SECR2033
Computer Organization
and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.

Module 4

Instruction Set Architecture
(ISA)

Objectives:

0 To provide a more detailed look at machine
Instruction sets.

0 To look at different instruction types and
operand types, and how instructions access
data in memory.

O To understanding how instruction sets are designed and
how their function can help to understand the more
Intricate details of the architecture of the machine itself.

Module 4

Instruction Set Architecture
(ISA)

4.1 Introduction
4.2 Machine Instruction Characteristics
4.3 Types of Operands

4.4 Addressing Modes

4.5 Instruction Formats

4.6 Summary

Module 4

Instruction Set Architecture
(ISA)

4.1 Introduction @ Overview
a Hierarchy of Computer Languages

0 General Concepts:
x86 Processor Architecture

Q Design Decisions for Instruction Sets
Q ISA Level

Overview

ALU (Arithmetic Logic Unit)

= One boundary where the computer designer and the computer
programmer can view the same machine is the machine
Instruction set.

m Implementing the processor is a task that in large part involves
Implementing the machine instruction set.

m The user who chooses to program in machine language
(actually, in assembly language) becomes aware of the register
and memory structure, the types of data directly supported by
the machine, and the functioning of the ALU.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.248.

Some important questions to ask:

m What is assembly language?

m Why learn assembly language?

m What is machine language?

m How Is assembly related to machine language?
m What is an assembler?

m How is assembly related to high-level language?

m |s assembly language portable?

4
.l

Hierarchy of. Computer Languages

Application programs

High-level languages
Machine-independent High-level languages

Machine-specific Low-level languages
Assembly language

Machine language

Microprogram control

Assembly and Machine L.amguages

.

Machine language:

= Native to a processor:
executed directly by
hardware.

m Instructions consist of
binary code: 1s and Os

Assembly language:

= A programming language that uses
symbolic names to represent

operations, reqisters and memory
locations.

= Slightly higher-level language.

= Readability of instructions is better
than machine language.

= One-to-one correspondence with
machine language instructions.

Compiler and Assembler.

High-level languages

Assembly language |

Machine language

Compilers translate high-level programs to ~ Assemblers translate
machine code: assembly to machine
—> either directly, or Indirectly via an code.

assembler.

High-Level Languages: A;dvantages

L

_) Program development is faster: fewer instructions to code.
|

_) Program maintenance is easier: same reasons as above.
|

However, Assembly language
programs are not portable.

_) Programs are portable: —

d Contain few machine-dependent details - Can be used
with little or no modifications on different machines.

O Compiler translates to the target machine language.

10

Why Assembly Language.s?

L

_) Accessibility to system hardware:

U Assembly language is useful for implementing system
software.

 Also useful for small embedded system applications.

_) Space and Time efficiency:
U Understanding sources of program inefficiency.
U Tuning program performance.

O Writing compact code.

11

HLL (High Level Language) .1

' Writing assembly programs gives the computer designer the

needed deep understanding of the instruction set and how to
design one.

To be able to write compilers for HLLs, we need to be expert

with the machine language. Assembly programming provides
this experience.

12

—

. General Concepts:
X86 Processor Architecture

m This section describes the architecture of the x86 processor
family and its host computer system from a programmer’s point
of view.

m Assembly language is a great tool for learning how a computer
works, and it requires you to have a working knowledge of
computer hardware.

m The concepts in this section will help to understand the
assembly language code that be written.

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.29. 13

Basic Microcomputer De§ign

(Section 5.2)

data bus, I/O bus

Registers
Central Processor Unit Memory Storage DI/Q I/C.)
) evice Device
(CPU) Unit 41 4y

ALU CuU clock

L_eo_nt_rel_bys_ ________ J ___________ ‘ ______ .__J ________

address bus

Figure: Block diagram of a microcomputer.

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.30.

CPU (Central Processing Unit) .1

m The CPU does the calculations and logic operations = contains
a limited number of storage locations as follow:

Clock o synchronizes the internal CPU operations.

