

SECR2033

Computer Organization and Architecture

Module 2

Data Representation in Computer Systems

Objectives:

- ❑ To understand the fundamentals of **numerical data** representation and manipulation in digital computers.
- ❑ To master the skill of converting between various **radix systems**.
- ❑ To understand how **errors** can occur in computations because of overflow and truncation.
- ❑ To understand the fundamental concepts of **floating-point** representation.

Module 2

Data Representation in Computer Systems

2.1 Introduction

2.2 Fixed-Number (Integer) Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points Representation

2.5 Floating-Points Arithmetic

2.6 Summary

Module 2

Data Representation in Computer Systems

2.1 Introduction

2.2 Fixed-Number (Integer) Re

2.3 Fixed-Number (Integer) Ari

2.4 Floating-Points Representa

2.5 Floating-Points Arithmetic

2.6 Summary

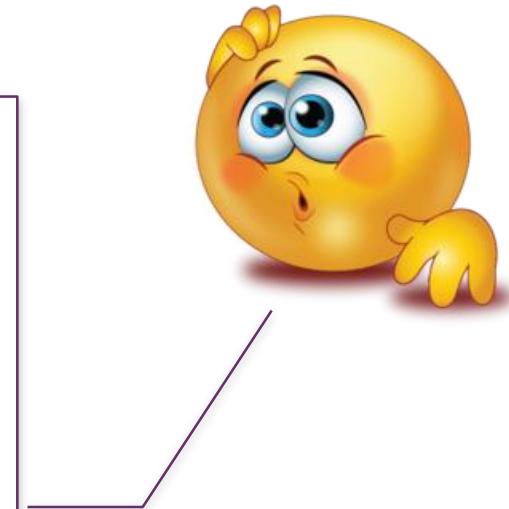
The Arithmetic and Logic Unit

2.1 Introduction

2

Numbers are represented by binary bits:

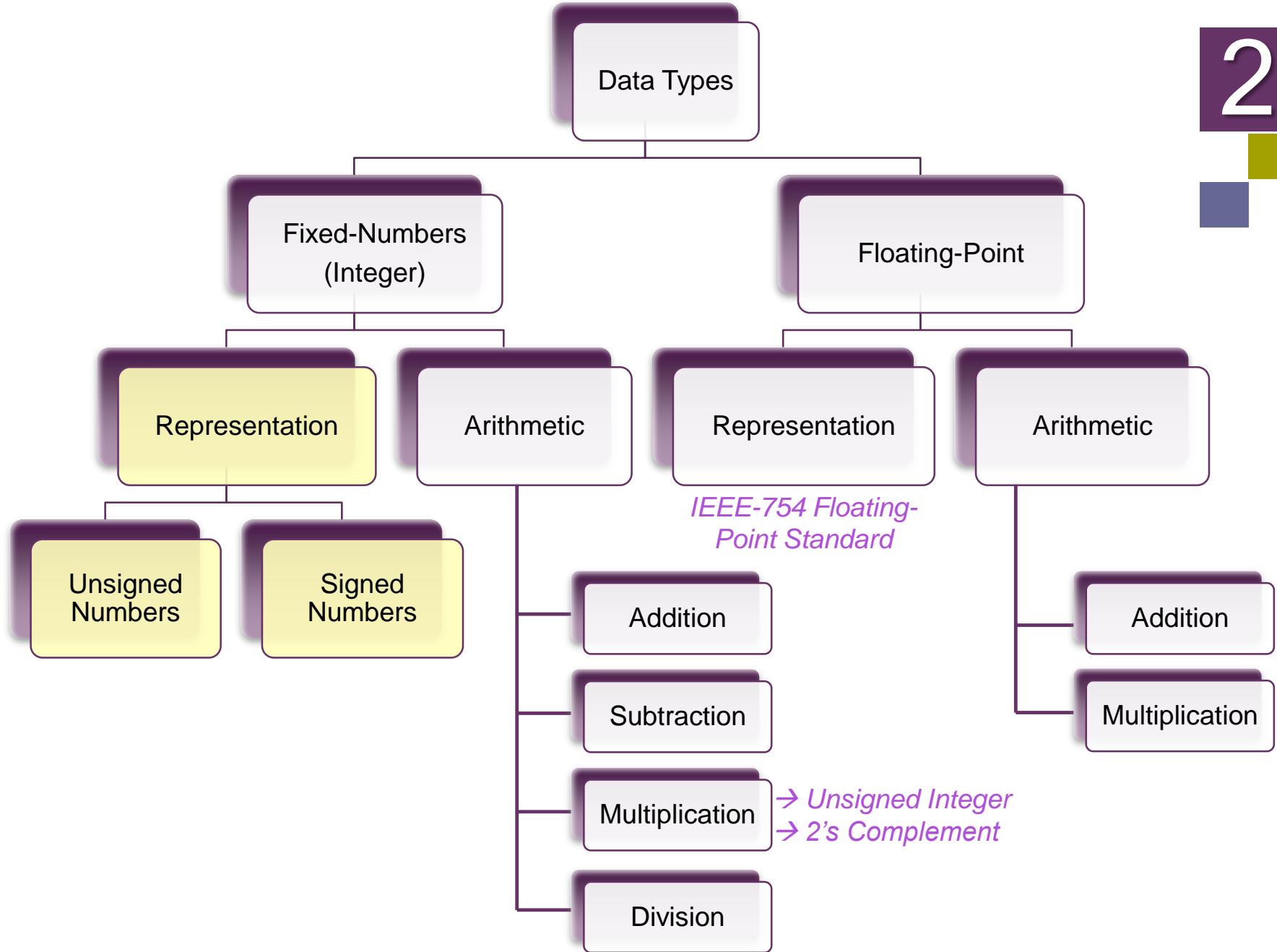
- *How are negative numbers represented?*
- *What is the largest number that can be represented in a computer world?*
- *What happens if an operation creates a number bigger than can be represented?*
- *What about fractions and real numbers?*
- *A mystery: How does hardware really multiply or divide numbers?*



- We begin our examination of the **processor** with an overview of the **arithmetic** and **logic unit** (ALU) → *computer arithmetic*.
- **Computer arithmetic** is commonly performed on two very different types of numbers: **integer** and **floating point**.

- In both cases, the **representation** chosen is a crucial design issue and is treated first, followed by a discussion of **arithmetic operations**.

C Basic Data Types	32-bit CPU		64-bit CPU	
	Size (bytes)	Range	Size (bytes)	Range
char	1	-128 to 127	1	-128 to 127
short	2	-32,768 to 32,767	2	-32,768 to 32,767
int	4	-2,147,483,648 to 2,147,483,647	4	-2,147,483,648 to 2,147,483,647
long	4	-2,147,483,648 to 2,147,483,647	8	9,223,372,036,854,775,808-9,223,372,036,854,775,807
long long	8	9,223,372,036,854,775,808-9,223,372,036,854,775,807	8	9,223,372,036,854,775,808-9,223,372,036,854,775,807
float	4	3.4E +/- 38	4	3.4E +/- 38
double	8	1.7E +/- 308	8	1.7E +/- 308



The Arithmetic and Logic Unit

- The ALU is that part of the computer that actually performs arithmetic and logical operations on data.
- All electronic components in the computer are based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations.

- Data are presented to the ALU in registers,
- and the results of an operation are stored in registers.

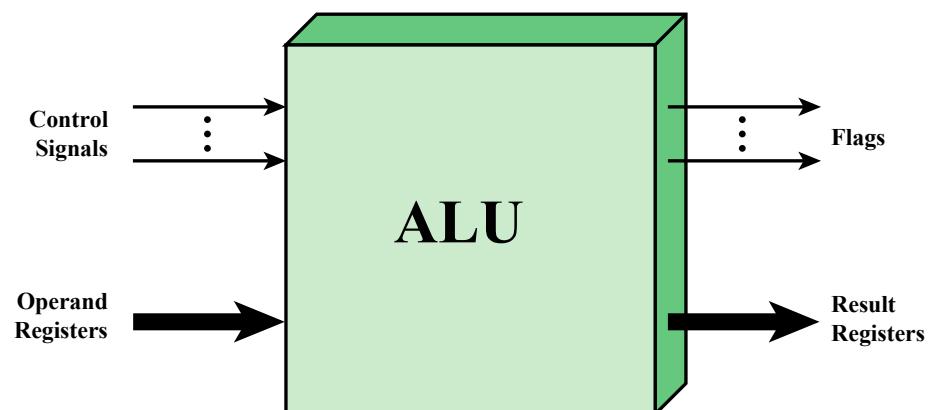


Figure: ALU inputs and outputs.

Module 2

Data Representation in Computer Systems

2.1 Introduction

2.2 Fixed-Number (Integer) Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Point Representation

2.5 Floating-Point Arithmetic

2.6 Summary

- ❑ Overview
- ❑ Unsigned Numbers
- ❑ Signed Numbers

Overview

(Binary Number)

- Numbers are kept in computer hardware as a series of high and low electronic signals.
- They are considered base 2 numbers (Binary)
- All information is composed of **binary digits** or *bits*.
- In any number base, the value of i th digit d is

$$d \cdot \text{Base}^i$$

where i start at 0 and increases from **right to left**.

Why is a kilobyte 1024 bytes and not 1000?

This 8-bit unit called a **byte**. Because every memory unit is based on powers of 2, a **kilobyte** is defined **not** as a thousand (as in other conventional measurements), but as 2^{10} **bytes** = **1024 bytes**. **1024** is close enough to a thousand to earn the kilo tag.

