
SECR2033

Computer Organization

and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.

Module 2
Data Representation in
Computer Systems

Objectives:

 To understand the fundamentals of numerical

data representation and manipulation in digital

computers.

 To master the skill of converting between

various radix systems.

 To understand how errors can occur in computations because

of overflow and truncation.

 To understand the fundamental concepts of floating-point

representation.

Module 2

2.1 Introduction

2.2 Fixed-Number (Integer) Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points Representation

2.5 Floating-Points Arithmetic

2.6 Summary

Data Representation in
Computer Systems

Module 2

2.1 Introduction

2.2 Fixed-Number (Integer) Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points Representation

2.5 Floating-Points Arithmetic

2.6 Summary

Data Representation in
Computer Systems

 The Arithmetic and Logic

Unit

2

Numbers are represented by binary bits:

 How are negative numbers represented?

 What is the largest number that can be

represented in a computer world?

 What happens if an operation creates a number

bigger than can be represented?

 What about fractions and real numbers?

 A mystery: How does hardware really multiply or

divide numbers?

2.1 Introduction

5

2

 We begin our examination of the processor with an overview of

the arithmetic and logic unit (ALU)  computer arithmetic.

 Computer arithmetic is commonly performed on two very

different types of numbers: integer and floating point.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.342.

 In both cases, the representation chosen is a crucial design

issue and is treated first, followed by a discussion of arithmetic

operations.

6

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.342. 7

2

IEEE-754 Floating-

Point Standard

Data Types

Fixed-Numbers

(Integer)

Representation

Unsigned
Numbers

Signed
Numbers

Arithmetic

Floating-Point

Representation Arithmetic

Multiplication

Subtraction

Division

Addition

Multiplication

Addition

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.341.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.37.

 Unsigned Integer

 2’s Complement

8

2

 The ALU is that part of the computer that actually performs

arithmetic and logical operations on data.

 All electronic components in the computer are based on the use

of simple digital logic devices that can store binary digits and

perform simple Boolean logic operations.

The Arithmetic and Logic Unit

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.342.

Data are presented to the

ALU in registers,

and the results of an

operation are stored in

registers.

ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 10.1 ALU Inputs and Outputs

Figure: ALU inputs and outputs.
9

Module 2

2.1 Introduction

2.2 Fixed-Number (Integer)

Representation

2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points Representation

2.5 Floating-Points Arithmetic

2.6 Summary

Data Representation in
Computer Systems

 Overview

 Unsigned Numbers

 Signed Numbers

2
Overview

 Numbers are kept in computer hardware as a series of high

and low electronic signals.

 They are considered base 2 numbers (Binary)

 All information is composed of binary digits or bits.

 In any number base, the value of i th digit d is

where i start at 0 and increases from right to left.

d ´Basei

11

RECAP

(Binary Number)

2

• 1 Nybble (or nibble) = 4 bits

• 1 Byte = 2 nybbles = 8 bits

• 1 Kilobyte (KB) = 1024 Bytes

• 1 Megabyte (MB) = 1024 Kilobytes = 1,048,576 Bytes

• 1 Gigabyte (GB) = 1024 Megabytes = 1,073,741,824 Bytes

12

RECAP

Binary Equivalents

Why is a kilobyte 1024 bytes and not 1000?

This 8-bit unit called a byte. Because every memory unit is

based on powers of 2, a kilobyte is defined not as a

thousand (as in other conventional measurements), but as

2^10 bytes = 1024 bytes. 1024 is close enough to a

thousand to earn the kilo tag.

2

 Extending a number representation to a larger number of bits.

 Example: 2 in 8 bit binary to 16 bit binary.

 In signed numbers, it is important to extend the sign bit to

preserve the number (+ve or –ve)

 Example: (–2) in 8 bit binary to 16 bit binary.

13

RECAP

Overview

(Sign Extension)

00000010 00000000 00000010

11111110 11111111 11111110

Sign bit Sign bitSign bit extended

2

Integer

Unsigned
Numbers

Whole

Division-
Remainder

Successive
Division

Fraction

Repetitive
Multiplication

Signed

Signed-
Magnitude

Complement

One’s
Complement

Two’s
Complement

Figure: Types of numbers.