Control Unit (CU) o coordinates sequence of execution steps.

Arithmetic Logic o performs arithmetic and bitwise
Unit (ALU). processing.

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.30. 15

=

Clock

m synchronizes all CPU and BUS operations.

= machine (clock) cycle measures time of a single operation.

m clock is used to trigaer events.

one cycle
| |

. B

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.31. 16

Video 2 - Computer Clock

Remember this video from Module 17?

.

m What is clock in a computer? Please watch this YouTube
video

m https://www.youtube.com/watch?v=/5JC9Ve1sfl

https://www.youtube.com/watch?v=Z5JC9Ve1sfI

Instruction @ | __________

. I
Execution Cycle z J
® 3 o : :

ol o Code cache [«————— Instruction pointer

<

= 2

Memory Al < l [
Code Instruction decoder
~—>

bata Control unit J
_ Floating-point unit
. Fetch et
m Decode
m Fetch operands bata cache
m Execute t

__________ Figure: Simplified
CPU block diagram.

m Store output

Irvine, K.R. (2011). Assembly Language for x86 Processors
(6" Edition). New Jersey: Pearson Education Limited, p.31.

B clock cycle begins as the

clock signal changes from
high to low

Reading From Memory

@
\ Cycle 1 Cycle 2 Cycle 3 Cycle 4

CLK I I\I\I\
Address | 4 0

ADDR x

RD Ny /
R R Data
DATA

Figure: Memory read cycle.

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.33.

19

.

m Multiple machine cycles are required when reading from
memory, because it responds much more slower than the
CPU.

® The steps are:

= Cycle 1: address placed on address bus (ADDR).

= Cycle 2: Read Line (RD) set low (0) to notify memory that a
value is to be read.

= Cycle 3: CPU waits one cycle for memory to respond.

= Cycle 4: Read Line (RD) goes to high (1), indicating that the
data is on the data bus (DATA).

Irvine, K.R. (2011). Assembly Language for x86 Processors (6t Edition). New Jersey: Pearson Education Limited, p.33. 20

How Program Run?

Assembling, Linking, and Running Programs

Source
File

Step 2:
assembler

Link
Library

Step 1: text editor

m The diagram describes the steps from creating a source

Object
>

File

|

Step 3:
linker

Listing
File

L

Output

Step 4:
Executable | OS loader
- —>
File
Map
File

program through executing the compiled program.

m If the source code is modified, Steps 2 through 4 must be

repeated.

21

Listing File

m Use it to see how your program is compiled.

m Contains:

d

o O O O

source code

addresses

object code (machine language)
segment names

symbols (variables, procedures, and constants)

m Example: addSub.1lst

22

Microsoft (R) Macro Assembler Version 9.00.30729.01 05/07/09
16:43:07

Add and Subtract (AddSub.asm) Page 1 - 1
TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine3Z2.inc

C .NOLIST

C .LIST

00000000 .code

Qo000000 main PROC

00000000 BB 00010000 mowv eax,10000h : EAX = 10000h
00000005 05 00040000 add eax,40000h : EAX = 50000h
0000000A 2D 00020000 sub eax, 20000h : EAX = 30000h
0000000F EB 00000000 E call DumpRegs

O000001E malin ENDP

END main

Structures and Unions:
Name Size
Offset Type

Microsoft
16:43:07
Add and Subtract

TITLE Add and Subtract

; This program adds and s

INCLUDE Irvine3Z2.inc
C .NOLIST

C .LIST

00000000

gooooo0o

0000000017 BB 00010000
00000005 | 05 00040000
0000000A | 2D 00020000
0O0000O0F | EB 00000000 E
0000001B

Structures and Unions:
Name

({R) Macro Assembler Version 9.00.30729.01

(Add

05/07/09

N

« 32-bit addresses

* Indicate the relative byte
distance of each statement
from the beginning of the
program s code area