Binary Equivalents

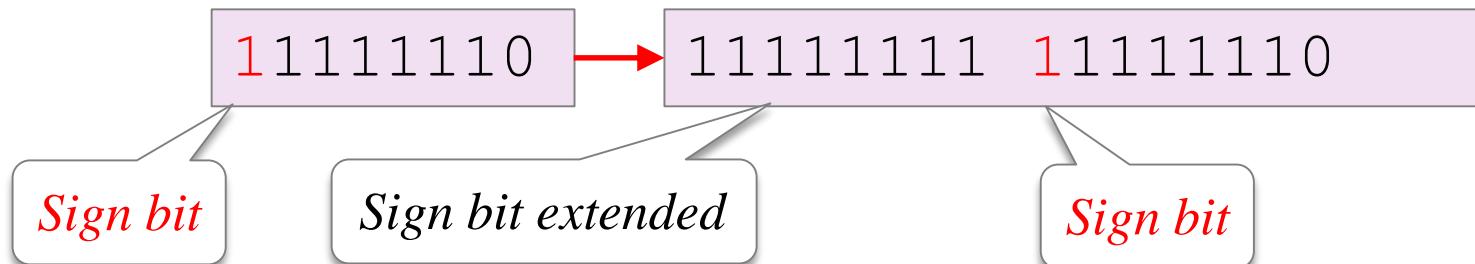
- 1 *Nibble (or nibble)* = 4 *bits*
- 1 *Byte* = 2 *nybbles* = 8 *bits*
- 1 *Kilobyte (KB)* = 1024 *Bytes*
- 1 *Megabyte (MB)* = 1024 *Kilobytes* = 1,048,576 *Bytes*
- 1 *Gigabyte (GB)* = 1024 *Megabytes* = 1,073,741,824 *Bytes*

Overview

(Sign Extension)

- Extending a number representation to a larger number of bits.
- Example: 2 in 8 bit binary to 16 bit binary.

- In signed numbers, it is important to extend the sign bit to *preserve* the number (+ve or -ve)
- Example: (−2) in 8 bit binary to 16 bit binary.



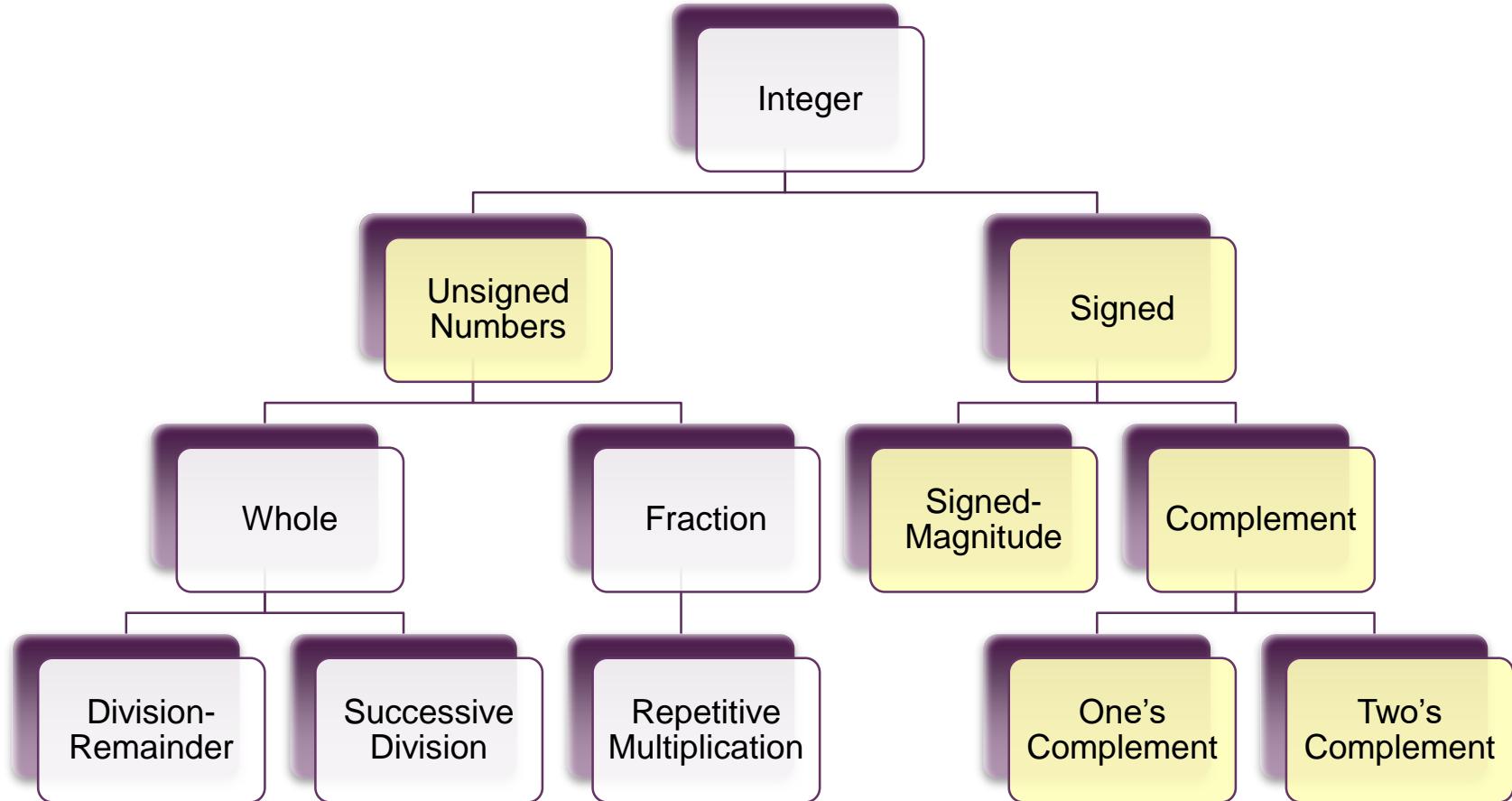


Figure: Types of numbers.

Unsigned Numbers

MIPS (Millions Instruction Per Second)

LSB (Least Significant Bit)

MSB (Most Significant Bit)

- Since MIPS word is 32 bits long:
 - LSB → bit 0
 - MSB → bit 31

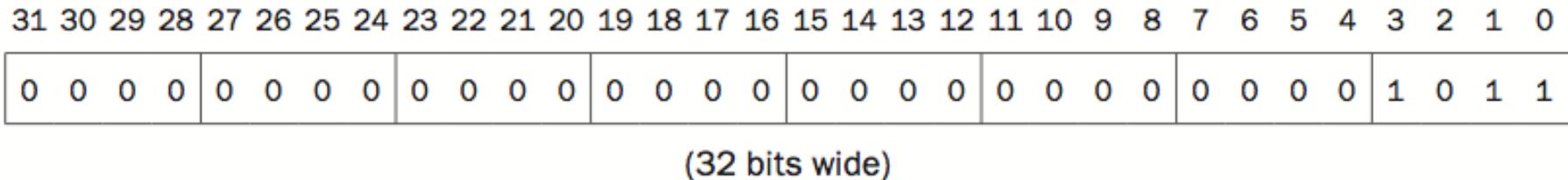


Figure: The numbering of bits in MIPS word for 1011_2 (11_{10})

- Range Number can represent : 0 to $2^{32} - 1$
 $0 - 4,294,967,295_{10}$

Signed Numbers

(a) Signed-Magnitude

- The conversions we have so far presented have involved only positive numbers.
- To represent negative values, computer systems allocate the high-order bit to indicate the **sign** of a value.
 - The high-order bit is the **leftmost** bit in a byte. It is also called the **Most Significant Bit (MSB)**.
- The remaining bits contain the value of the number.

Example 1:

Add 79_{10} to 35_{10} using signed-magnitude arithmetic in 8-bit binary.

$$\begin{array}{r} & 1 & 1 & 1 & 1 & & & \Leftarrow \text{carries} \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & (79) \\ 0 & + & 0 & 1 & 0 & 0 & 0 & 1 & 1 & + (35) \\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & (114) \end{array}$$

← 7 bits →

*0 represents
positive*

- The sum of two positive numbers, which is positive.
- *Overflow* (and thus an erroneous result) in signed numbers occurs when the sign of the result is **incorrect**.
- The *sign bit* is used only for the sign, so we can't "carry into" it, otherwise the result will be truncated as the MSB bit overflows, giving an **incorrect sum**.

- If the *overflow* bit is not discard, it would carry into the sign, causing the more outrageous result of the sum of two positive numbers being negative.

Example 2:

Add 01001111_2 to 01100011_2 using signed-magnitude arithmetic in 8-bit binary.

Last carry $1 \leftarrow$ $1 \ 1 \ 1 \ 1$ \Leftarrow carries
overflows and is 0 $1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$ (79)
discarded. 0 + $\begin{array}{r} 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \\ \hline 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \end{array}$ + (99)
0 (50)

Error result !

Answer should be 178_{10}

Example 3:

Add (-19_{10}) to 13_{10} using signed-magnitude arithmetic in 8-bit binary.

- The first number (*augend*) is negative (sign bit 1)
- The second number (*addend*) is positive (sign bit 0)
- Since larger magnitude is *augend*, then subtract to *addend*.

$$\begin{array}{r} & 0 & 1 & 2 & & & & \leftarrow \text{borrows} \\ 1 & 0 & 0 & + & 0 & 0 & 1 & 1 & (-19) \\ 0 & - & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & (-6) \\ \end{array} \quad + (13)$$

The sign of result will be same as sign of larger magnitude.

Video on binary subtraction with examples

https://www.youtube.com/watch?v=h_fY-zSiMtY

<https://www.youtube.com/watch?v=Pr-j2fmcpxc>

Example 3:

Add (-19_{10}) to 13_{10} using signed-magnitude arithmetic in 8-bit binary.

- The first number (*augend*) is negative (sign bit 1)
- The second number (*addend*) is positive (sign bit 0)
- Since larger magnitude is *augend*, then subtract to *addend*.

$$\begin{array}{r}
 & 0 & 1 & 2 & & & & \Leftarrow \text{borrows} \\
 1 & 0 & 0 & + & 0 & 0 & 1 & 1 & (-19) \\
 0 & - & 0 & 0 & 0 & 1 & 1 & 0 & 1 & + (13) \\
 \hline
 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & (-6)
 \end{array}$$

The sign of result will be same as sign of larger magnitude.

