SECR2033
Computer Organization
and Architecture

Lecture slides prepared by “Computer Organization and Architecture”, 9/e, by William Stallings, 2013.



Module 2

Data Representation in
Computer Systems

Objectives:

a To understand the fundamentals of numerical
data representation and manipulation in digital
computers.

0 To master the skill of converting between
various radix systems.

O To understand how errors can occur in computations because
of overflow and truncation.

O To understand the fundamental concepts of floating-point
representation.



Module 2

Data Representation in
Computer Systems

2.1 Introduction
2.2 Fixed-Number (Integer) Representation
2.3 Fixed-Number (Integer) Arithmetic

2.4 Floating-Points Representation

2.5 Floating-Points Arithmetic

2.6 Summary



Module 2

Data Representation in
Computer Systems

2.1 Introduction a The Arithmetic and Logic
Unit



2.1 Introduction

Numbers are represented by binary bits: f‘@
-

g\) [ @ ‘.\y‘
.J

= How are negative numbers represented? 1;
m What is the largest number that can be
represented in a computer world?
m What happens if an operation creates a number
bigger than can be represented?
m What about fractions and real numbers?

m A mystery: How does hardware really multiply or
divide numbers?




—

m We begin our examination of the processor with an overview of
the arithmetic and logic unit (ALU) = computer arithmetic.

m Computer arithmetic is commonly performed on two very
different types of numbers: integer and floating point.

m |[n both cases, the representation chosen is a crucial design
iIssue and is treated first, followed by a discussion of arithmetic
operations.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.342.



Size Range Size Range
(bytes) (bytes)
char 1 -128 to 127 1 -128 to 127
short 2 -32,768 to 32,767 2 -32,768 to 32,767
int a -2,147,483,648 to 4 -2,147,483,648 to
in 2,147,483,647 2,147,483,647
long 4 '2'21::;4::;'5::;" 8 9,223,372,036,854,775,808-
PRI 9,223,372,036,854,775,807
9,223,372,036,854,775,808- 9,223,372,036,854,775,808-
long long 8 8
9,223,372,036,854,775,807 9,223,372,036,854,775,807
float 4 3.4E +/- 38 4 3.4E +/- 38
double 8 1.7E +/- 308 3 1.7E +/- 308

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.342.




Data Types

Fixed-Numbers
(Integer)

Floating-Point

Representation Arithmetic Representation Arithmetic

IEEE-754 Floating-
Point Standard

Unsigned Signed

Numbers Numbers —— Addition I Addition

—' Subtraction —' Multiplication
‘ o - Unsigned Integer

— | Multiplication |> 2's Complement

' Division

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9™ Edition). United States: Pearson Education Limited, p.341.
Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.37.



o

The Ari.thmetic and Logic Unit

m The ALU is that part of the computer that actually performs
arithmetic and logical operations on data.

m All electronic components in the computer are based on the use
of simple digital logic devices that can store binary digits and

perform simple Boolean logic operations.

0 Data are presented to the ]
ALU in registers, S+ P
ALU
D and the results of an .
. . peran Result
operation are stored in Registers M. m— | cisters
registers.

Figure: ALU inputs and outputs.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.342.



Module 2

Data Representation in
Computer Systems

2.2 Fixed-Number (Integer) o Overview
Representation a Unsigned Numbers

Q Signed Numbers



CAP

—

Overview
(Binary Number)

= Numbers are kept in computer hardware as a series of high
and low electronic signals.

m They are considered base 2 numbers (Binary)
= All information is composed of binary digits or bits.

® In any number base, the value of i th digit d Is
= [
d  Base

where 1 start at 0 and increases from right to left.
<

11



’ Why is a kilobyte 1024 bytes and not 10007
CAP This 8-bit unit called a byte. Because every memory unit is
based on powers of 2, a kilobyte is defined not as a

thousand (as in other conventional measurements), but as
210 bytes = 1024 bytes. 1024 is close enough to a
thousand to earn the kilo tag.

