
SECR2033

Computer Organization

and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.
1

Module 4
Instruction Set Architecture
(ISA)

Objectives:

 To provide a more detailed look at machine

instruction sets.

 To look at different instruction types and

operand types, and how instructions access

data in memory.

 To understanding how instruction sets are designed and

how their function can help to understand the more

intricate details of the architecture of the machine itself.

4.1 Introduction

4.2 Machine Instruction Characteristics

4.3 Types of Operands

4.4 Addressing Modes

4.5 Instruction Formats

4.6 Summary

Module 4
Instruction Set Architecture
(ISA)

4.1 Introduction

4.2 Machine Instruction Characteristics

4.3 Types of Operands

4.4 Addressing Modes

4.5 Instruction Formats

4.6 Summary

Module 4
Instruction Set Architecture
(ISA)

 Overview

 Hierarchy of Computer Languages

 General Concepts:
x86 Processor Architecture

 Design Decisions for Instruction Sets

 ISA Level

4

 One boundary where the computer designer and the computer

programmer can view the same machine is the machine

instruction set.

 Implementing the processor is a task that in large part involves

implementing the machine instruction set.

 The user who chooses to program in machine language

(actually, in assembly language) becomes aware of the register

and memory structure, the types of data directly supported by

the machine, and the functioning of the ALU.

ALU (Arithmetic Logic Unit)

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.248. 5

Overview

4

6

Some important questions to ask:

 What is assembly language?

 Why learn assembly language?

 What is machine language?

 How is assembly related to machine language?

 What is an assembler?

 How is assembly related to high-level language?

 Is assembly language portable?

4

7

Hierarchy of Computer Languages

Microprogram control

4

8

Assembly and Machine Languages

Machine language:

 Native to a processor:

executed directly by

hardware.

 Instructions consist of

binary code: 1s and 0s

Assembly language:

 A programming language that uses

symbolic names to represent

operations, registers and memory

locations.

 Slightly higher-level language.

 Readability of instructions is better

than machine language.

 One-to-one correspondence with

machine language instructions.

4
Compiler and Assembler

Assemblers translate

assembly to machine

code.

Compilers translate high-level programs to

machine code:

 either directly, or Indirectly via an

assembler.
9

4

10

Program development is faster: fewer instructions to code.

Program maintenance is easier: same reasons as above.

Programs are portable:

 Contain few machine-dependent details  Can be used

with little or no modifications on different machines.

 Compiler translates to the target machine language.

High-Level Languages: Advantages

However, Assembly language

programs are not portable.

4

11

Why Assembly Languages?

Accessibility to system hardware:

Assembly language is useful for implementing system

software.

Also useful for small embedded system applications.

Space and Time efficiency:

Understanding sources of program inefficiency.

Tuning program performance.

Writing compact code.

4

12

Writing assembly programs gives the computer designer the

needed deep understanding of the instruction set and how to

design one.

To be able to write compilers for HLLs, we need to be expert

with the machine language. Assembly programming provides

this experience.

HLL (High Level Language)

4

 This section describes the architecture of the x86 processor

family and its host computer system from a programmer’s point

of view.

 Assembly language is a great tool for learning how a computer

works, and it requires you to have a working knowledge of

computer hardware.

 The concepts in this section will help to understand the

assembly language code that be written.

13

General Concepts:

X86 Processor Architecture

Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.29.

4

 One

14

Basic Microcomputer Design

Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.30.

Figure: Block diagram of a microcomputer.

(Section 5.2)

Registers

4

15Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.30.

Elements Description

Clock o synchronizes the internal CPU operations.

Control Unit (CU) o coordinates sequence of execution steps.

Arithmetic Logic

Unit (ALU).

o performs arithmetic and bitwise

processing.

 The CPU does the calculations and logic operations  contains

a limited number of storage locations as follow:

CPU (Central Processing Unit)

4

16Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.31.

Clock

 synchronizes all CPU and BUS operations.

 machine (clock) cycle measures time of a single operation.

 clock is used to trigger events.

4Video 2 – Computer Clock
Remember this video from Module 1?

 What is clock in a computer? Please watch this YouTube

video

 https://www.youtube.com/watch?v=Z5JC9Ve1sfI

17

https://www.youtube.com/watch?v=Z5JC9Ve1sfI

4Instruction

Execution Cycle

Irvine, K.R. (2011). Assembly Language for x86 Processors

(6th Edition). New Jersey: Pearson Education Limited, p.31.