- In signed magnitude, the sign bit is used only for the sign.

Problem 1:

If there any carry emitting from the last bit, the result will be truncated as the last bit overflow, giving an incorrect sum.

Problem 2:

Complicated to define the larger magnitude, to subtract negative number, borrow from the *minuend*.

Solution: Need a simpler method for representing signed numbers → **complement systems**.

Signed Numbers

(b) One's Complement

- In complement systems, negative values are represented by some difference between a number and its base.
- In *diminished radix complement* systems, a negative value is given by the difference between the absolute value of a number and one less than its base.
- In the binary system, this gives us **one's complement**.
 - It amounts to little more than **flipping the bits of a binary number**.

Example 4:

Using one's complement 8-bit binary arithmetic, find the sum of 9_{10} and $(-23)_{10}$.

The last carry is zero so we are done.

$0 \leftarrow 0$	$0 0 0 0 1 0 0 1$	(9)
$+ 1 1 1 0 1 0 0 0$	$\underline{+ (-23)}$	-14_{10}

00010111 (-23)
11101000 (1s)

One's complement for -23
Flip the binary bit from 00010111 to 11101000

Example 5:

Using one's complement 8-bit binary arithmetic, find the sum of (-9_{10}) and 23_{10} .

The last carry is added to the sum.

$$\begin{array}{r}
 1 \leftarrow 1 \ 1 \ 1 \quad 1 \ 1 \quad \text{=> carries} \\
 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \quad (23) \\
 + 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \quad +(-9) \\
 \hline
 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \\
 \quad \quad \quad + \ 1 \\
 \hline
 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \quad 14_{10}
 \end{array}$$

Still remember how to convert -9 into 8 bit binary using 1s?

00001001 (-9)
11110110 $(1s)$

With one's complement addition, the carry bit is “carried around” and **added** to the sum.

Signed Numbers

(c) Two's Complement

- Two's complement is an example of a *radix complement*.
- The radix complement is often more intuitive than the *diminished radix complement*.
- The **two's complement** is nothing more than **one's complement** incremented by 1.
- **To find the two's complement of a binary number, simply flip bits and add 1.**

Express bit binary to 2s

- 1) Flip the bit
- 2) Add 1

Example 6:

Express 23_{10} , (-23_{10}) , and (-9_{10}) in 8-bit binary two's complement form.

$$23_{10} = + (00010111_2) = 00010111_2$$

$$-23_{10} = - (00010111_2) = 11101000_2 + 1 = 11101001_2$$

$$-9_{10} = - (00001001_2) = 11110110_2 + 1 = 11110111_2$$

Example 7:

Add 9_{10} to (-23_{10}) using 8-bit binary two's complement arithmetic.

$$\begin{array}{r} 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1 \\ + 1\ 1\ 1\ 0\ 1\ 0\ 0\ 1 \\ \hline 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0 \end{array} \quad \begin{array}{r} (9) \\ + (-23) \\ \hline -14_{10} \end{array}$$

00010111 (-23)
 11101001 (2s)

Example 8:

Find the sum of 23_{10} and (-9_{10}) in binary using two's complement arithmetic .

$$\begin{array}{r} 1 \leftarrow 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \quad \Leftarrow \text{carries} \\ \text{Discard} \quad 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \quad (23) \\ \text{carry.} \quad + \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \quad + (-9) \\ \hline 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \quad 14_{10} \end{array}$$

With two's complement addition, the carry bit is **discarded**.

Aside:

Detecting Overflow

- Notice that the discarded carry in **Example 8** did not cause an erroneous result.
- An **overflow** occurs if:
 - two positive numbers are added and the result is negative, or
 - two negative numbers are added and the result is positive.
- It is not possible to have **overflow** when using *two's complement notation* if a positive and a negative number are being added together.

- A simple rule for detecting an overflow condition using two's complement arithmetic (Assume 8-bit binary):

If the carry into the *sign bit* equals the carry out of the bit, **no overflow** has occurred.

Carry out of the bit

Carry into the sign bit

$$\begin{array}{r}
 1 \leftarrow 1 \quad \Leftarrow \text{carries} \\
 \text{Discard} \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad (23) \\
 \text{carry.} \quad + \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad + (-9) \\
 \hline
 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 14_{10}
 \end{array}$$

If the carry into the *sign bit* is different from the carry out of the sign bit, **overflow** (and thus an error) has occurred.

Discard last carry.

$$\begin{array}{r}
 0 \leftarrow 1 \quad 1 \quad 1 \quad 1 \quad \Leftarrow \text{carries} \\
 \text{Discard last} \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad (126) \\
 \text{carry.} \quad + \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad + (8) \\
 \hline
 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad (-122??)
 \end{array}$$

Review Questions - Activity 1

2

Review Questions - Activity 1

2

2.4 Assume numbers are represented in 8-bits two's complement representation. Show the calculation of the following:

(a) $6 + 13$

(c) $6 - 13$

(b) $-6 + 13$

(d) $-6 - 13$

2.5 Find the following differences using twos complement arithmetic:

(a) 111000_2
- 110011_2

(b) 11001100_2
- 101110_2

(c) 111100001111_2
- 110011110011_2

Module 2

Data Representation in Computer Systems

2.1 Introduction

2.2 Fixed-Number (Integer)
Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points
Representation

2.5 Floating-Points Arithmetic

2.6 Summary

- Negation
- Addition
- Subtraction
- Multiplication
- Division

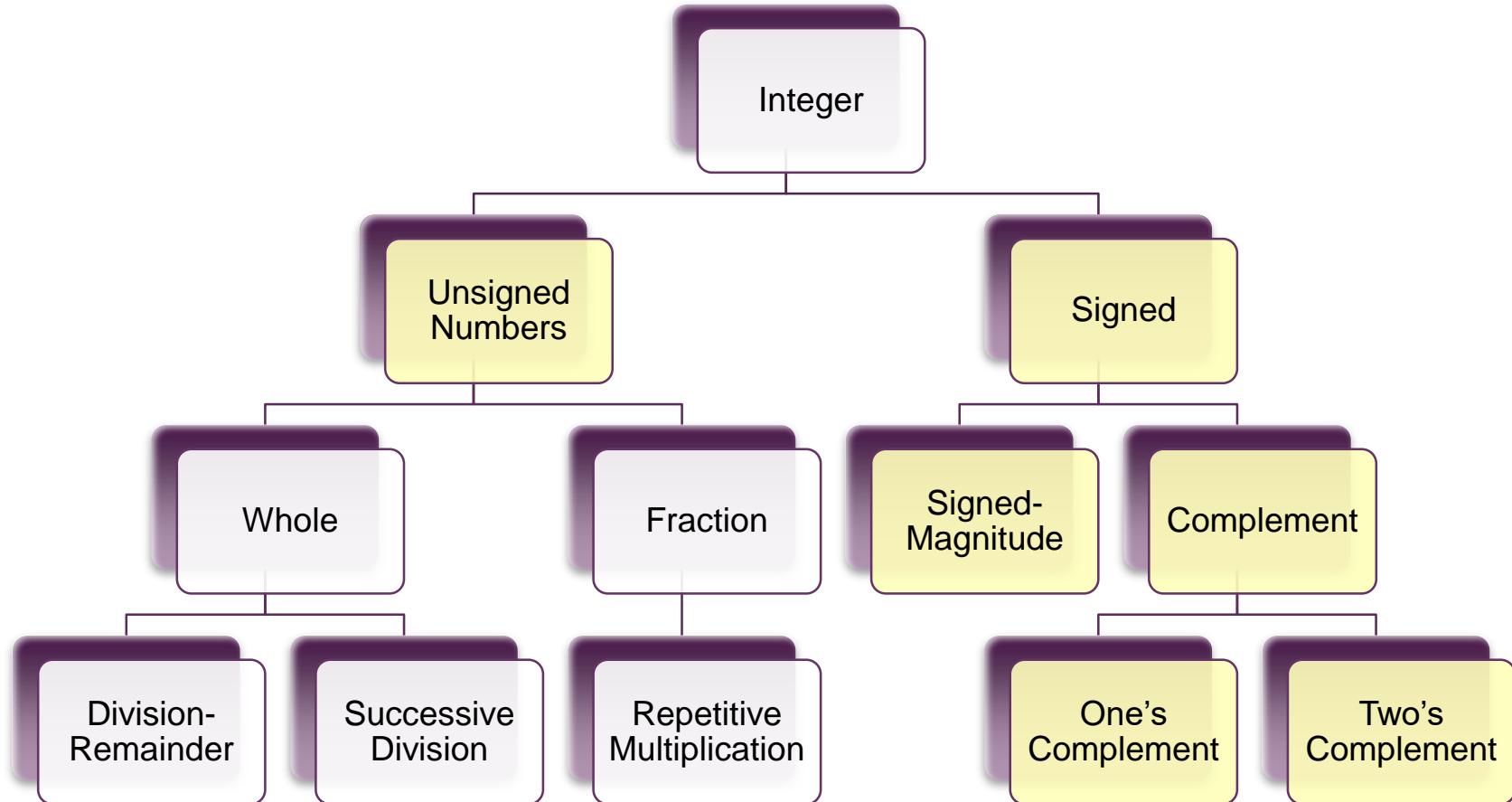


Figure: Types of numbers.

- This section examines common arithmetic functions on numbers in **two's complement** representation.

Negation

- In two's complement notation, the ***negation*** of an integer can be formed with the following rules:
 - 1) Take the Boolean complement of each bit of the integer (including the sign bit) → Set each 1 to 0 and each 0 to 1.
 - 2) Treating the result as an unsigned binary integer, add 1.

- Those two-step process is referred to as the **two's complement operation**, or the taking of the two's complement of an integer.

$$\begin{array}{rcl} +18 & = & 00010010 \text{ (twos complement)} \\ \text{bitwise complement} & = & 11101101 \\ & & + \\ & & \hline & & 1 \\ & & 11101110 = -18 \end{array}$$

$$\begin{array}{rcl} -18 & = & 11101110 \text{ (twos complement)} \\ \text{bitwise complement} & = & 00010001 \\ & & + \\ & & \hline & & 1 \\ & & 00010010 = +18 \end{array}$$

(a) Addition

- Digits are added bit by bit from right to left, with carries passed to the next digit to the left.