— Binary Equivalents

- 1 Nybble (or nibble) = 4 bits

- 1 Byte = 2 nybbles = 8 bits

- 1 Kilobyte (KB) = 1024 Bytes

- 1 Megabyte (MB) = 1024 Kilobytes = 1,048,576 Bytes

- 1 Gigabyte (GB) = 1024 Megabytes = 1,073,741,824 Bytes

12



CAP

—

Overview
(Sign Extension)

= Extending a number representation to a larger number of bits.

= Example: 2 in 8 bit binary to 16 bit binary.

00000010

—>

00000000 00000010

m In signed numbers, it is important to extend the sign bit to
preserve the number (+ve or -ve)

= Example: (—2) in 8 bit binary to 16 bit binary.

11111110

—

11111111 11111110

Sign bit [Sign bit extended } Sign bit

13



CAP

Integer

Unsigned

Numbers

Successive
Division

Division-
Remainder

Fraction

Signed-
Magnitude

Repetitive
Multiplication

J

Two’s

One’s

Complement Complement

Figure: Types of numbers.

14



CAP

Unsigned Numbers

MIPS (Millions Instruction Per Second)
LSB (Least Significant Bit)
MSB (Most Significant Bit)

m Since MIPS word is 32 bits long:
=mLSB -2 hit0
= MSB - bit 31

31 30 29 28 27 26 25 24 23 222120191817 16151413 121110 9 8 7 6 5 4 3 2 1 0

o oo0oo0o|j000CO0C/OOOCCCOC|OO0O0O0CO0OOOCQOO0OO0CO0OOOO(2 011

(32 bits wide)
Figure: The numbering of bits in MIPS word for 1011, (11,,)

= Range Number can represent : 0 to 232—1
0 —4,294,967,295,,

15



CAP

. Signed Numbers
(a) Signed-Magnitude

m The conversions we have so far presented have involved only
positive numbers.

m To represent negative values, computer systems allocate the
high-order bit to indicate the sign of a value.

- The high-order bit is the leftmost bit in a byte. It is also called
the Most Significant Bit (MSB).

®= The remaining bits contain the value of the number.

16



CAP

o=

Example 1.

Add 79,,to 35,4 using signed-magnitude arithmetic in 8-bit binary.

1 111 &= carries

0 1 0O01 1171 (79)

O+0100O0T1T1 + (35)

0 1 1T 100120 (114)
¢ 7 bits g

0 represents
positive

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.45.

17



CAP

o

®= The sum of two positive numbers, which is positive.

m Overflow (and thus an erroneous result) in signed numbers
occurs when the sign of the result is incorrect.

m The sign bit is used only for the sign, so we can’t “carry into” it,
otherwise the result will be truncated as the MSB bit overflows,

giving an incorrect sum.

m [f the overflow bit is not discard, it would carry into the sign, ;
causing the more outrageous result of the sum of two positive
numbers being negative.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.45-46. 18



CAP

Example 2:

Add 01001111,t001100011, using signed-magnitude
arithmetic in 8-bit binary.

Last carry l « 1 111 <« carres
overflows and is 0 1001111 (79)
discarded. 0 + 1100011 + (99)

0 0110010 (50)

Error result !
Answer should be 178,

o

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.46.

19



CAP

o

Example 3:

Add (-19,,) to 13,, using signed-magnitude arithmetic in 8-bit
binary.

* The first number
(augend) is negative 012 & borrows
(sign bit 1) 1 0O00+06611 (—19)
« The second number 0-0001101 + (13)
(addend) is positive 1 0000110 (—6)
(sign bit 0)
e Since larger
magnitude is augend, The sign of result will
then subtract to be same as sign of
addend. larger magnitude.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.48.



https://www.youtube.com/watch?v=h fY-zSIMtY
https://www.youtube.com/watch?v=Pr-j]2fmcpxc

= /

Add (-19,,) to 13,, using signed-magnitude arithmetic in 8-bit
binary.