J

.code

main PROC

mowv eax,10000h : EAX = 10000h
add eax,40000h : EAX = 50000h
sub eax, 20000h : EAX = 30000h
call DumpRegs

malin ENDP

END main

Size

Offset Type

Microsoft (R) Macro Assembler Versi

16:43:07 instructions

e contain no executable

2dd and Subtract (AddSub. asm) e ... directives, y
TITLE Add and Subtract
; This program adds and subtracts 32-b egers.
INCLUDE Irvinei2.inc
C .NOLIST
Cc .LIST
00000000 .code
00000000 main PROC
00000000 B8 00010000 mowv eax,10000h : = 10000h
00000005 05 00040000 add eax,40000h : = 50000
0000000A 2D 00020000 sub eax,20000h : = 30000h
0000000F E8 00000000 E call DumpRegs
O000001E malin ENDP
END main

Structures and Unions:

Name Size

Offset Type

e

Microsoft
16:43:07

Add and Subtract
TITLE Add and Sub
; This program ad

INCLUDE Irvine3Z2.inc

C .NOLIST
C .LIST

00000000
gooooo0o

{R) Mac

assembly language instructions, each
5 bytes long

the hexadecimal values in the second
column, suchas B8 00010000 are

the actual instruction bytes.

N

.code

00000000
00000005
0000000A
0000000F

B8 00010000
05 00040000
2D 00020000
E8 00000000

0000001B

main PROC

mowv eax,10000h

add eax,40000h

sub eax, 20000h :
E call DumpRegs

malin ENDP

END main

Structures and Unions:

Name

Size

05/07/09
EAX = 10000h
EAX = 50000h
EAX = 30000h

Offset Type

Map File

m Information about each

program segment:

a

Q
Q
d

starting address
ending address
size

segment type

L

m Example: addSub.map

Start Stop Length Name
00000H @P6E2H @O6E3H _TEXT
@@6E4H @OBFDH @021AH _DATA
@0908H B28FFH @2000H STACK
02900H @2AFFH @02@0H _BSS

Origin Group
@e6E:® DGROUP

Program entry point at @000:0000

AddSubMap.txt

Class
CODE
DATA
STACK
BSS

27

m_

Design Decisigns for Instruction Sets

m When a computer architecture is in the design phase, the
instruction set format must be determined before many other
decisions can be made.

m Selecting this format is often quite difficult because the
Instruction set must match the architecture.

m If the architecture is well designed, it could last for decades.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.200. 28

ISA Level

m_

ISA (Instruction Set Architecture)

m ISA Level defines the interface between the compilers (high
level language) and the hardware. It is the language that both of

them understand.

FORTRAN 90 C program
program
FORTRAN 90 C program
program compiled compiled
vto ISA program "to ISA program
Software
i o i e

Hardware

Y

ISA program executed
by microprogram or hardware

Hardware

29

—

m [nstruction Set Architectures (ISAs) are measured by several
different factors, including:

1

(1) the amount of space a program requires;
(2) the complexity of the instruction set;
(3)
(4)

3
4

the length of the instructions; and

the total number of instructions.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.200.

30

Module 4

Instruction Set Architecture
(ISA)

4.2 Machine Instruction 0 Elements of a Machine
Characteristics Instruction

Instruction Representation

Instruction Types
Number of Addresses

Instruction Set Design

Elements 01: a Machine Instruction .l

® The operation of the processor is determined by the instructions
it executes, referred to as machine instructions or computer
Instructions.

m The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set.

m Each instruction must contain the information required by the
processor for execution.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.428. 32

Table: The elements of a machine instruction.

Operation code o Specifies the operation to be performed a
binary code (e.g., MOV, ADD, SUB).

(Opcode)
Source operand o The operation may involve one or more
reference source operands, that is, operands that are

Inputs for the operation.

Result operand o The operation may produce a result.
reference
(Destination).