RECAP

Rules of Binary Addition

- $0 + 0 = 0$ carry = 0
- $0 + 1 = 1$ carry = 0
- $1 + 0 = 1$ carry = 0
- $1 + 1 = 0$ carry = 1

0111 (-7)
1001 (2s)

Discard!

Example 9:

Addition of numbers in two's complement representation.

$$\begin{array}{r} 1001 = -7 \\ +0101 = 5 \\ \hline 1110 = -2 \end{array}$$

(a) $(-7) + (+5)$

$$\begin{array}{r} 1100 = -4 \\ +0100 = 4 \\ \hline 10000 = 0 \end{array}$$

(b) $(-4) + (+4)$

$$\begin{array}{r} 0011 = 3 \\ +0100 = 4 \\ \hline 0111 = 7 \end{array}$$

(c) $(+3) + (+4)$

$$\begin{array}{r} 1100 = -4 \\ +1111 = -1 \\ \hline 11011 = -5 \end{array}$$

(d) $(-4) + (-1)$

Discard!

(e) and (f) show examples of **overflow** that can occur whether or not there is a carry.

$$\begin{array}{r} 0101 = 5 \\ +0100 = 4 \\ \hline 1001 = \text{Overflow} \end{array}$$

(e) $(+5) + (+4)$

$$\begin{array}{r} 1001 = -7 \\ +1010 = -6 \\ \hline 10011 = \text{Overflow} \end{array}$$

(f) $(-7) + (-6)$

0111 (-7)
1001 (2s)

Discard!

Example 9:

Addition of numbers in two's complement representation.

$$\begin{array}{r} 1001 = -7 \\ +0101 = 5 \\ \hline 1110 = -2 \end{array}$$

(a) $(-7) + (+5)$

$$\begin{array}{r} 1100 = -4 \\ +0100 = 4 \\ \hline 10000 = 0 \end{array}$$

(b) $(-4) + (+4)$

$$\begin{array}{r} 0011 = 3 \\ +0100 = 4 \\ \hline 0111 = 7 \end{array}$$

(c) $(+3) + (+4)$

$$\begin{array}{r} 1100 = -4 \\ +1111 = -1 \\ \hline 11011 = -5 \end{array}$$

(d) $(-4) + (-1)$

Discard!

All successful addition operations

Rule:

1. If the result is +, we get a + number in 2s = unsigned integer form like in case b) & c)
2. If the result is -, we get a - number in 2s like in case a) & d)

$$\begin{array}{r}
 0XXXXX \\
 0XXXXX \\
 \hline
 1
 \end{array}$$

$$\begin{array}{r}
 1XXXXX \\
 1XXXXX \\
 \hline
 0
 \end{array}$$

Overflow

(a) Addition

2

- On any addition, **overflow** happens when
 - If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the **opposite** sign.
 - e) - result but 5 and 4 are +; f) + result but 7 and 6 are -
- When overflow occurs, the ALU must signal this fact so that no attempt is made to use the result

Overflow happens in e) because $9 > 2^3 - 1 = 7$ i.e. result > largest number in 4 bit 2s system

$$\begin{array}{r}
 0101 = 5 \\
 +0100 = 4 \\
 \hline
 1001 = \text{Overflow}
 \end{array}$$

(e) $(+5) + (+4)$

$$\begin{array}{r}
 1001 = -7 \\
 +1010 = -6 \\
 \hline
 10011 = \text{Overflow}
 \end{array}$$

(f) $(-7) + (-6)$

(b) Subtraction

- Subtraction is easily handled with the following rule:

- **SUBTRACTION RULE:** To subtract one number (*subtrahend*) from another (*minuend*), take the two's complement (*negation*) of the *subtrahend* and add it to the *minuend*.

M (*Minuend*)
S (*Subtrahend*)

$$M - S = M + (-S)$$

$(-S) \rightarrow 2\text{'s}$
Complement
(negation)

0111 (-7)
1001 (2s)

$$M - S = M + (-S) \\ = 2 + (-7)$$

M (Minuend)
S (Subtrahend)

2

Example 10:

Subtraction of numbers in two's complement representation $(M - S)$.

Remember how overflow happens?

Slide 39

Overflow!

$$\begin{array}{r} 0010 = 2 \\ +1001 = -7 \\ \hline 1011 = -5 \end{array}$$

$$\begin{array}{r} (a) \ M = 2 = 0010 \\ \quad S = 7 = 0111 \\ \quad -S = \quad 1001 \end{array}$$

$$\begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 11001 = -7 \end{array}$$

$$\begin{array}{r} (c) \ M = -5 = 1011 \\ \quad S = 2 = 0010 \\ \quad -S = \quad 1110 \end{array}$$

$$\begin{array}{r} 0111 = 7 \\ +0111 = 7 \\ \hline 1110 = \text{Overflow} \end{array}$$

$$\begin{array}{r} (e) \ M = 7 = 0111 \\ \quad S = -7 = 1001 \\ \quad -S = \quad 0111 \end{array}$$

$$\begin{array}{r} 0101 = 5 \\ +1110 = -2 \\ \hline 10011 = 3 \end{array}$$

$$\begin{array}{r} (b) \ M = 5 = 0101 \\ \quad S = 2 = 0010 \\ \quad -S = \quad 1110 \end{array}$$

$$\begin{array}{r} 0101 = 5 \\ +0010 = 2 \\ \hline 0111 = 7 \end{array}$$

$$\begin{array}{r} (d) \ M = 5 = 0101 \\ \quad S = -2 = 1110 \\ \quad -S = \quad 0010 \end{array}$$

$$\begin{array}{r} 1010 = -6 \\ +1100 = -4 \\ \hline 10110 = \text{Overflow} \end{array}$$

$$\begin{array}{r} (f) \ M = -6 = 1010 \\ \quad S = 4 = 0100 \\ \quad -S = \quad 1100 \end{array}$$

0111 (-7)
1001 (2s)

$$M - S = M + (-S) \\ = 2 + (-7)$$

M (Minuend)
S (Subtrahend)

2

Example 10:

Check your answer

e.g. in case a)

Convert 1011 (-5
in 2s) into 4bit
binary

1) Flip the bit
1011 -> 0100

2) Add 1;
0100 + 1 = 0101

Which is 5 in 4bit
binary

So, 0101 = 5

And 1011 is -5 in
2s

Overflow!

$$\begin{array}{r} 0010 = 2 \\ +1001 = -7 \\ \hline 1011 = -5 \end{array}$$

$$\begin{array}{r} (a) \ M = 2 = 0010 \\ \quad S = 7 = 0111 \\ \quad -S = \quad 1001 \end{array}$$

$$\begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 11001 = -7 \end{array}$$

$$\begin{array}{r} (c) \ M = -5 = 1011 \\ \quad S = 2 = 0010 \\ \quad -S = \quad 1110 \end{array}$$

$$\begin{array}{r} 0111 = 7 \\ +0111 = 7 \\ \hline 1110 = \text{Overflow} \end{array}$$

$$\begin{array}{r} (e) \ M = 7 = 0111 \\ \quad S = -7 = 1001 \\ \quad -S = \quad 0111 \end{array}$$

$$\begin{array}{r} 0101 = 5 \\ +1110 = -2 \\ \hline 10011 = 3 \end{array}$$

$$\begin{array}{r} (b) \ M = 5 = 0101 \\ \quad S = 2 = 0010 \\ \quad -S = \quad 1110 \end{array}$$

$$\begin{array}{r} 0101 = 5 \\ +0010 = 2 \\ \hline 0111 = 7 \end{array}$$

$$\begin{array}{r} (d) \ M = 5 = 0101 \\ \quad S = -2 = 1110 \\ \quad -S = \quad 0010 \end{array}$$

$$\begin{array}{r} 1010 = -6 \\ +1100 = -4 \\ \hline 10110 = \text{Overflow} \end{array}$$

$$\begin{array}{r} (f) \ M = -6 = 1010 \\ \quad S = 4 = 0100 \\ \quad -S = \quad 1100 \end{array}$$

- Subtraction can be done directly, e.g.

$$\begin{array}{r}
 & \overset{0}{\cancel{2}} & \overset{0}{\cancel{2}} \\
 0 & \cancel{0}1011\cancel{1}0 & \\
 1 & + 0011001 & \\
 \hline
 0 & 0010101
 \end{array}$$

- Rules of **binary subtraction**:

$$0 - 0 = 0$$

$0 - 1 = 1$, and borrow 1 from the next more significant bit

$$1 - 0 = 1$$

$$1 - 1 = 0$$

Example 11:

$$37_{10} - 17_{10}$$

(Assume 8 bit binary)

$$\begin{array}{r}
 00100101 \\
 00010001 \\
 \hline
 00100000
 \end{array}$$

Activity 2

Exercise 2.1:

Perform the subtraction in two's complement representation for $37_{10} - 17_{10}$ in 8 bit and 16 bit binary system.

(c) Multiplication

- **Multiplication** is a complex operation, whether performed in hardware or software.
- The simpler problem of multiplying using **unsigned integers**, and the most common techniques for multiplication of numbers is **two's complement representation**.
- Multiplication of binary numbers must always use 0 and 1.

Rules of **Binary Multiplication**:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

and no carry or borrow bit.

(c) Multiplication

Unsigned Integer

- Consist of operands called *multiplicand* and *multiplier*, and final result as *product*.