14

RECAP

2

 Since MIPS word is 32 bits long:

 LSB  bit 0

 MSB  bit 31

 Range Number can represent : 0 to 232 – 1

0 – 4,294,967,29510

MIPS (Millions Instruction Per Second)

LSB (Least Significant Bit)

MSB (Most Significant Bit)

Figure: The numbering of bits in MIPS word for 10112 (1110)

Unsigned Numbers

15

RECAP

2
Signed Numbers

(a) Signed-Magnitude

 The conversions we have so far presented have involved only

positive numbers.

 To represent negative values, computer systems allocate the

high-order bit to indicate the sign of a value.

o The high-order bit is the leftmost bit in a byte. It is also called

the Most Significant Bit (MSB).

 The remaining bits contain the value of the number.

16

RECAP

2

Example 1:

Add 7910 to 3510 using signed-magnitude arithmetic in 8-bit binary.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.45. 17

RECAP

7 bits

0 represents

positive

2

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.45-46.

 The sum of two positive numbers, which is positive.

Overflow (and thus an erroneous result) in signed numbers
occurs when the sign of the result is incorrect.

 The sign bit is used only for the sign, so we can’t “carry into” it,
otherwise the result will be truncated as the MSB bit overflows,
giving an incorrect sum.

18

RECAP

 If the overflow bit is not discard, it would carry into the sign,

causing the more outrageous result of the sum of two positive

numbers being negative.

2

Example 2:

Add 010011112 to 011000112 using signed-magnitude

arithmetic in 8-bit binary.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.46. 19

RECAP

Error result !

Answer should be 17810

2

Example 3:

Add (–1910) to 1310 using signed-magnitude arithmetic in 8-bit

binary.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.48.

• The first number

(augend) is negative

(sign bit 1)

• The second number

(addend) is positive

(sign bit 0)

• Since larger

magnitude is augend,

then subtract to

addend.

20

RECAP

The sign of result will

be same as sign of

larger magnitude.

2

Example 3:

Add (–1910) to 1310 using signed-magnitude arithmetic in 8-bit

binary.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.48.

• The first number

(augend) is negative

(sign bit 1)

• The second number

(addend) is positive

(sign bit 0)

• Since larger

magnitude is augend,

then subtract to

addend.

21

RECAP

The sign of result will

be same as sign of

larger magnitude.

Video on binary subtraction with examples

https://www.youtube.com/watch?v=h_fY-zSiMtY

https://www.youtube.com/watch?v=Pr-j2fmcpxc

https://www.youtube.com/watch?v=h_fY-zSiMtY
https://www.youtube.com/watch?v=Pr-j2fmcpxc

2

 In signed magnitude, the sign bit is used only for the sign.

Solution: Need a simpler method for representing signed

numbers  complement systems.

22

RECAP

Problem 1:

If there any carry emitting

from the last bit, the result

will be truncated as the last

bit overflow, giving an

incorrect sum.

Problem 2:

Complicated to define the

larger magnitude, to

subtract negative number,

borrow from the minuend.

2
Signed Numbers

(b) One’s Complement

 In complement systems, negative values are represented by
some difference between a number and its base.

 In diminished radix complement systems, a negative value is

given by the difference between the absolute value of a number

and one less than its base.

 In the binary system, this gives us one’s complement.

o It amounts to little more than flipping the bits of a binary

number.

23

RECAP

2

Example 4:

Using one’s complement 8-bit binary arithmetic,

find the sum of 910 and (–2310).

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51. 24

RECAP

00010111 (-23)

11101000 (1s)

One’s complement for -23

Flip the binary bit from 00010111 to 11101000

2

Example 5:

Using one’s complement 8-bit binary arithmetic,

find the sum of (–910) and 2310.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51.

With one’s complement addition, the carry bit is “carried around”
and added to the sum.

25

RECAP

00001001 (-9)

11110110 (1s)

Still remember how to

convert -9 into 8 bit

binary using 1s?