* The first number
(augend) is negative 012 & borrows
(sign bit 1) 1 0O00+06611 (—19)
« The second number 0-0001101 + (13)
(addend) is positive 1 0000110 (—6)
(sign bit 0)
e Since larger
magnitude is augend, The sign of result will
then subtract to be same as sign of
addend. larger magnitude.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.48.



https://www.youtube.com/watch?v=h_fY-zSiMtY
https://www.youtube.com/watch?v=Pr-j2fmcpxc

CAP

o

m In sighed magnitude, the sign bit is used only for the sign.

o Problem 1:

If there any carry emitting
from the last bit, the result
will be truncated as the last
bit overflow, giving an
Incorrect sum.

o Problem 2:

Complicated to define the
larger magnitude, to
subtract negative number,

borrow from the minuend.

Solution: Need a simpler method for representing signed
numbers - complement systems.

22



CAP

_

. Signed Numbers
(b) One’s Complement

® In complement systems, negative values are represented by
some difference between a number and its base.

= In diminished radix complement systems, a negative value is
given by the difference between the absolute value of a number
and one less than its base.

® In the binary system, this gives us one’s complement.

> It amounts to little more than flipping the bits of a binary
number.

23



CAP

Example 4.

Using one’s complement 8-bit binary arithmetic,
find the sum of 9,, and (—23,,).

The last 0« 00001001 9)
carry is zero + 11101000 +(=23)
so we are done. 11110001 -14,,

___________________

11101000 (Is) |

Flip the binary bit from 00010111 to 11101000

{ One’s complement for -23

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51. 24



CAP

Exam P le 5: /Still remember how to
¢ convert -9 into 8 bit
Using one’s complement 8-bit binary arithmetic, (2 “Sing LE8
find the sum of (-9,,) and 23,. 00001001 (-9)
<111 11  ecares 1110110 {s)
000101711 23)
The last +11110110  +(=9 °
carry 1s added 00001101
+ 1
to the sum. 00001110 14,,

With one’ s complement addition, the carry bit is “carried around”
and added to the sum.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51. 25



CAP

_

. Signed Numbers
(c) Two’'s Complement

= Two’s complement is an example of a radix complement.

m The radix complement is often more intuitive than the diminished
radix complement.

m The two’'s complement is nothing more than one’s complement
incremented by 1.

m To find the two’s complement of a binary number, simply flip bits
and add 1.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.51. 26



CAP Express bit binary to 2s
1) Flip the bit N
2) Add 1 I

Example 6: .

Express 23,,, (—23,,), and (—9,,) in 8-bit binary two’s complement

form.
23,,= +(00010111,) =00010111,

—23,,= — (00010111,) = 11101000, + 1 = 11101001,
—9,,= — (00001001,) = 11110110, + 1 = 11110111,

Example 7: .

Add 9,, to (—23,,) using 8-bit binary two’s complement arithmetic.

(9) | 00010111 (-23) |

00001001 |
+ 1110100 1+(_23),_,5_\11101001 (2)
11110010 -14,

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.52.

27



CAP

—

Example 8:

Find the sum of 23,, and (-9,,) in binary using two’s complement
arithmetic .

111 1 11 & carries
Discard 00010111 (23)
carry. + 11110111 + (-9)

0O000OO0O1T1T1PO0 14,,

With two” s complement addition, the carry bit is discarded.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.52. 28



Aside:
Detecting Overflow

o

= Notice that the discarded carry in Example 8 did not cause an
erroneous result.

m An overflow occurs If:

2 two positive numbers are added and the result is negative, or

0 two negative numbers are added and the result is positive.

m [t is not possible to have overflow when using two s complement

notation if a positive and a negative number are being added
together.

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53. 29



m A simple rule for detecting an overflow condition using
two’s complement arithmetic (Assume 8-bit binary):

If the carry into the sign bit
equals the carry out of the
bit, no overflow has
occurred.

o=

If the carry into the sign bit
Is different from the carry
out of the sign bit, overflow
(and thus an error) has
occurred.