Example 12:

Multiply the unsigned binary numbers of 1011_2 by 1101_2 .

$$\begin{array}{r}
 1011_2 \quad \rightarrow (11) \text{ Multiplicand} \\
 \times \underline{1101_2} \quad \rightarrow (13) \text{ Multiplier} \\
 1011 \\
 0000 \\
 1011 \\
 \hline
 1011 \\
 \hline
 10001111_2 \quad \rightarrow (143) \text{ Product}
 \end{array}$$

Partial products

If we ignore the sign bits, the length of multiplication of an n -bit *multiplicand* and an m -bit *multiplier* is a *product* that is $(n+m)$ bit long.

1	0	0	0	1	1	1	1
128	0	0	0	8	4	2	1

$$128+8+4+2+1=143$$

(c) Multiplication

Signed Integer: Two's Complement

- We have seen that **addition** and **subtraction** can be performed on numbers in **two's complement** notation by treating them as **unsigned integers** (positive numbers).

- **Example:**

If these numbers are considered to be **unsigned integers**, then we are adding 9 (1001_2) plus 3 (0011_2) to get 12 (1100_2)

$$\begin{array}{r} 1001 \\ + 0011 \\ \hline 1100 \end{array}$$

As **two's complement integers**, we are adding -7 (1001_2) to 3 (0011_2) to get -4 (1100_2).

- Unfortunately, this simple scheme will not work for **multiplication**.

Example 13:

To see this, consider again **Example 12**.

Multiply the **two's complement** binary numbers of 1011_2 by 1101_2 .

$$\begin{array}{r} 1011_2 \\ \times \underline{1101}_2 \\ 1011 \\ 0000 \\ 1011 \\ \hline 1011 \\ \hline 10001111_2 \end{array}$$

$\rightarrow (-5)$ *Multiplicand*

$\rightarrow (-3)$ *Multiplier*

Partial products

$\rightarrow (-113)$ *Product*

- This example demonstrates that straightforward multiplication will not work if both the **multiplicand** and/or **multiplier** are negative.

*Regular multiplication
clearly yields **incorrect**
result !*

- **Solution** : Multiplication algorithm.

This algorithm has the benefit of speeding up the multiplication process, relative to a more straightforward approach.

A Multiplication Algorithm and Hardware

- Multiplication must cope with overflow because we frequently want a 32-bit *product* as the result of multiplying two 32-bit numbers.
- In the next slides, assume that we are multiplying only positive number (unsigned) with the 1st version of highly optimized multiplication hardware.

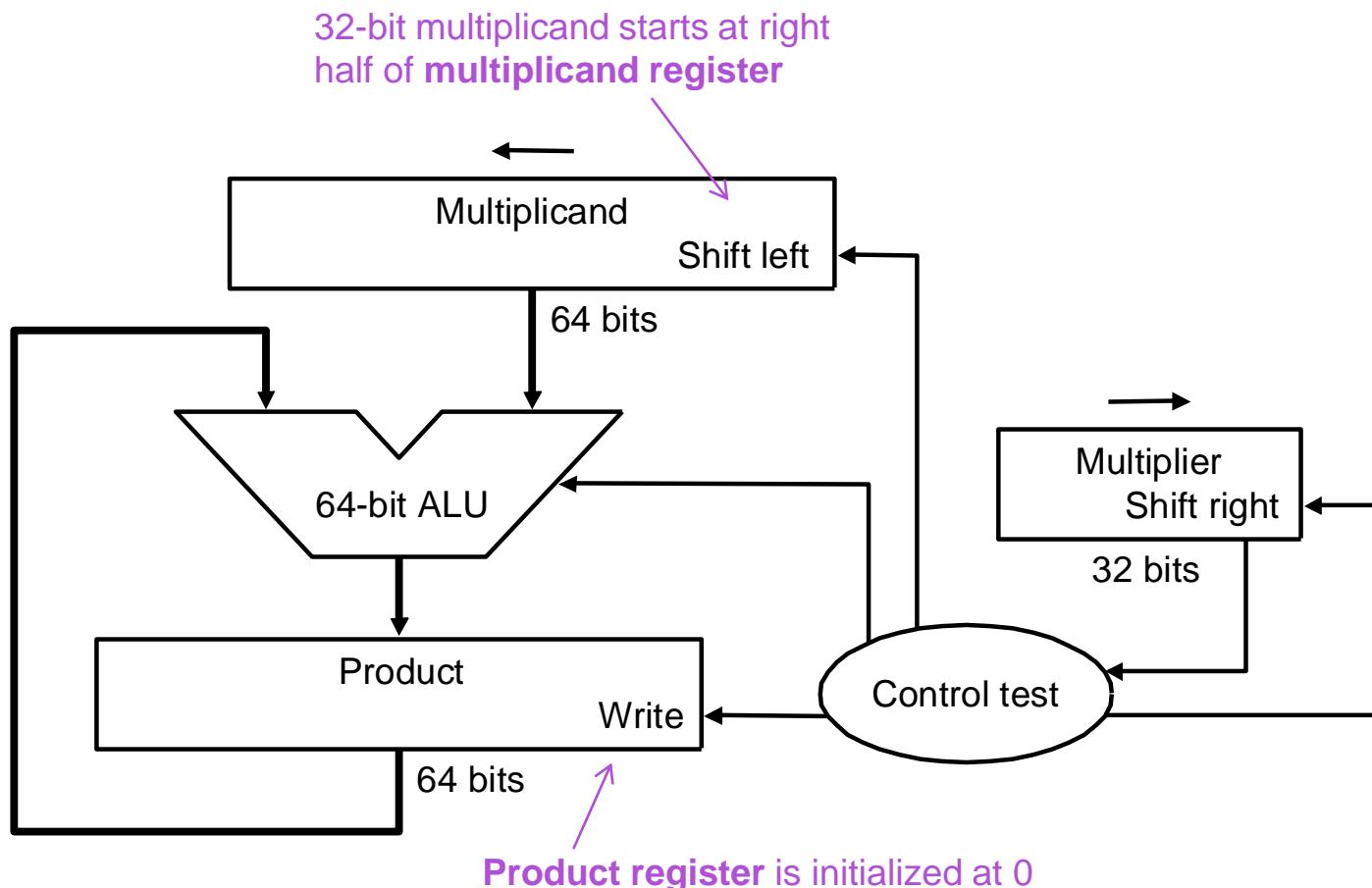


Figure: First version of Multiplication Hardware.

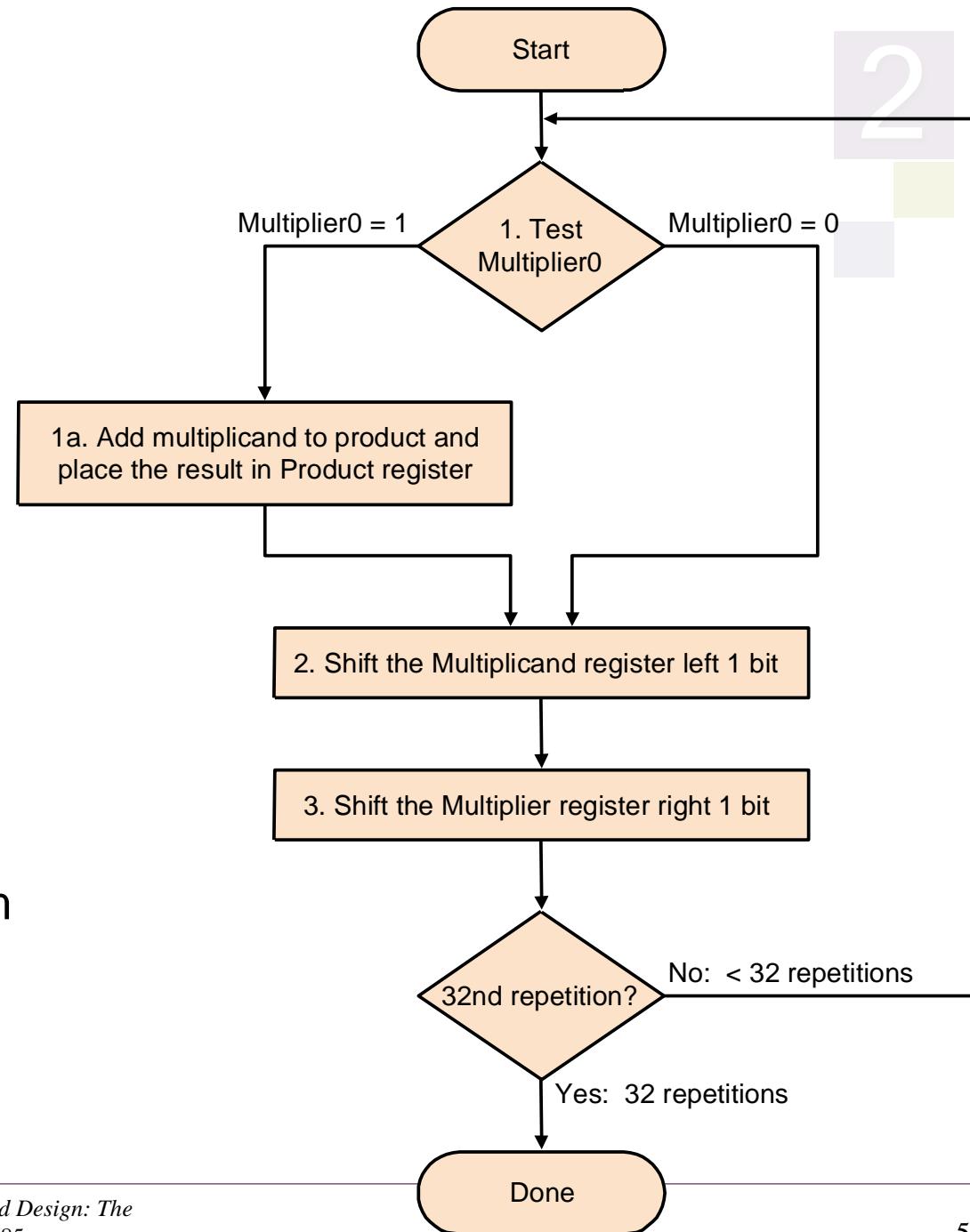


Figure:

The Multiplication Algorithm using the Hardware.