2
Signed Numbers

(c) Two’s Complement

 Two’s complement is an example of a radix complement.

 The radix complement is often more intuitive than the diminished
radix complement.

 The two’s complement is nothing more than one’s complement
incremented by 1.

 To find the two’s complement of a binary number, simply flip bits
and add 1.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51. 26

RECAP

2

Example 6:

Express 2310, (–2310), and (–910) in 8-bit binary two’s complement

form.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.52. 27

RECAP

Example 7:

Add 910 to (–2310) using 8-bit binary two’s complement arithmetic.

Express bit binary to 2s

1) Flip the bit

2) Add 1

00010111 (-23)

11101001 (2s)

2

Example 8:

Find the sum of 2310 and (–910) in binary using two’s complement

arithmetic .

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.52. 28

RECAP

With two’s complement addition, the carry bit is discarded.

2Aside:

Detecting Overflow

 Notice that the discarded carry in Example 8 did not cause an

erroneous result.

 An overflow occurs if:

 two positive numbers are added and the result is negative, or

 two negative numbers are added and the result is positive.

 It is not possible to have overflow when using two’s complement

notation if a positive and a negative number are being added

together.

29Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53.

2
 A simple rule for detecting an overflow condition using

two’s complement arithmetic (Assume 8-bit binary):

30Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53.

If the carry into the sign bit
equals the carry out of the
bit, no overflow has
occurred.

If the carry into the sign bit
is different from the carry

out of the sign bit, overflow

(and thus an error) has

occurred.

1  1

0  1

Carry into the sign bitCarry out

of the bit

2Review Questions – Activity 1

2.1 Represent the following decimal numbers in both binary

sign/magnitude and two’s complement using 16-bits binary

system:

(a) +512 (b) –29

2.2 Represent the following two’s complement values in

decimal:

(a) 11010112 (b) 01011012

2.3 Convert the following 8-bit two’s complement value to 16-bits

binary system:

(a) 110011002 (b) 001011102

31William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.368..

2Review Questions - Activity 1

2.4 Assume numbers are represented in 8-bits two’s

complement representation. Show the calculation of the

following:

(a) 6 + 13 (c) 6 – 13

(b) –6 + 13 (d) –6 – 13

2.5 Find the following differences using twos complement

arithmetic:

(a) 1110002 (b) 110011002 (c) 111100001111

– 1100112 – 1011102 – 110011110011

32William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.368.

Module 2

2.1 Introduction

2.2 Fixed-Number (Integer)

Representation

2.3 Fixed-Number (Integer)

Arithmetic

2.4 Floating-Points

Representation

2.5 Floating-Points Arithmetic

2.6 Summary

Data Representation in
Computer Systems

 Negation

 Addition

 Subtraction

 Multiplication

 Division

2

Integer

Unsigned
Numbers

Whole

Division-
Remainder

Successive
Division

Fraction

Repetitive
Multiplication

Signed

Signed-
Magnitude

Complement

One’s
Complement

Two’s
Complement

Figure: Types of numbers.

34

RECAP Still remember 2s complement?

22.3 Fixed-Number Arithmetic

 This section examines common arithmetic functions on

numbers in two’s complement representation.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.349.

Negation

 In two’s complement notation, the negation of an integer can be

formed with the following rules:

1) Take the Boolean complement of each bit of the integer

(including the sign bit)  Set each 1 to 0 and each 0 to 1.

2) Treating the result as an unsigned binary integer, add 1.

35

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.349.

 Those two-step process is referred to as the two’s complement

operation, or the taking of the two’s complement of an integer.

36

2
(a) Addition

 Digits are added bit by bit from right to left, with carries passed

to the next digit to the left.

37

RECAP

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.351.

Example 9:

Addition of

numbers in

two’s

complement

representation.

(e) and (f) show

examples of

overflow that

can occur

whether or not

there is a carry.

38

Discard !

Discard !

0111 (-7)

1001 (2s)

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.351.

Example 9:

Addition of

numbers in

two’s

complement

representation.

All successful addition operations

Rule:

1. If the result is +, we get a + number in 2s = unsigned integer

form like in case b) & c)

2. If the result is -, we get a – number in 2s like in case a) & d)

39

Discard !