- 0 [Carry into the sign bit
~ h _

1€1'11 111 <« carries
Discard 00010111 (23)
carry. + 11110111 +(-9)
00001110 14,,
01 111 & carries
Discard last 01111110 (126)
carry. + 00001000 +(8)
10000110 (-1227277)

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53.

30



Review Questions - Activity 1
L

2.1 Represent the following decimal numbers in both binary
sign/magnitude and two’s complement using 16-bits binary

system:
(a) +512 (b) —29
2.2 Represent the following two’s complement values in
decimal:
(a) 1101011, (b) 0101101,

2.3 Convert the following 8-bit two’s complement value to 16-bits
binary system:

(@) 11001100, (b) 00101110,

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.368.. 31



Review Questions - Activity 1

2.4 Assume numbers are represented in 8-bits two’s
complement representation. Show the calculation of the

following:
(a) 6+13 (c) 6-13
(b) 6 + 13 (d) 6 -13

2.5 Find the following differences using twos complement
arithmetic:

(a) 111000, (b) 11001100, (c) 111100001111
— 110011, - 101110, — 11001111 0011

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.368.

32



Module 2

Data Representation in
Computer Systems

a Negation
a Addition

Q Subtraction

2.3 Fixed-Number (Integer)
Arithmetic

Q Multiplication

a Division



CAP Still remember 2s complement?

L

Integer

Unsigned

Numbers

Signed-

Fraction Magnitude

Repetitive One’s
Multiplication Complement

J

Two’s
Complement

Division- Successive
Remainder Division

Figure: Types of numbers.

34



2.3 Fixed-Number Arithmetic

o

m This section examines common arithmetic functions on
numbers in two’s complement representation.

Negation

= In two’s complement notation, the negation of an integer can be
formed with the following rules:

_________________________________________________________________________________________________

1) Take the Boolean complement of each bit of the integer
(including the sign bit) > Set each 1 to 0 and each 0 to 1.

2) Treating the result as an unsigned binary integer, add 1.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.349. 35



m Those two-step process is referred to as the two’s complement
operation, or the taking of the two’s complement of an integer.

+18 = 00010010 (twos complement)
bitwise complement = 11101101
+ 1

11101110 = —18

—18 = 11101110 (twos complement)
bitwise complement = 00010001
+ 1

00010010 = +18

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.349. 36



(a) Addition

o

m Digits are added bit by bit from right to left, with carries passed
to the next digit to the left.

CAP Rules of Binary Addition

*0+0=0carry=0
*0+1=1carry=0
*1+0=1carry=0
*1+1=0carry =1

37



0111 (-7) } .
1001 (25) i [ Discard !J

~

Example 9: 1001 =\—7 \ 1100 = —4
€ 10101 = 5 +0100 = 4
1110 = —2 10000 = O
Addition of @ (=7) + (+5) (b) (—4) + (+4)
numbers in
two's 0011 = 3 1100 = —4
complement +0100 = 4 +1111 = —1
representation. 0111 = 7 11011 = —5
(€) (+3) + (+4) / (d) (=4 + (1)
: =
{ Discard !
(e) and (f) show )
examples of
0101 = 5 1001 = —7
overflow that +0100 = 4 +1010 = —6
can occur 1001 = Overflow 10011 = Overflow
whether ornot | ) (+5) + (+4) () (=7) + (~6)
there is a carry.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.351. 38



Example 9:

0111 (-7) } :
1001 (29) [ Discard !J

________

Addition of
numbers In
two’s
complement
representation.

1001 = —7 \ 1100 = —4
+0101 = 5 +0100 = 4
1110 = —2 10000 = 0

(@) (=7) + (+5)

(b) (=4) + (+4)

7

1100 = —4
+1111 = -1
11011 = =5

(d) (=4 + (=D

0011 = 3
+0100 = 4
0111 = 7
(c) (+3) + (+4) 4
L Discard !

All successful addition operations

Rule:

1. If the result is +, we get a + number in 2s = unsigned integer
form like in case b) & )
2. If the result is -, we get a — number in 2s like in case a) & d)

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.351.