Figure: Simplified

CPU block diagram.

 Fetch

 Decode

 Fetch operands

 Execute

 Store output

Registers

ALU

4

19

Reading From Memory

Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.33.

Figure: Memory read cycle.

a clock cycle begins as the

clock signal changes from

high to low

4

20

 Multiple machine cycles are required when reading from

memory, because it responds much more slower than the

CPU.

Irvine, K.R. (2011). Assembly Language for x86 Processors (6th Edition). New Jersey: Pearson Education Limited, p.33.

 The steps are:

 Cycle 1: address placed on address bus (ADDR).

 Cycle 2: Read Line (RD) set low (0) to notify memory that a

value is to be read.

 Cycle 3: CPU waits one cycle for memory to respond.

 Cycle 4: Read Line (RD) goes to high (1), indicating that the

data is on the data bus (DATA).

4

21

How Program Run?

Assembling, Linking, and Running Programs

Source

File

Object

File

Listing

File

Link

Library

Executable

File

Map

File

Output

Step 1: text editor

Step 2:

assembler

Step 3:

linker

Step 4:

OS loader

 The diagram describes the steps from creating a source

program through executing the compiled program.

 If the source code is modified, Steps 2 through 4 must be

repeated.

4

22

Listing File

 Use it to see how your program is compiled.

 Contains:

 source code

 addresses

 object code (machine language)

 segment names

 symbols (variables, procedures, and constants)

 Example: addSub.lst

4

4

• 32-bit addresses

• indicate the relative byte

distance of each statement

from the beginning of the

program’s code area

4• contain no executable

instructions

• … directives,

4• assembly language instructions, each

5 bytes long

• the hexadecimal values in the second
column, such as B8 00010000 are

the actual instruction bytes.

4

27

Map File

 Information about each

program segment:

 starting address

 ending address

 size

 segment type

 Example: addSub.map

4

 When a computer architecture is in the design phase, the

instruction set format must be determined before many other

decisions can be made.

 Selecting this format is often quite difficult because the

instruction set must match the architecture.

 If the architecture is well designed, it could last for decades.

Design Decisions for Instruction Sets

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.200. 28

4

 ISA Level defines the interface between the compilers (high

level language) and the hardware. It is the language that both of

them understand.

ISA Level
ISA (Instruction Set Architecture)

29

ISA Level

4

 Instruction Set Architectures (ISAs) are measured by several

different factors, including:

(1) the amount of space a program requires;

(2) the complexity of the instruction set;

(3) the length of the instructions; and

(4) the total number of instructions.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.200. 30

4.1 Introduction

4.2 Machine Instruction

Characteristics

4.3 Types of Operands

4.4 Addressing Modes

4.5 Instruction Formats

4.6 Summary

Module 4
Instruction Set Architecture
(ISA)

 Elements of a Machine

Instruction

 Instruction Representation

 Instruction Types

 Number of Addresses

 Instruction Set Design

4

 The operation of the processor is determined by the instructions

it executes, referred to as machine instructions or computer

instructions.

 The collection of different instructions that the processor can

execute is referred to as the processor’s instruction set.

 Each instruction must contain the information required by the

processor for execution.

Elements of a Machine Instruction

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.428. 32

4

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.428.

Table: The elements of a machine instruction.

Elements Description

Operation code

(Opcode)

o Specifies the operation to be performed a
binary code (e.g., MOV, ADD, SUB).

Source operand

reference

o The operation may involve one or more

source operands, that is, operands that are

inputs for the operation.

Result operand

reference

(Destination).

o The operation may produce a result.

Next instruction

reference

o This tells the processor where to fetch the

next instruction after the execution of this

instruction is completed.

33

Invisible

4

0000 MOV AX,total

0001 MOV BX,AX

0002 ADD AX,2

0003 TARGET

0004 CALL READINT

0005 MOV val,EAX

0006 ADD EBX,val

0007 JMP TARGET

Example 1: Portion of an assembly language.