Discard !

0111 (-7)

1001 (2s)

2
(a) Addition

 On any addition, overflow happens when

 If two numbers are added, and they are both positive or both

negative, then overflow occurs if and only if the result has the

opposite sign.

 e) - result but 5 and 4 are +; f) + result but 7 and 6 are -

 When overflow occurs, the ALU must signal this fact so that no

attempt is made to use the result

40

Overflow

Overflow happens

in e) because 9 >

23-1=7 i.e. result >

largest number in 4

bit 2s system

2
(b) Subtraction

 Subtraction is easily handled with the following rule:

 SUBTRACTION RULE: To subtract one number (subtrahend)

from another (minuend), take the two’s complement (negation)

of the subtrahend and add it to the minuend.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.351. 41

M (Minuend)

S (Subtrahend)

(–S) 2’s

Complement

(negation)

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.351.

Example 10:

Subtraction of

numbers in

two’s

complement

representation

(M – S) .

M (Minuend)

S (Subtrahend)

42

Overflow !

Remember how

overflow happens?

Slide 39

0111 (-7)

1001 (2s)

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.351.

Example 10:

Subtraction of

numbers in

two’s

complement

representation

(M – S) .

M (Minuend)

S (Subtrahend)

43

Overflow !

Check you answer

e.g. in case a)

Convert 1011 (-5

in 2s) into 4bit

binary

1)Flip the bit

1011-> 0100

2)Add 1;

0100+1=0101

Which is 5 in 4bit

binary

So, 0101 = 5

And 1011 is -5 in

2s

0111 (-7)

1001 (2s)

2
 Subtraction can be done directly, e.g.

 Rules of binary subtraction:

0 - 0 = 0

0 - 1 = 1, and borrow 1 from the next more significant bit

1 - 0 = 1

1 - 1 = 0

Example 11:

3710 – 1710

(Assume 8 bit binary)

borrowed

44

2
Exercise 2.1:

Perform the subtraction in two’s complement representation for

3710 – 1710 in 8 bit and 16 bit binary system.

45

Activity 2

2
(c) Multiplication

 Multiplication is a complex operation, whether performed in

hardware or software.

 The simpler problem of multiplying using unsigned integers, and

the most common techniques for multiplication of numbers is

two’s complement representation.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.353.

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

and no carry or borrow bit.

Rules of Binary Multiplication:
 Multiplication of binary

numbers must always

use 0 and 1.

46

2
(c) Multiplication

Unsigned Integer

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.353.

 Consist of operands called multiplicand and multiplier, and

final result as product.

Multiplicand

x Multiplier

Product

47

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.353.

Example 12:

Multiply the unsigned binary numbers of 10112 by 11012.

If we ignore the

sign bits, the

length of

multiplication of an

n-bit multiplicand
and an m-bit

multiplier is a

product that is

(n+m) bit long.

10112
x 11012
1011

0000

1011

1011 .

100011112

 (11) Multiplicand

 (13) Multiplier

Partial products

 (143) Product

48

1 0 0 0 1 1 1 1

128 0 0 0 8 4 2 1
128+8+4+2+1=143

2
(c) Multiplication

Signed Integer: Two’s Complement

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.355.

 We have seen that addition and subtraction can be performed

on numbers in two’s complement notation by treating them as

unsigned integers (positive numbers).

 Example:

If these numbers are

considered to be unsigned

integers, then we are

adding 9 (10012) plus 3

(00112) to get 12 (11002)

As two’s complement

integers, we are adding –7

(10012) to 3 (00112) to get

–4 (11002).

49

1001

+ 0011

1100

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.356.

 Unfortunately, this simple scheme will not work for multiplication.

10112
x 11012
1011

0000

1011

1011 .

100011112

 (–5) Multiplicand

 (–3) Multiplier

Partial products

 (–113) Product

Example 13:

To see this, consider

again Example 12.

Multiply the two’s

complement binary

numbers of 10112 by

11012.

50

2

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.353.

 This example demonstrates that straightforward multiplication

will not work if both the multiplicand and/or multiplier are

negative.