Example 14:

Using 4-bit numbers,
multiply of $2_{10} \times 3_{10}$.

$$2 \times 3 = ?$$

$0010_2 \times 0011_2$

Product (P) Multiplier (MP) Multiplicand (MC)

Steps:

1 – Test multiplier (0 or 1)

If 1 then 1a: $P = P + MC$

If 0 then no operation

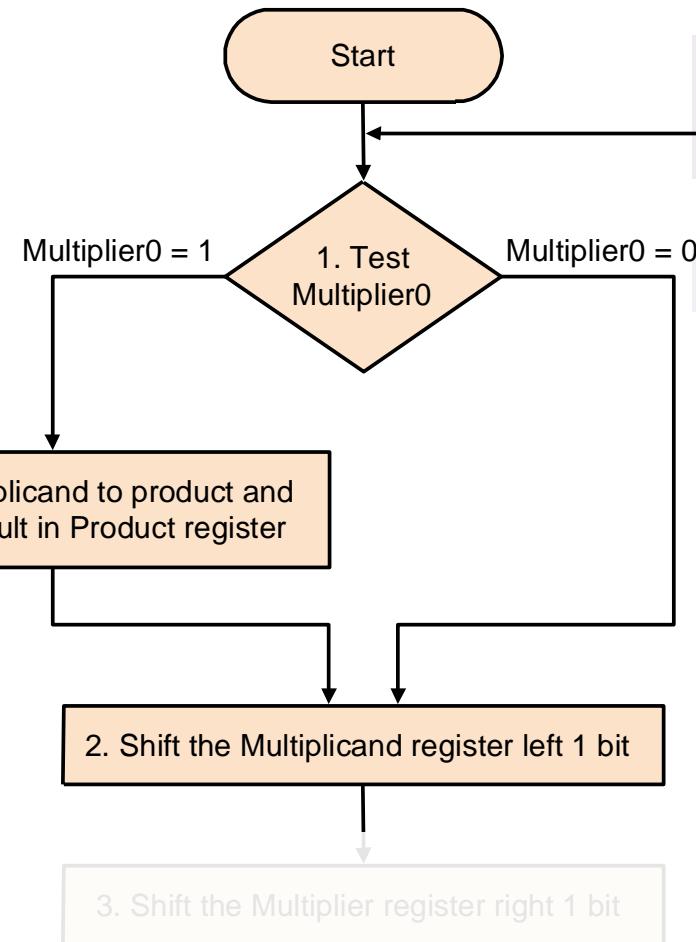
2 – Shift MC left

3 – Shift MP right

All bits done?

If still <max bit, repeat

If = max bit, stop



Max bit = Number of iteration.

→ Based on 4-bits number system used.

$$2_{10} \times 3_{10} = \underline{\hspace{2cm}}_{10}$$

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value	0011	0000 0010	0000 0000
1	1a: P = P + MC	0011		0000 0010
	2: Shift MC left		0000 0100	
	3: Shift MP right	0001		
2	1a: P = P + MC	0001		0000 0110
	2: Shift MC left		0000 1000	
	3: Shift MP right	0000		
3	1: No Operation	0000		Answer: 0000 0110 = 6 ₁₀
	2: Shift MC left		0001 0000	
	3: Shift MP right	0000		
4	1: No Operation	0000		
	2: Shift MC left		0010 0000	
	3: Shift MP right	0000		

If iter =
max bit,
stop

Exercise 2.2:

In 4-bit binary arithmetic, find the multiplication of 5_{10} with 4_{10} using the 1st version of highly optimized multiplication hardware.

Solution 2.2:

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value			
1				
	2: Shift MC left			
	3: Shift MP right			
2				
	2: Shift MC left			
	3: Shift MP right			
3				
	2: Shift MC left			
	3: Shift MP right			
4				
	2: Shift MC left			
	3: Shift MP right			

Aside:

- The *multiplier* (MP) must always be a positive number.
- Do an *additive inverse* to the *multiplicand* (MC) and the MP.

$$\text{Multiplicand} \times (-\text{Multiplier}) = (-\text{Multiplicand}) \times \text{Multiplier}$$
$$MC \times (-MP) = (-MC) \times MP$$

- **Examples:**

$$7 \times (-5) = (-7) \times 5$$

$$(-7) \times (-5) = 7 \times 5$$

Example 15:

Using a 4-bit binary arithmetic, multiply 2_{10} with (-3_{10}) using the 1st version of highly optimized **multiplication hardware**.

Solution:

$$\rightarrow 2 \times (-3)$$

- Do an *additive inverse* to the multiplicand (MC) and the MP:
 $(-2) \times 3$
- Perform the multiplication as usual.

$$(-2_{10}) \times 3_{10} = \underline{\hspace{2cm}}_{10}$$

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value			
1				
	2: Shift MC left			
	3: Shift MP right			
2				
	2: Shift MC left			
	3: Shift MP right			
3				
	2: Shift MC left			
	3: Shift MP right			
4				
	2: Shift MC left			
	3: Shift MP right			

$$(-2_{10}) \times 3_{10} = \underline{\hspace{2cm}}_{10}$$

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value	0011	1111 1110	0000 0000
1	1a: $P = P + MC$	0011		1111 1110
	2: Shift MC left		1111 1100	
	3: Shift MP right	0001		discard
2	1a: $P = P + MC$	0001		1111 1010
	2: Shift MC left		1111 1000	
	3: Shift MP right	0000		
3	1: No Operation	0000		
	2: Shift MC left		1111 0000	
	3: Shift MP right	0000		
4	1: No Operation	0000		
	2: Shift MC left		1110 0000	
	3: Shift MP right	0000		

Check your answer:
1111 1010 (2s)

1) Flip the bit
1111 1010 \rightarrow 0000 0101
2) Add 1
0000 0101 + 1 =
0000 0110
 $= 6_{10}$

1111 1010 is -6 in 2s

Activity 3

2

Exercise 2.3:

In 6-bit binary arithmetic, find the multiplication of 21_{10} with 14_{10} using the 1st version of highly optimized multiplication hardware.

Solution 2.3:

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value	001110	0000 0001 0101	0000 0000 0000
1				
	2: Shift MC left			
	3: Shift MP right			
2				
	2: Shift MC left			
	3: Shift MP right			
3				
	2: Shift MC left			
	3: Shift MP right			
4				
	2: Shift MC left			
	3: Shift MP right			

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
5				
	2: Shift MC left			
	3: Shift MP right			
6				
	2: Shift MC left			
	3: Shift MP right			

If iter =
max bit,
stop

Activity 4

Exercise 2.4:

In 6-bit binary arithmetic, find the multiplication of 21_{10} with $(-14)_{10}$ by using:

- a) the **two's complement** binary numbers. Proof that it yields incorrect result.
- b) the 1st version of highly optimized **multiplication hardware**.

Solution 2.4 (a):

The two's complement binary numbers.

Solution 2.4 (b):

The 1st version of highly optimized multiplication hardware.

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
0	Initial value	001110	0000 0001 0101	0000 0000 0000
1				
	2: Shift MC left			
	3: Shift MP right			
2				
	2: Shift MC left			
	3: Shift MP right			
3				
	2: Shift MC left			
	3: Shift MP right			
4				
	2: Shift MC left			
	3: Shift MP right			

Iteration	Step	Multiplier (MP)	Multiplicand (MC)	Product (P)
5				
	2: Shift MC left			
	3: Shift MP right			
6				
	2: Shift MC left			
	3: Shift MP right			

If iter =
max bit,
stop

(d) Division

- More complex than multiplication but is based on the same general principles.
- An operation that is even less frequent and even more quickly.
- It even offers the opportunity to perform a mathematically invalid operations in dividing by 0.

- Two operands called *dividend* and *divisor*, the result as *quotient* with secondary result called *remainder*.

$$\begin{array}{r} \text{Quotient} \\ \hline \text{Divisor} \quad \text{Dividend} \\ \dots \\ \hline \dots \\ \text{Remainder} \end{array} .$$

- Another way to express the relationship between the components:

$$\text{Dividend} = \text{Quotient} \times \text{Divisor} + \text{Remainder}$$

where the *remainder* is smaller than the *divisor*.

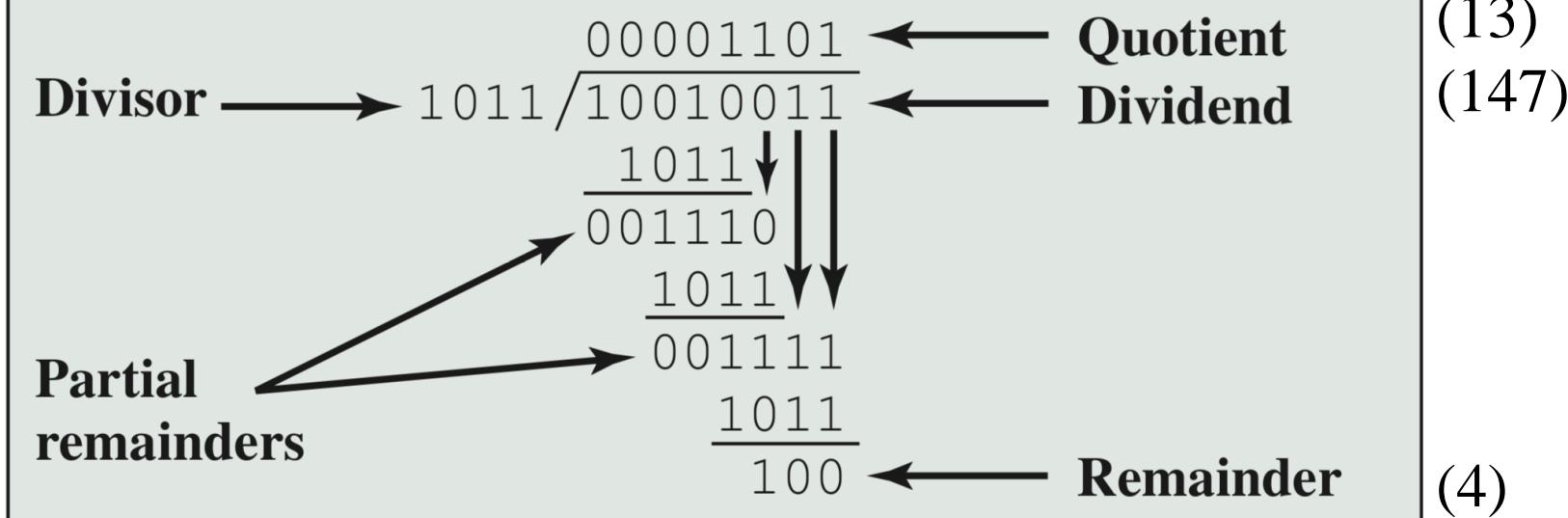
- Infrequently, programs use the divide instruction just to get the *remainder*, ignoring the *quotient*.