Next instruction o This tells the processor where to fetch the
reference next instruction after the execution of this
Instruction is completed.

Invisible —

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.428. 33

Example 1: Portion of an assembly language.
@

Destination
Operand

L

Source Operand }

MOV
MOV
ADD

MOV
ADD

AX, total
BX, AX

Ax,zxiqzz

val, EAX
EBX,val

/////”

L

Source
Operand with
Immediate
value

34

—

m Source and result operands (Destination) can be in one of]

four areas: Section 4.4
Addressing Mode

" o Main or virtual memory :
Memory address for both must be supplied.

o Processor (CPU) registers : One or more registers that can
- be referenced by instructions.

o Immediate : The value of the operand is contained in the
field in the Instruction executed.

o 1/O device — Instruction specifies the 1/O module and device |
for the operation '

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.429. 35

Example 2:

L

.[Operand: Memory

Current Ins. : 0000
NextIns. :0001

CurrentIns. : 0007
NextlIns. :0003

0000
0001
0002
0003
0004
0005
0006
0007

Operand: Register}

MOV AX, TOTAL
MOV BX, AX
ADD AX,?2
TARGET
CALL READINT
A
MOV VAL, EAX Operand: From
ADD EBX, VAL /O
JMP TARGET
X

Operand:
‘L Immediate value

Next instruction is
where TARGET is
located = 0003

36

InstEuction Representation

m Each instruction is represented by a sequence of bits that
divided into fields, corresponding to the constituent elements of

the instruction.

= Example of simple instruction format:

4 Bits

6 Bits

6 Bits

Opcode

Operand reference

Operand reference

16 Bits

Y

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.429-430.

37

It is difficult for the programmer to \ f%?\
deal with binary representations of | | 3?/ /j:
machine instructions.) w

m Thus, it has become common practice to use a symbolic
representation of machine instructions.

m Opcodes are represented by abbreviations, called mnemonics,
that indicate the operation.

ADD Add
= Common examples: SUB Subtract
MUL Multiply
DIV Divide
LOAD Load data from memory
STOR Store data to memory

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.430.

38

= Example:

Instruction type Opcode Symbolic representation Description
Data transfer 00001010 [LOAD MQM(X) ~ Transfer contents of memory location X to register MG

What the processor What the
(CPU) see. programmer see.

m During instruction execution:

o an instruction is read into an Instruction Register (IR) in the
processor.

o The processor must be able to extract the data from the
various instruction fields to perform the required operation.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.430. 39

m Consider a high-level
language instruction that
could be expressed in a
language such as C.

= Example:

Total = Total + stuff

Instruction Types

—

/A single C instruction may require
3 machine instructions; This is
typical of the relationship between
a high-level language and a

machine lanquage.

\

v

m |[n assembly language:

Total).

1) Load a register with the contents of memory (for Total).
2) Add the contents of memory (for stuff) to the register.

3) Store the content of the register to memory location (for

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.431.

40

m Translating the language:

English: Total is assigned the sum of Total and stuff.

¥

High-Level Language: Total = Total + stuff

A statement in a high-level language is translated
typically into several machine-level instructions

mov eax,Total Al 00404000
add eax,stuff mm) | 83 00404004
mov Total,eax A3 00404008

Intel Assembly Language: Intel Machine Code:

41

L

Instruction

Types

Data Data Data
Processing Storage Movement Control
o Arithmetic and o Movementof o 1/O o Test and
logic instructions. data in/out Instructions. branch
register and/or Instructions.

memory.

Figure: Categories of instruction types.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.431. 42

4
.l

Table: Examples of data processing.

Instruction Description
Arithmetic

ADD Add operands.

sUB Subtract operands.

MUL Unsigned integer multphcation, with byte, word, or double word operands, and word,
doubleword, or quadword result.

IDIV signed divide.

Logical

AND AND operands.

BTS Bit test and set. Operates on a it field operand. The instruction copies the current
value of a bat to flag CF and sets the original bt to 1.