 Solution : Multiplication algorithm.

This algorithm has the benefit of speeding up the

multiplication process, relative to a more

straightforward approach.

51

Regular multiplication

clearly yields incorrect

result !

2

 Multiplication must cope with overflow because we frequently

want a 32-bit product as the result of multiplying two 32-bit

numbers.

 In the next slides, assume that we are multiplying only positive

number (unsigned) with the 1st version of highly optimized

multiplication hardware.

A Multiplication Algorithm and Hardware

52

2

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

32-bit multiplicand starts at right

half of multiplicand register

Product register is initialized at 0

Figure: First version of Multiplication Hardware.

53Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (5th Edition). United States: Elsevier, p.184.

2

Figure:

The Multiplication Algorithm

using the Hardware.

54
Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The

Hardware/Software Interface (5th Edition). United States: Elsevier, p.185.

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

2

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Example 14:

Using 4-bit numbers,

multiply of 210 x 310 .

2 x 3 = ?
00102 x 00112

Multiplier (MP)

Multiplicand (MC)

Product (P)

Steps:

1 – Test multiplier (0 or 1)

If 1 then 1a: P = P + MC

If 0 then no operation

2 – Shift MC left

3 – Shift MP right

All bits done?

If still <max bit, repeat

If = max bit, stop
55

f

Max bit = Number of

iteration.

 Based on 4-bits

number system used.

2

56

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value 0011 0000 0010 0000 0000

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right

0011
0000 0010

0000 0100

0001

0001
0000 0110

0000 1000

0000

0000
0001 0000

0000

0000
0010 0000

0000

Answer:
0000 0110

= 610

1a: P = P + MC

1a: P = P + MC

1: No Operation

1: No Operation

210 x 310 = _______10

If iter =

max bit,

stop

2
Exercise 2.2:

In 4-bit binary arithmetic, find the multiplication of 510 with 410 using

the 1st version of highly optimized multiplication hardware.

57

2

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right

Solution 2.2:

58

2Aside:

59Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53.

 The multiplier (MP) must always in positive number.

 Do an additive inverse to the multiplicand (MC) and the MP.

 Examples:

2
Example 15:

Using a 4-bit binary arithmetic, multiply 210 with (–310) using the 1st

version of highly optimized multiplication hardware.

60

Solution:



 Do an additive inverse to the multiplicand (MC) and the MP:

 Perform the multiplication as usual.

2

62

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right

(- 210) x 310 = _______10

2

63

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value 0011 1111 1110 0000 0000

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right

(- 210) x 310 = _______10

1a: P = P + MC

1a: P = P + MC

1: No Operation

1: No Operation

Check your answer:

1111 1010 (2s)

1) Flip the bit

1111 1010 -> 0000

0101

2) Add 1

0000 0101 + 1 =
0000 0110

= 610

1111 1010 is -6 in

2s

discard

0011
1111 1110

1111 1100

0001

0001
11111 1010

1111 1000

0000

0000
1111 0000

0000

0000
1110 0000

0000

2
Exercise 2.3:

In 6-bit binary arithmetic, find the multiplication of 2110 with 1410

using the 1st version of highly optimized multiplication hardware.

64

Activity 3

2

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value 001110 0000 0001 0101 0000 0000 0000

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right

Solution 2.3:

65

2

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

5
2: Shift MC left

3: Shift MP right

6
2: Shift MC left

3: Shift MP right

66

If iter =

max bit,

stop

2
Exercise 2.4:

In 6-bit binary arithmetic, find the multiplication of 2110 with (–1410)

by using:

a) the two’s complement binary numbers. Proof that it yields

incorrect result.

b) the 1st version of highly optimized multiplication hardware.

67

Activity 4

2
Solution 2.4 (a):

The two’s complement binary numbers.

68

2Solution 2.4 (b):

The 1st version of highly optimized multiplication hardware.