(d) Division

Unsigned Integer

- The following figure shows an example of the long division of unsigned binary integers of 147_{10} divided by 11_{10} .

(11)



(d) Division

Signed Integer: Two's Complement

- Make both *dividend* and *divisor* positive and perform division.
- Make the sign of the *remainder* match to the *dividend*, no matter what the signs of the *divisor* and *quotient*.
- The rules:

Divisor

Dividend

 $+7 \div +2: \text{Quotient} = +3, \text{Remainder} = +1$ $+7 \div -2: \text{Quotient} = -3, \text{Remainder} = +1$ $-7 \div +2: \text{Quotient} = -3, \text{Remainder} = -1$ $-7 \div -2: \text{Quotient} = +3, \text{Remainder} = -1$

- Negate the *quotient* if *dividend* and *divisor* were of opposite signs.

A Division Algorithm and Hardware

- Binary division is restricted to 0 or 1, thereby simplifying binary division.
- In the next slides, assume that both the *dividend* and *divisor* are positive number; Hence the *quotient* and *remainder* are non-negative.
- Since iteration of the algorithm needs to move the *divisor* to the right one digit, we start the *divisor* placed in the left half of the 64-bit Divisor Register.

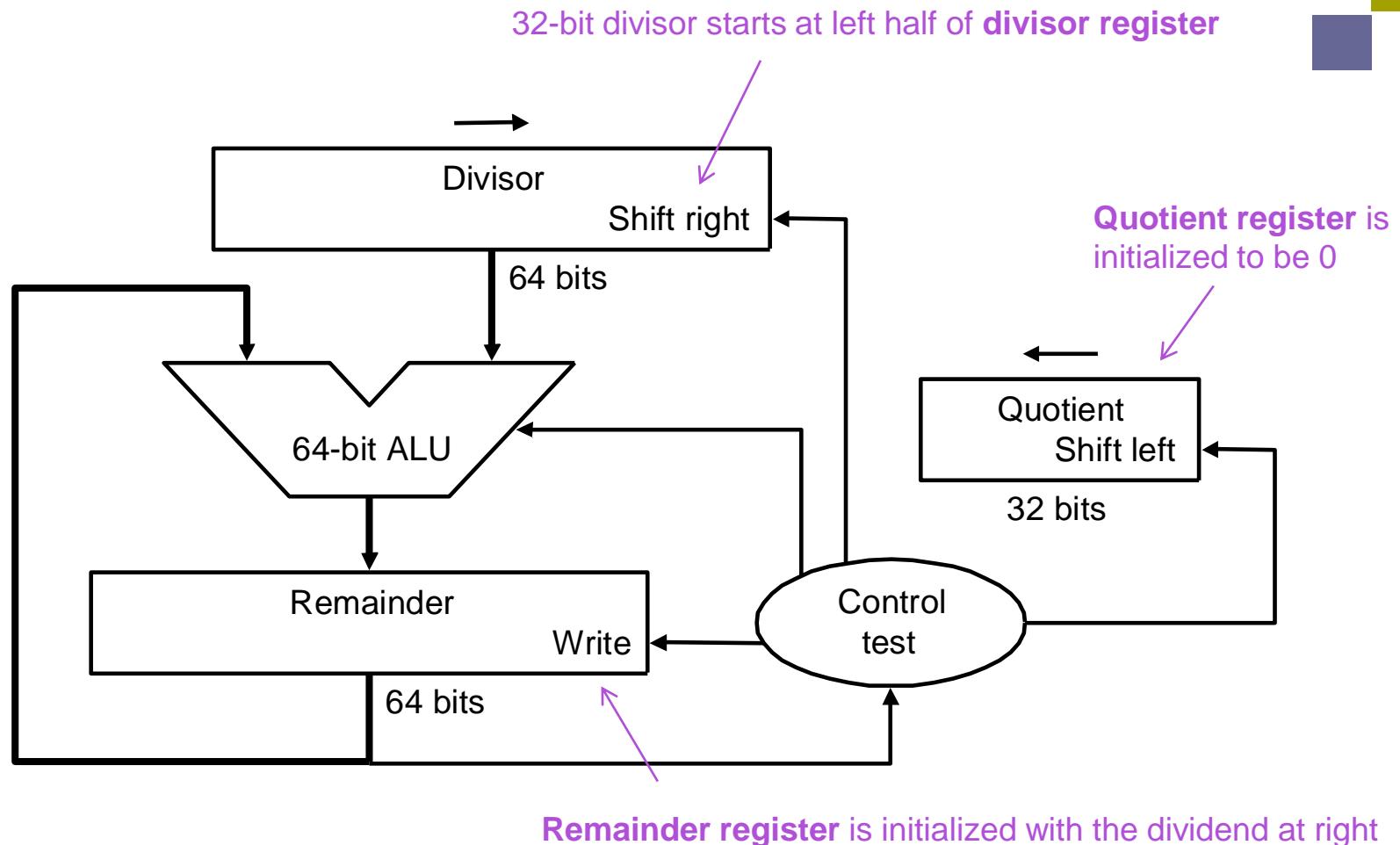


Figure: First version of Division Hardware.

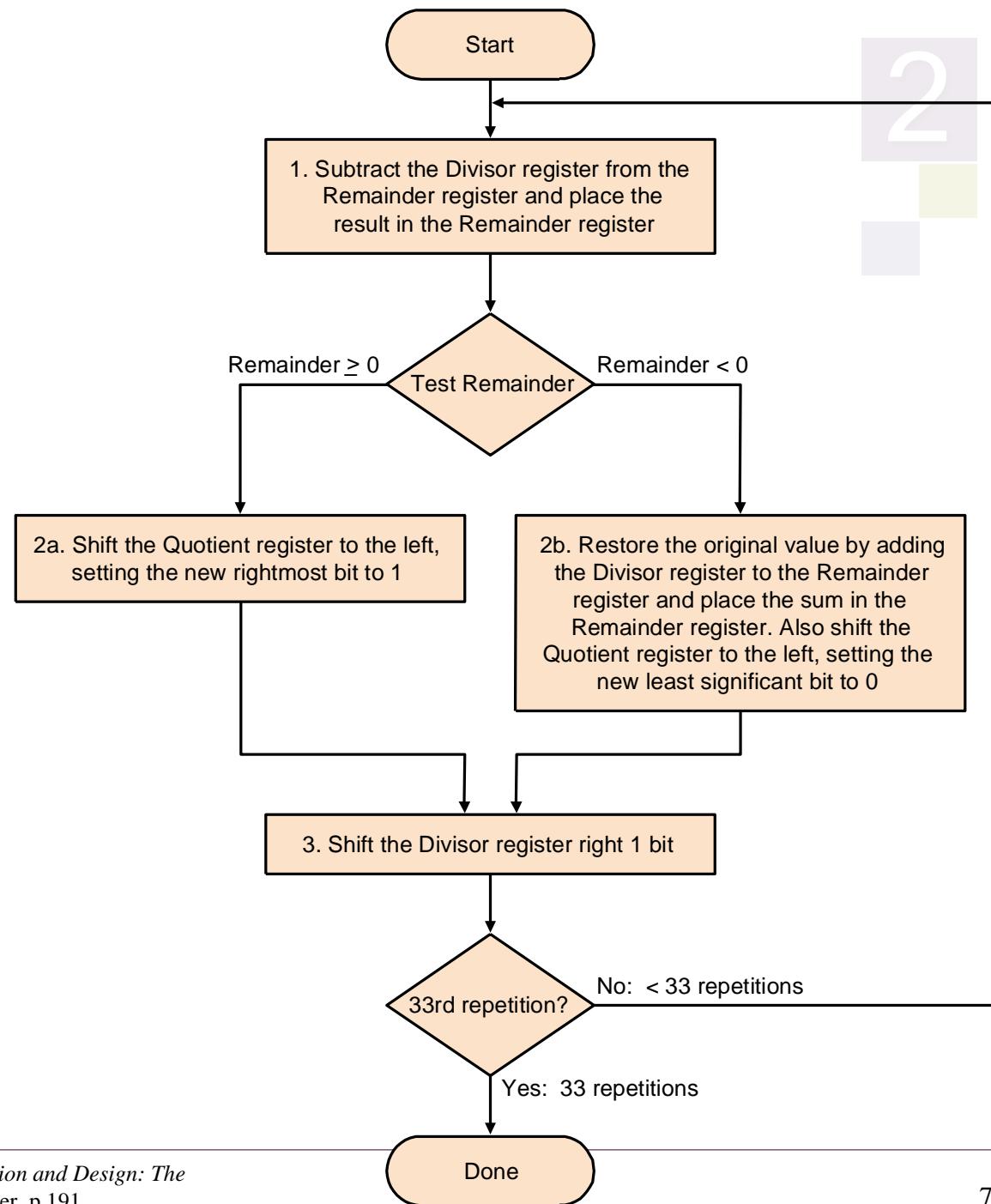


Figure:
The Division Algorithm
using the Hardware.

Example 16:

Using 4-bit numbers,
divide 7_{10} by 2_{10} .