BSF Bit scan forward. Scans a word or doubleword for a 1-bit and stores the number of the
first 1-lat into a register.

sHL/SHR Shaft logical left or nght.

SALSAR Shift anithmetic left or nght.

4
.l

Table: Examples of data storage and data movement.

Instruction Description
Data Movement

MOV Move operand, between registers or between register and memory.

PUSH Push operand onto stack.

PUSHA Push all registers on stack,

MOVIX Move byte, word, dword, sign extended. Moves a byte to a word or aword to a
doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value to
the destination operand.

XLAT Table lookup translation. Replaces a byte im AL with a byte from a user-coded
translation table. When XLAT 1s executed, AL should have an unsigned index
to the table. XLAT changes the contents of AL from the table index to the table
entry.

IN,OUT Input, output operand from I/O space.

Table: Examples of control (test and branch).

4
.l

Instruction Description
Control Transfer

JMP Unconditional jump.

CALL Transfer control to another location. Before transfer, the address of the instruction
following the CALL 1s placed on the stack.

JEIZ Jump if equalizero.

LOOPE/LOOPL Loops if equalfzero. This 1s a conditional jump using a value stored 1n register
ECX. The instruction first decrements ECX before testing ECX for the branch
condition.

INT/INTO Interrupt/Interrupt if overflow. Transfer control to an mterrupt service routine.

.Number of Addresses .l

m One of the traditional ways in describing processor architecture
IS using the number of addresses contained in each instruction .

g What iIs the maximum ?;o)
number of addresses one
- might need in an instruction?

m In most architectures, most instructions have one, two, or three
operand addresses.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.432.

46

Example: Program to execute Y =

A—B

Instruction Comment

SUB Y,.A,B Y« A—B
MPY T,D,E T« DXE
ADD T, T,C T« T+ C
DIV Y,Y, T Y«Y+T

%

(a) Three-address instructions

Instruction Comment
MOVE Y, A Y« A
SUB Y.,B Y<Y—B
MOVE T, D T« D
MPY T,E T« TXE
ADD T,C T« T+C
DIV Y,T Y«Y+T

C+(DXE) PUSH C
PUSH D
PUSH E
} 4 instructions J MUL
o — ADD
PUSH B
6 instructions } QBEH A
10 Instructions "y
POP Y
£ :
Instruction Comment _(d) NO—z_iddress
Instruction
LOAD D AC <D
MPY E AC <« AC X E
ADD C AC «— AC + C
STOR Y Y « AC
LOAD A AC < A
SUB B AC«— AC —B
DIV Y AC+— AC+Y
STOR Y Y « AC

(b) Two-address instructions

(c) One-address instructions

L 8 instructions

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10% Edition). United States: Pearson Education Limited, p.417.

47

Y =
C+(DXE)
(a) Three-address
instructions Instruction Comment
® SUB Y,A,B Y«A-B

MPY T,D,E T« DXE
ADD T, T,C T«T+C
DIV Y,Y, T Y«Y =T

4 instructions

m 3 addresses: Operand 1, Operand 2, Result (Destination).

= May be a forth address - next instruction (usually implicit,
obtained from PC (Program Counter)).

m Example below: T = temporary location used to store
Intermediate results.

m Not common in use.

m Needs very long words to hold everything.
48

(a) Three-address instructions

Memory CPU add, Res, Op1, Op2 (Res « Op2 + Op1)
- T T T T T I
Op1Addr:| Opf : :
Op2Addr:| Op2 T é_‘ l
I I
LA .
ResAddr:| Res |<€— |
I I
I I
I I
: Program > 4:
NextiAddr:| Nexti |« : counter |
I Where to find I
: next instruction !
_________ I
n tion tormat
Bit 4 24 4

id ResAddr Op1Addr p2Ad

x Where to PO

‘ tion putr I hel \d operands

O Address of next instruction kept in a processor state register
the - PC (Except for explicit Branches/Jumps)

Y=1o7 (DX E)
(b) Two-address
instructions Instruction Comment
® MOVE Y, A Y « A
SUB Y.,B Y<~Y—B
MOVE T, D T« D
MPY T,E T«—TXE
ADD T,C T«T+C
DIV Y, T Y«Y-=T

6 instructions

m 2 addresses: Operand, Result (Destination).
m Reduces length of instruction and space requirements.

m Requires some extra works:

Temporary storage to hold some results.