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value 001110 0000 0001 0101 0000 0000 0000

1 2: Shift MC left

3: Shift MP right

2 2: Shift MC left

3: Shift MP right

3 2: Shift MC left

3: Shift MP right

4 2: Shift MC left

3: Shift MP right
69

2

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

5
2: Shift MC left

3: Shift MP right

6
2: Shift MC left

3: Shift MP right

70

If iter =

max bit,

stop

2
(d) Division

 More complex than multiplication but is based on the same

general principles.

 An operation that is even less frequent and even more quickly.

 It even offers the opportunity to perform a mathematically

invalid operations in dividing by 0.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9th Edition). United States: Pearson Education Limited, p.360.

Quotient

Divisor Dividend .

...

... .

Remainder

 Two operands called

dividend and divisor, the

result as quotient with

secondary result called

remainder.

71

2

 Another way to express the relationship between the

components:

where the remainder is smaller than the divisor.

 Infrequently, programs use the divide instruction just to get the

remainder, ignoring the quotient.

72Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (5th Edition). United States: Elsevier, p.193.

2

 The following figure shows an example of the long division of

unsigned binary integers of 14710 divided by 1110.

(d) Division

Unsigned Integer

(13)

(147)

(4)

(11)

73William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10th Edition). United States: Pearson Education Limited, p.348.

2

 Make both dividend and divisor positive and perform division.

 Make the sign of the remainder match to the dividend, no

matter what the signs of the divisor and quotient.

(d) Division

Signed Integer: Two’s Complement

74Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (5th Edition). United States: Elsevier, p.193.

Negate the quotient if dividend and divisor were of opposite

signs.

 The rules:

Dividend

Divisor

2
A Division Algorithm and Hardware

 Binary division is restricted to 0 or 1, thereby simplifying binary

division.

 In the next slides, assume that both the dividend and divisor

are positive number; Hence the quotient and remainder are

non-negative.

 Since iteration of the algorithm needs to move the divisor to

the right one digit, we start the divisor placed in the left half of

the 64-bit Divisor Register.

76

2

Figure: First version of Division Hardware.

64-bit ALU

Control

test

Quotient

Shift left

Remainder

Write

Divisor

Shift right

64 bits

64 bits

32 bits

32-bit divisor starts at left half of divisor register

Remainder register is initialized with the dividend at right

Quotient register is

initialized to be 0

77Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (5th Edition). United States: Elsevier, p.190.

2

Figure:

The Division Algorithm

using the Hardware.

78
Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The

Hardware/Software Interface (5th Edition). United States: Elsevier, p.191.

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

2
Example 16:

Using 4-bit numbers,

divide 710 by 210 .

7 / 2 = ?
01112 / 00102

Divisor (D)Dividend (DD)

Quotient (Q)

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

 result in the Remainder register

Remainder > 0

–

Steps:

1 – Remainder (R) = R – D

2 – Test new R

2a - If >=0 then Shift left Q (add 1 at LSB)

2b - If <0 then R = D + R, Shift left Q (add 0 at LSB)

3 – Shift D right

All bits done?

If still <(max bit + 1), repeat

If = (max bit + 1), stop
79

f

Max bit + 1 =

Number of iteration.

 Based on 4-bits

number system used

2
Iteration Steps

Quotient

(Q) Divisor (D) Remainder (R)

0 Initial value 0000 0010 0000 0000 0111

1

1 : R = R – D

3 : D = Shift right

2

1 : R = R – D

3 : D = Shift right

3

1 : R = R – D

3 : D = Shift right

1110 0111

710 / 210 = ____

80

Divisor start at left half

of divisor register

R = R – D

= R + (–D)

0000 0111 (7)

+ 1110 0000 (2’s for D)

1110 0111

Divisor (D)

Dividend (DD)

01112 / 00102

Remainder register is

initialized with the

dividend at right

2
Iteration Steps

Quotient

(Q) Divisor (D) Remainder (R)

0 Initial value 0000 0010 0000 0000 0111

1

1 : R = R – D

3 : D = Shift right

2

1 : R = R – D

3 : D = Shift right

3

1 : R = R – D

3 : D = Shift right

1110 0111

0000 0111

0000

0001 0000

2b: R < 0; R = D+R

Q : Shift Left (+0)

1111 0111

2b: R < 0; R = D+R

Q : Shift Left (+0)

0000 0111

0000 1000

0000

1111 1111

2b: R < 0; R = D+R

Q : Shift Left (+0)

0000 0111

0000 0100

0000

7 / 2 = ____

81

Divisor start at left half

of divisor register !