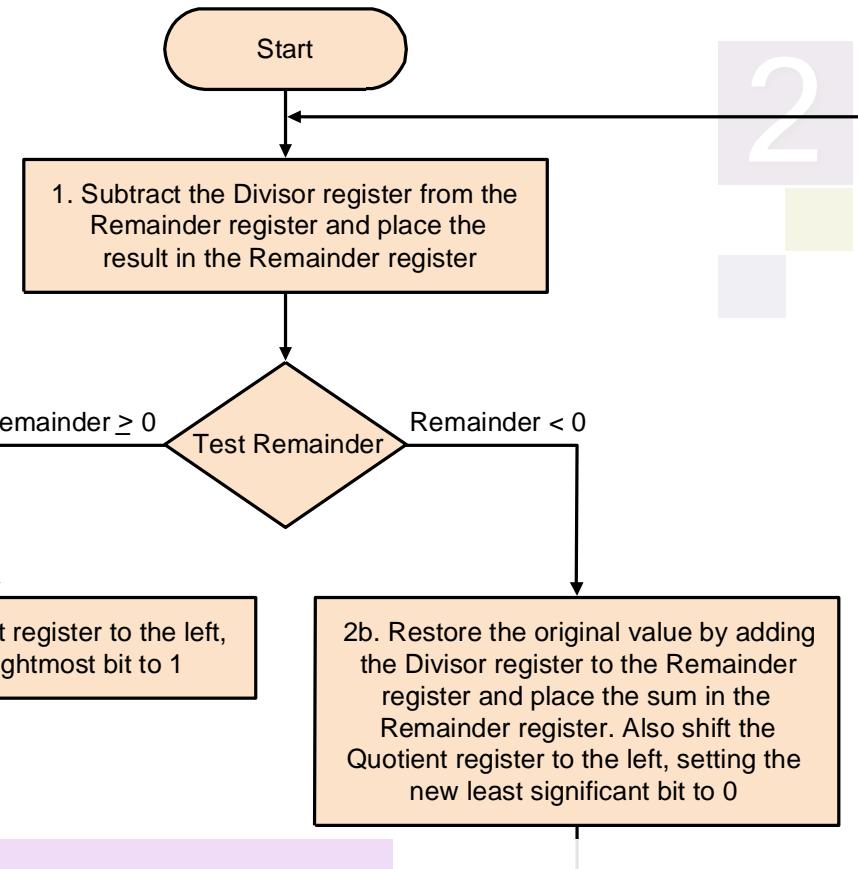
$$7 / 2 = ?$$

$0111_2 / 0010_2$

Dividend (DD)

Divisor (D)

Quotient (Q)



Steps:

1 – Remainder (R) = R – D

2 – Test new R

2a - If ≥ 0 then Shift left Q (add 1 at LSB)

2b - If < 0 then $R = D + R$, Shift left Q (add 0 at LSB)

3 – Shift D right

All bits done?

If still $< (\text{max bit} + 1)$, repeat

If $= (\text{max bit} + 1)$, stop

*Max bit + 1 =
Number of iteration.*

→ Based on 4-bits
number system used

Dividend (DD)

$$7_{10} / 2_{10} = \underline{\quad}$$

$$0111_2 / 0010_2$$

Divisor start at left half
of divisor register

2

Iteration	Steps	Quotient (Q)	Divisor (D)	Remainder (R)
0	Initial value	0000	0010 0000	0000 0111
1	1 : $R = R - D$	0000	0010 0000	1110 0111
	3 : $D = \text{Shift right}$			
2	1 : $R = R - D$	0000	0010 0000	0000 0111 (7)
	3 : $D = \text{Shift right}$			
3	1 : $R = R - D$	0000	0010 0000	0000 0111 (2's for D)
	3 : $D = \text{Shift right}$			

$$\begin{aligned} R &= R - D \\ &= R + (-D) \end{aligned}$$

$$\begin{array}{r} 0000 \ 0111 \\ + \underline{1110 \ 0000} \\ \hline 1110 \ 0111 \end{array} \quad (2\text{'s for } D)$$

Remainder register is
initialized with the
dividend at right

$7 / 2 = \underline{\quad}$

$0111_2 / 0010_2$

*Divisor start at left half
of divisor register !*

Iteration	Steps	Quotient (Q)	Divisor (D)	Remainder (R)
0	Initial value	0000	0010 0000	0000 0111
1	1 : $R = R - D$	$R = D + R$ $0010\ 0000 + 1110\ 0111$ $= \boxed{1}0000\ 0111$		1110 0111
	2b: $R < 0$; $R = D + R$ Q : Shift Left (+0)	0000		0000 0111
	3 : D = Shift right		0001 0000	$R = R - D = R + (-D)$ $0000\ 0111 + 1110\ 1111 \text{ (2s)}$ $= 1111\ 0111$
2	1 : $R = R - D$	$R = D + R$ $0001\ 0000 + 1111\ 0111$ $= \boxed{1}0000\ 0111$		1111 0111
	2b: $R < 0$; $R = D + R$ Q : Shift Left (+0)	0000		0000 0111
	3 : D = Shift right		0000 1000	$R = R - D = R + (-D)$ $0000\ 0111 + 1111\ 1000 \text{ (2s)}$ $= 1111\ 1111$
3	1 : $R = R - D$	$R = D + R$ $0000\ 1000 + 1111\ 1111$ $= \boxed{1}0000\ 0111$		1111 1111
	2b: $R < 0$; $R = D + R$ Q : Shift Left (+0)	0000		0000 0111
	3 : D = Shift right		0000 0100	

Try to complete the table for the remaining iterations:

$$R = 0000\ 0111_2; Q = 0000_2; D = 0000\ 0100_2$$

$$\begin{aligned}
 R &= R - D = R + (-D) \\
 0000\ 0111 + 1111\ 1100 \text{ (2s)} \\
 &= 1\ 0000\ 0011
 \end{aligned}$$

Iteration	Steps	Quotient (Q)	Divisor (D)	Remainder (R)
4	1 : $R = R - D$			0000 0011
	2a: No Operation Q : Shift Left (+1)	0001		
	3 : $D = \text{Shift right}$		0000 0010	
5	1 : $R = R - D$			0000 0001
	2a: No Operation Q : Shift Left (+1)	0011		
	3 : $D = \text{Shift right}$		0000 0001	

If $\text{iter} = (\text{max bit} + 1)$, stop

Answer: $7 / 2 = 3$ remainder 1

Exercise 2.5:

Using a 4-bit binary arithmetic, find the division of $(-7)_{10}$ by 2_{10} with the 1st version of highly optimized division hardware.

We solve this by following the rules below - repeating the same steps as the division of 7 by 2 1)Take the absolute value of 7 and 2 and perform division. 2)Then change remainder sign as below. 3)Then the quotient will be negated at the end because -7 and 2 have opposite sign

- Make both *dividend* and *divisor* positive and perform division.
- Make the sign of the *remainder* match to the *dividend*, no matter what the signs of the *divisor* and *quotient*.

- The rules:

Divisor

$+7 \div +2: \text{Quotient} = +3, \text{Remainder} = +1$

$+7 \div -2: \text{Quotient} = -3, \text{Remainder} = +1$

$-7 \div +2: \text{Quotient} = -3, \text{Remainder} = -1$

$-7 \div -2: \text{Quotient} = +3, \text{Remainder} = -1$

1

2

3

- Negate the *quotient* if *dividend* and *divisor* were of opposite signs.

Dividend (DD)

$$-7_{10} / 2_{10} = \underline{\quad}$$

$$0111_2 / 0010_2$$

~~1001 0010₂~~

Divisor start at left half
of divisor register

Iteration	Steps	Quotient (Q)	Divisor (D)	Remainder (R)
0	Initial value	0000	0010	0000 0111
1	1 : R = R - D			1110 0111
				..
	3 : D = Shift right			
2	1 : R = R - D			
	3 : D = Shift right			
3	1 : R = R - D			
	3 : D = Shift right			

Remainder register is
initialized with the
dividend at right

Make both *dividend*
and *divisor* positive
and perform division

Negate the *quotient* if *dividend* and *divisor* were of opposite signs
3 becomes -3

Make the sign of the *remainder* match to the *dividend*, no matter what the signs of the *divisor* and *quotient*
1 becomes -1

Try to complete the table for the remaining iterations:

$$R = 0000\ 0111_2; Q = 0000_2; D = 0000\ 0100_2$$

Iteration	Steps	Quotient (Q)	Divisor (D)	Remainder (R)
4	1 : $R = R - D$			0000 0011
	2a: No Operation Q : Shift Left (+1)	0001		
	3 : $D = \text{Shift right}$		0000 0010	
5	1 : $R = R - D$			0000 0001
	2a: No Operation Q : Shift Left (+1)	0011		
	3 : $D = \text{Shift right}$		0000 0001	

If $\text{iter} = (\text{max bit} + 1)$, stop

Answer: $7 / 2 = 3$ remainder 1

$$-7_{10} / 2_{10} =$$

Divisor (D)

$$\begin{aligned}
 R &= R - D = R + (-D) \\
 0000\ 0111 + 1111\ 1100 \text{ (2s)} \\
 &= 1\ 0000\ 0011
 \end{aligned}$$

$$\begin{aligned}
 R &= R - D = R + (-D) \\
 0000\ 0011 + 1111\ 1110 \text{ (2s)} \\
 &= 1\ 0000\ 0001
 \end{aligned}$$

Dividend (DD)

Activity 5

Exercise 2.6:

Using a 4-bit binary arithmetic, find the division of the following numbers with the 1st version of highly optimized **division hardware**.

- a) 6_{10} by 3_{10}
- b) 6_{10} by (-3_{10})
- c) (-12_{10}) by 5_{10}

Conclusion

2

- Unsigned integer vs signed integer
- The only arithmetic operation that a computer system does is **Addition**
- Addition
- Subtraction - addition with signed integers (negative numbers)
- Multiplication - repetitive addition of product to multiplicand
- Division - repetitive subtraction of dividend with divisor