Destination

Operand

Source Operand

Source

Operand with

Immediate

value

Opcode

34

4
 Source and result operands (Destination) can be in one of

four areas:

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.429.

o Main or virtual memory :

Memory address for both must be supplied.

o Processor (CPU) registers : One or more registers that can

be referenced by instructions.

o Immediate : The value of the operand is contained in the

field in the instruction executed.

o I/O device – Instruction specifies the I/O module and device

for the operation

35

Section 4.4:

Addressing Mode

4

0000 MOV AX,TOTAL

0001 MOV BX,AX

0002 ADD AX,2

0003 TARGET

0004 CALL READINT

0005 MOV VAL,EAX

0006 ADD EBX,VAL

0007 JMP TARGET

Example 2:

Current Ins. : 0000

Next Ins. : 0001

Current Ins. : 0007

Next Ins. : 0003

0000 MOV AX,TOTAL

0001 MOV BX,AX

0002 ADD AX,2

0003 TARGET

0004 CALL READINT

0005 MOV VAL,EAX

0006 ADD EBX,VAL

0007 JMP TARGET

Next instruction is

where TARGET is

located = 0003

Operand: Memory

Operand: Register

Operand:

Immediate value

Operand: From

I/O

36

4

 Each instruction is represented by a sequence of bits that

divided into fields, corresponding to the constituent elements of

the instruction.

Instruction Representation

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.429-430. 37

 Example of simple instruction format:

4

 Thus, it has become common practice to use a symbolic

representation of machine instructions.

 Opcodes are represented by abbreviations, called mnemonics,
that indicate the operation.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.430.

It is difficult for the programmer to

deal with binary representations of

machine instructions.

 Common examples:

38

4

 During instruction execution:

o an instruction is read into an Instruction Register (IR) in the

processor.

o The processor must be able to extract the data from the

various instruction fields to perform the required operation.

What the

programmer see.

What the processor

(CPU) see.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.430.

 Example:

39

4

 Consider a high-level

language instruction that

could be expressed in a

language such as C.

 Example:

Instruction Types

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.431.

Total = Total + stuff

 In assembly language:

1) Load a register with the contents of memory (for Total).

2) Add the contents of memory (for stuff) to the register.

3) Store the content of the register to memory location (for
Total).

A single C instruction may require

3 machine instructions; This is

typical of the relationship between

a high-level language and a

machine language.

40

4

41

 Translating the language:

English: Total is assigned the sum of Total and stuff.

High-Level Language: Total = Total + stuff

mov eax,Total

add eax,stuff

mov Total,eax

A statement in a high-level language is translated

typically into several machine-level instructions

Intel Assembly Language:

A1 00404000

83 00404004

A3 00404008

Intel Machine Code:

4

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.431.

Instruction
Types

Data
Processing

Data
Storage

Data
Movement

Control

Figure: Categories of instruction types.

o Arithmetic and

logic instructions.

o Movement of

data in/out

register and/or

memory.

o I/O

instructions.

o Test and

branch

instructions.

42

4
Table: Examples of data processing.

4

Table: Examples of data storage and data movement.

4

Table: Examples of control (test and branch).

4

 One of the traditional ways in describing processor architecture

is using the number of addresses contained in each instruction .

Number of Addresses

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.432.

What is the maximum

number of addresses one

might need in an instruction?

 In most architectures, most instructions have one, two, or three

operand addresses.

46

4

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.417.

Example: Program to execute

4 instructions

8 instructions

47

6 instructions

PUSH C

PUSH D

PUSH E

MUL

ADD

PUSH B

PUSH A

SUB

DIV

POP Y

(d) No-address

instruction

10 instructions

4

48

 3 addresses: Operand 1, Operand 2, Result (Destination).

 May be a forth address - next instruction (usually implicit,

obtained from PC (Program Counter)).

 Example below: T = temporary location used to store

intermediate results.

 Not common in use.

 Needs very long words to hold everything.

(a) Three-address

instructions

4 instructions

 Address of next instruction kept in a processor state register

the - PC (Except for explicit Branches/Jumps)

(a) Three-address instructions

4

50

 2 addresses: Operand, Result (Destination).

 Reduces length of instruction and space requirements.

 Requires some extra works:

o Temporary storage to hold some results.

o Done to avoid altering the operand value.

(b) Two-address

instructions

6 instructions

• Be aware of the difference between address, Op1Addr, and
data stored at that address, Op1.

• Result overwrites operand 2, Op2, with result, Res

• This format needs only 2 addresses in the instruction but there
is less choice in placing data

(b) Two-address instructions

4

52

 1 address

 Implicit second address.

 Usually use a CPU register (accumulator)

o Supplies 1 operand and store result.

o One memory address used for other operand.

 Common on early machines.