R=D+R

0010 0000 + 1110 0111

= 1 0000 0111

R = R –D = R+(-D)

0000 0111 + 1110 1111 (2s)

= 1111 0111

R=D+R

0001 0000 + 1111 0111

= 1 0000 0111

R = R –D = R+(-D)

0000 0111 + 1111 1000 (2s)

= 1111 1111

R=D+R

0000 1000 + 1111 111

= 1 0000 0111

01112 / 00102

2

Iteration Steps

Quotient

(Q) Divisor (D) Remainder (R)

4

1 : R = R – D

3 : D = Shift right

5

1 : R = R – D

3 : D = Shift right

0000 0011

0001

0000 0010

2a: No Operation

Q : Shift Left (+1)

0000 0001

2a: No Operation

Q : Shift Left (+1)

0000 0001

0011

Try to complete the table for the remaining iterations:

R = 0000 01112; Q = 00002; D = 0000 01002

Answer: 7 / 2 = 3 remainder 1
82

R = R –D = R+(-D)

0000 0111 + 1111 1100 (2s)

= 1 0000 0011

R = R –D = R+(-D)

0000 0011 + 1111 1110 (2s)

= 1 0000 0001

If iter = (max

bit + 1), stop

2
Exercise 2.5:

Using a 4-bit binary arithmetic, find the division of (–710) by 210 with

the 1st version of highly optimized division hardware.

83

We solve this by following the rules below - repeating the same steps

as the division of 7 by 2 1)Take the absolute value of 7 and 2 and

perform division. 2)Then change remainder sign as below. 3)Then the

quotient will be negated at the end because -7 and 2 have opposite

sign
1

2

3

2
Iteration Steps

Quotient

(Q) Divisor (D) Remainder (R)

0 Initial value 0000 0010 0000 0000 0111

1

1 : R = R – D

..

3 : D = Shift right

2

1 : R = R – D

3 : D = Shift right

3

1 : R = R – D

3 : D = Shift right

1110 0111

84

Divisor start at left half

of divisor register

Make both dividend

and divisor positive
and perform division

-710 / 210 = ____

Divisor (D)

Dividend (DD)

10012 / 00102

Remainder register is

initialized with the

dividend at right

01112 / 00102

2

Iteration Steps

Quotient

(Q) Divisor (D) Remainder (R)

4

1 : R = R – D

3 : D = Shift right

5

1 : R = R – D

3 : D = Shift right

0000 0011

0001

0000 0010

2a: No Operation

Q : Shift Left (+1)

0000 0001

2a: No Operation

Q : Shift Left (+1)

0000 0001

0011

Try to complete the table for the remaining iterations:

R = 0000 01112; Q = 00002; D = 0000 01002

Answer: 7 / 2 = 3 remainder 1
85

R = R –D = R+(-D)

0000 0111 + 1111 1100 (2s)

= 1 0000 0011

R = R –D = R+(-D)

0000 0011 + 1111 1110 (2s)

= 1 0000 0001

If iter = (max

bit + 1), stop

Make the sign of the remainder match

to the dividend, no matter what the

signs of the divisor and quotient

1 becomes -1

Negate the quotient if dividend and

divisor were of opposite signs

3 becomes -3

-710 / 210 = ____

Divisor (D)

Dividend (DD)

2
Exercise 2.6:

Using a 4-bit binary arithmetic, find the division of the following

numbers with the 1st version of highly optimized division hardware.

a) 610 by 310

b) 610 by (– 310)

c) (–1210) by 510

86

Activity 5

2Conclusion

 Unsigned integer vs signed integer

 The only arithmetic operation that a computer system does

is

 Addition

 Subtraction – addition with signed integers (negative

numbers)

 Multiplication – repetitive addition of product to

multiplicand

 Division – repetitive subtraction of dividend with divisor

87

Addition

