timing:
Short I/O Wait (b).

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.93. 84

« The more typical
case, especially for a
slow device such as a
printer - the 1/O

I/0 operation;
processor waits

I/0 operation
concurrent with
processor executing;
then processor

operation will take "
much more time than
executing a sequence
of user instructions.
I/O operation

concurrent with
processor executing;
then processor
waits

User program
code segments

I/0 operation;
processor waits

1/O program
code segments

(b) With interrupts

Figure: Program Timing:
(a) Without interrupts LOng I/O Walt (C)

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.94. 85

D
.

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to
execute an illegal machine instruction, or reference outside a user's
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of error
conditions.

Hardware failure Generated by a failure such as power failure or memory parity error.

Figure: Class of interrupts.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10™ Edition). United States: Pearson Education Limited, p.93.

86

Summary 1

o

= The major components of a computer system are its control
unit, registers, memory, ALU, and data path.

= Computers run programs through iterative fetch-decode-
execute cycles - Summarize the instruction cycle.

m Distinguish between user-visible and control/status registers,
and discuss the purposes of registers in each category.

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.489. 87