(c) One-address

instructions

8 instructions

• Special CPU register, the accumulator, supplies 1 operand and

stores result

• One memory address used for other operand

We now need

instructions to

load and store

operands:

LDA OpAddr

STA OpAddr

(c) One-address instructions

4

54

 0 (zero) address

 All addresses implicit.

 Usually use a stack (a push down stack in CPU).

 There are two Opcodes with one operand: PUSH op, POP op.

(d) No-address

instructions

10 instructions

PUSH C

PUSH D

PUSH E

MUL

ADD

PUSH B

PUSH A

SUB

DIV

POP Y

• Uses a push down stack in CPU

• Arithmetic uses stack for both operands. The result replaces them

on the TOS

• Computer must have a 1 address instruction to push and pop

operands to and from the stack

(d) No-address instructions

4

56

 Stack machine: Java Virtual Machine.

Call stack of a program, also known as a function stack,

execution stack, control stack, or simply the stack.

 Application: Reverse Polish Notation (RPN),

Depth-First-Search (DFS)

(d) No-address

instructions

Stack Machine

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

RPN will be

discussed in

next example

 A stack is an abstract data

type and data structure

based on the principle of

Last In First Out (LIFO).



a b

a b

a b c 



a b



c

    /a b c d e  



a b 

d e



/

c

Expression tree  a b c 



b c



a

a b c 



a b



c

Expression tree:

Left child of root “+”
Recursive

Left-Parent-Right



a b

infix : a b

Replace

subtree with

infix notation

a b



c

 infix : a b c 
Recursive

Left-Parent-

Right again

(a) Infix notation:

Left-Parent-Right order

Expression tree:

(b) Postfix notation:

Left-Right-Parent order



a b



c

:postfix ab c 

a b c 

4

60

 Precedence of multiplication is higher than addition,

we need parenthesis to guarantee execution order.

 However in the early 1950s, the Polish logician Jan

Lukasiewicz observed that parentheses are not necessary

in postfix notation, called RPN (Reverse Polish Notation).

 The Reverse Polish scheme was proposed by F.L. Bauer

and E.W. Dijkstra in the early 1960s to reduce computer

memory access and utilize the stack to evaluate

expressions .

Reverse Polish Notation (RPN)

4

61

Reverse Polish Notation (RPN)  Postfix orderExample:



1 5







4 1

8

Expression tree

Postfix:

(parenthesis free)

Infix :

4

62



+ 

1 5 8 

4 1



6 

8 

4 1


6 

8 3

Reverse Polish Notation (RPN)  Postfix order [1]Example:

Infix :

Postfix :



6 5

4

63

Converting Infix to Postfix Algorithm

4

64

Converting Infix to Postfix Algorithm

4

65

Converting Postfix to Infix Algorithm

4

66

Converting Postfix to Infix Algorithm

4

67

Evaluate RPN expression [1]Example:

Infix :

Postfix :

Expression tree

 Scanned from left to

right until an operator is

found, then the last two

operands must be

retrieved and combined.

 Order of operands

satisfy LIFO, so we can

use stack to store

operands and then

evaluate RPN

expression.

Switch (token)

1. Pop the top two values from the stack

(if the stack does not contain two items,

an error due to malformed RPN

expression has occurred)

2. Apply the operator to these two values.

3. Push the resulting value back onto the

stack.

Push onto

the stack

Initialize an empty

stack of operands

get next token in

RPN expression

Only one value is

on the stack

YES
end of infix expression

NO

+ , - , * , / operand

terminate

Example: Evaluate RPN expression  Flow Chart

Example: Evaluate RPN expression [2]

Empty

stack

1

push

5

push

1

pop

6

pushtop

Example: Evaluate RPN expression [2]

6

push

8

6

push

8

4

push

6

8

4

1

pop

6

8

6

push

8

3

top

Example: Evaluate RPN expression [2]

6

8

6

push

5

3

pop

6

top

Example: Evaluate RPN expression [2]

6

5

30

pushpop

Only one value on

the stack, and this is

the final result.top

4

73

Given an expression as

(a) Construct the expression tree.

(b) Convert into PRN postfix

evaluation.

Exercise 4.1a:

Example

4

75

Given an expression as

(a) Construct the expression tree.

(b) Convert into PRN postfix evaluation.

Exercise 4.1b:

Activity 1

4

77

Get the infix expression for the following

postfix:

(a) .

(b) .

(c) .

(d) .

(e) .

Exercise 4.2:

^

^

^

Activity 2