Done to avoid altering the operand value.

(b) Two-address instructions

Memory CPU

Op1Addr| Opf

Op2Addr: |Op2.Res [«

Program
NextidAddr:| Nexti «—— counter

I Where to find
: next instruction !

24

* Be aware of the difference between address, Opl1Addr, and
data stored at that address, Opl.

* Result overwrites operand 2, Op2, with result, Res

* This format needs only 2 addresses in the instruction but there
IS less choice in placing data

C+(DXE)
(c) One-address
instructions hritn (o
®

LOAD D AC«D
MPY E AC «— AC X E
ADD C AC < AC + C
STOR Y Y « AC
LOAD A AC <« A
SUB B AC« AC —B
DIV Y AC—AC+Y
STOR Y Y « AC

= 1 address

= Implicit second address. 8 instructions

m Usually use a CPU register (accumulator)

- Supplies 1 operand and store resuilt.
- One memory address used for other operand.

m Common on early machines.

(c) One-address instructions

We now need
instructions to
load and store
operands:

LDA OpAddr
STA OpAddr

Op1Addr:

NextiAddr:

add Op1 (Acc « Acc + Op1)

Where to find
operand2, and

|
|
|
|
|
|
I
|
/where to put result
|
|

24:

Memory CPU
m—————— ==
Op1 :
|
|
|
|
. |
$ |
: | Accumulator
|
- | Program
Nexti |€——| counter
: Where to find

next instruction

Instruction format
Bits: 8 24

add Op1Adadr

Which Where to find
operation operandf

* Special CPU regqister,_the accumulator, supplies 1 operand and

stores result

°* One memory address used for other operand

(d) No-address
instructions

PUSH C
® PUSH D

PUSH E
MUL
ADD
PUSH
PUSH
SUB

DIV

POP Y

>

10 instructions
m 0 (zero) address

m All addresses implicit.

m Usually use a stack (a push down stack in CPU).
m There are two Opcodes with one operand: PUSH op, POP op.

54

Memory CPU push Op1 (TOS « Op1)
[TERENAETS USRS oo TR N
| / Bits; 8 24
Op1Addr:| Opt | Y v | = e
I | rormat | pusn Op1AQaqr
I 195 ! Operation Result
1 SOS |
: etc. \} :
| | add (TOS « TOS + SOS)
I I '\[, 8
I Stack | i R
| | = 1at
NextiAddr:| Nexti l€«—— Program |5, : ® |
| counter Which operation
: |
: Where to find . Where to find operands,
e WORHIBIIGUON, . .) and where to put result

(on the stack)

Uses a push down stack in CPU

Arithmetic uses stack for both operands. The result replaces them
on the TOS

Computer must have a 1 address instruction to push and pop
operands to and from the stack

[6]
Push\'
us
(d) No-address ush Yy “\; 5
. - \ Pusm 3 3 3
Push
Instructions] % % ? ?
Stack Machine _~[6]
A Ty
5 (0]
| R
m A stack is an abstract data 2 2 2 2

type and data structure
based on the principle of

Last In First Out (LIFO).

m Stack machine: Java Virtual Machine.

m Call stack of a program, also known as a function stack,
execution stack, control stack, or simply the stack.

RPN will be
discussed In
next example

m Application: Reverse Polish Notation (RPN),
Depth-First-Search (DFS)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type) 56

EXxpression tree ax(b+c)
axhb °
il
(b b (e
axb+c (a+b)x(c/(d-e))

Expression tree: .
infix : (axb)+c

(a) Infix notation: Recursive
Left-Parent-Right order Left-Parent- ('/G‘bv
Right again
axb @

Replace
axb+c subtree with

e infix notation
< (o) —(x
Fo R

Recursive infix : axb
Left child of root “+” Left-Parent-Right

Expression tree:

(b) Postfix notation:
Left-Right-Parent order

postfix:abxc +

L

Reverse Polish Notation (RPN)

m Precedence of multiplication is higher than addition,
we need parenthesis to guarantee execution order.

m However in the early 1950s, the Polish logician Jan
Lukasiewicz observed that parentheses are not necessary

in postfix notation, called RPN (Reverse Polish Notation).

m The Reverse Polish scheme was proposed by F.L. Bauer
and E.W. Dijkstra in the early 1960s to reduce computer

memory access and utilize the stack to evaluate
expressions .

60

Example: Reverse Polish Notation (RPN) = Postfix order
@

Infix: (1+5)x(8—(4—1))

Expression tree

1

L

ﬁ

Postfix:

15+841 — —X

(parenthesis free)

61

Example: Reverse Polish Notation (RPN) - Postfix order [1]
®

Infix: (1+5)x(8—(4—1))

/@/®\@\ Postfix : 15+ 841 — —X
s @/Q\ T

@/@\ @ 6841 — —X
@ 14—1—3
DS 683 — X
/@\ 18—3—5

o - & 1
© [

6/@\9 30

b2

Converting Infix to Postfix Algorithm

Infix-to-Postfix Algorithm

parenthesis

Symbol in .
e Action
Infix

Operand Append to end of output expression

Operator * Push * onto stack

Operator +,-, | Pop operators from stack, append to output

*,or/ expression until stack empty or top has
lower precedence than new operator. Then
push new operator onto stack

Open Push (onto stack, treat it as an operator

parenthesis | with the lowest precedence

Close Pop operators from stack, append to output

expression until we pop an open
parenthesis. Discard both parentheses.

.

63

Converting Infix to Postfix Algorithm

Postfix Examples
Infix=a+b*c
abc ¥+
e Infix=a*b+c
N

o Infix = (a+b)*(c—d)/ (e +1)

ab+cd -

¥ ef +f

Infix-to-Postfix Algorithm

4
.l

Symbol in .
yLH Action
Infix

Operand Append to end of output expression

Operator * Push * onto stack

Operator +,-, | Pop operators from stack, append to output

*,or/ expression until stack empty or top has
lower precedence than new operator. Then
push new operator onto stack

Open Push (onto stack, treat it as an operator

parenthesis

with the lowest precedence

Close
parenthesis

Pop operators from stack, append to output
expression until we pop an open
parenthesis. Discard both parentheses.

64

convert infix to postfix: flow chart

|

Initialize an empty
stack of operators

YES

Yy

[5]

|

get next (oken in infix
EXpression

X

Pop and display stack
items until the stack is

empty

terminate

Pop and display stack
element until a left) is
encountered, but don't

display)

precedence than top
stack element, then
push token onto stack,
otherwise, pop and
display top stack
element; then repeat
the comparison of
token with new top
stack item

NO
end of infix expression —=——"""
(l +,-51 l operandl
)
Push it onto If stack is empty or display it
the stack token has higher

Converting Postfix to Infix Algorithm

Postfix to Infix Conversion
Algorithm

Note: for converting postfix expression to infix it require operand stack to store the operands
1. Read the Postfix expression from left to right one character at a time.

2. Ifitis operand push into operand stack.
3. Ifitis operator
a. Poptwo operand from stack
b. Form infix expression and push into operand stack.
4. If expression is not end go to step One
5. Pop operand stack and display.
6. Exit

.

66

Example: Evaluate RPN expression [1]
@

.

Expression
Infix : (1+5)x(8—(4—1))

Postfix: 15+ 841 — —x

m Scanned from left to
right until an operator is
found, then the last two
operands must be
retrieved and combined.

= Order of operands
satisfy LIFO, so we can
use stack to store
operands and then
evaluate RPN
expression.

b/

Example: Evaluate RPN expression - Flow Chart
@

) ;

Initialize an empty get next token in
stack of operands RPN expression

YES . . NO
end of infix expression

+,-,%,/ l operandl
v

Only one value is 1. Pop the top two values from the stack Push onto
on the stack (if the stack does not contain two items, the stack

an error due to malformed RPN
expression has occurred)

N

Apply the operator to these two values.
3. Push the resulting value back onto the
stack.

terminate

Example: Evaluate RPN expression [2]
@

\' \' /v 1+5=6 %?;841——><
\ ?841——><

683 — X

Empty push push pop 65 X

stack

push

30

Example: Evaluate RPN expression [2]
@

4—1=3
/ 15+ 841 — —X
06841 — —X
N tH
083 — X
f
65 X
30
push

Example: Evaluate RPN expression [2]
@

8—3=05
/ \ 15+ 841 — —x

6841 — —X

683 — X

push 65 X

30

Example: Evaluate RPN expression [2]
@

6 x5 =230
/ \ 15+ 841 — —X
6841 — —X
083 — X
o
pop push 6D X

Only one value on
the stack, and this is 30
the final result.

top

™

Example

. Exercise 4.1a:

Given an expressi
A+B*C—(D/F
(a) Construct the ¢

(b) Convert into PI

evaluation.

Input Output / Postfix Stack Reason

A+B*C-(D/E+F)*G empty empty Ais operand, output A

+B*C-(D/E+F)*G A empty + is operator, prec >
blank, push + into
stack

B*C-(D/E+F)*G A B is operand, output B

*C-(D/E+F)*G AB * is operator, prec > +,
push * into stack

C-(D/E+F)*G AB +* C is operand, output C

-(D/E+F)*G ABC +* - is operator, prec < ¥,
pop *

-(D/E+F)*G ABCH + - is operator, prec = +,
polp +

-(D/E+F)*G ABC*+ - - is operator, prec >
blank, push - into
stack

(D/E+F)*G ABC*+ - (, push

D/E+F)*G ABC*+D - D is operand, output D

JE+F)*G ABC*+D -/ [/ is operator, prec > (,
push / into stack

E+F)*G ABC*+DE -(/ E is operand, output E

+F)*G ABC*+DE/ - + is operator, prec </,
pop /

+F)*G ABC*+DE/ -(+ + is operator, prec > (,
push +

FI* G ABC*+DE/F -(+ F is operand, output F

)*G ABC*+DE/F+ -), pop +, pop and
discard (, discard }

G ABC+DE/F+ - * is operator, prec > -,
push *

G ABC*+DE/F+ - * G is operand, output G

empty ABC*+DE/F+G - * No input remain,
unstack all

empty ABC*+DE/F+G*- | empty

Activity 1

. Exercise 4.1b:

Given an expression as

(A+B)*((C—D)/(E+F)) *G

® .
(a) Construct the expression tree.

(b) Convert into PRN postfix evaluation.

75

Activity 2

. Exercise 4.2:

Get the infix expression for the following

postfix:

1@ 4B+c-

(®) 4B +CD— *
©) ABAC*D—EF/GH+/+
(d AB+C*DE——FG+n
(€) ABCDE n* [—

Input Output / Infix Stack Reason

AB+C- empty empty Ais operand, push A

B+C- empty A B is operand, push B

+C- empty AB + is operator, pop two
operand, form infix
expression

C- A+B empty push infix into stack

C- empty (A+B) Cis operand, push C

- empty (A+B) C - is operator, pop two
operand, form infix
expression

empty (A+B) - C empty push infix into stack

empty empty ((A+B)—C) Input empty, pop all

((A+B) —C)

7l