39



OXXXXX IXXXXX
OXXXXX 1XXXXX
| 0 . (a) Addition .l

= On any addition, overflow happens when

= If two numbers are added, and they are both positive or both
negative, then overflow occurs if and only if the result has the
opposite sign.

= e) - result but 5 and 4 are +; f) + result but 7 and 6 are -

= When overflow occurs, the ALU must signal this fact so that no
attempt is made to use the result

| Overflow happens 101 = 5 ool = —7
in e) because 9 > 100 = 4 +Ho10 = —s6
2l ol S s suLs 001 = Overflow ojo11 = overflow

largest number in 4
bit 2s system (e) (+3) + (+4) ) (=7) + (—=6)

40



(b) Subtraction

m Subtraction is easily handled with the following rule:

- SUBTRACTION RULE: To subtract one number (subtrahend)
- from another (minuend), take the two’s complement (negation)
- of the subtrahend and add it to the minuend.

.

M (Minuend)
S (Subtrahend)

(-S) =225
Complement
(negation)

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.351.

41



[
7T — Q= — M (Minuend)
0111 (-7) M—=S=M+(=S) S(Subt;QEZ:d) 2
1001 (2s) | =2+ (-7)
| \\\1\0010 = 2 /. 0101 5
Example 10: +1001 = —7 ~ +1110 = —2
1011 = —5 10011 = 3
Subtraction of |(a) Mm = 2 = 0010 (b) M = 5 = 0101
- S =7 = 0111 S =2 = 0010
numbers in _s 1001 _s 1110
two’s
complement 1011 = =5 0101 = 5
. +1110 = —2 +0010 = 2
representation 11001 = —7 0111 = 7
(M-S).
(c) M = -5 = 1011 (dy M = 5 = 0101
Remember how S = 2 =0010 S = =2 = 1110
overflow happens? —S = 1110 —S 0010
Slide 39
0111 = 7 1010 = —6
+0111 = 7 +1100 = —4
1110 = Overflow 10110 = Overflow
[Overflow ! ?
() M= 7 = 0111 (f) M = —6 = 1010
S = -7 = 1001 S = 4 = 0100
-S = 0111 —S = 1100

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.351.

42



| 1
TTTTTTTTTETTETETEE T — —_ — ! M (Mi d
0111 (1) | M=S=M+(=S) i 2
1001 (29) | ‘ =2+ (=7) |
_ . 0010 = 2 0101 5
Example 10: +1001 = —7 +1110 = —2
1011 = =5 10011 = 3
 Check you answer
e.dg.1n case a) (a) M =2 = 0010 (b) M =5 = 0101
Convert 1011 (-5 S =17 = 0111 S =2 = 0010
in 2s) into 4bit —S = 1001 —S 1110
binary
1011 = —5 0101 = 5
1)Flip the bit +1110 = =2 +0010 2
1011-> 0100 11001 = =7 0111 = 7
2)Add 1;
0100+1=0101 (c) M = -5 = 1011 (d)y M = 5 = 0101
o . S 2 0010 S = -2 = 1110
Whlci;:i;n ol _s = 1110 s 0010
So,0101 =5
And 1011 is-51in 0111 = 7 1010 = —6
2s +0111 = 7 +1100 = —4
1110 = Overflow 10110 = Overflow
, (e) M 7 = 0111 (f) M = —6 = 1010
[Overflow_? S = -7 = 1001 S = 4 = 0100
—-S 0111 —S = 1100

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.351.

43



0 001140
m Subtraction can be done directly, e.qg. @ 1+ 0011001 N
0 0010101

m Rules of binary subtraction:

, and borrow 1 from the next more significant bit

~ R OO
1

m OBk O
I

O R kL O

0 borrowed
Example 11: 0 0 / 0010 1
. -

(Assume 8 bit binary)
00010100

44



Activity 2

. Exercise 2.1:

o

@
Perform the subtraction in two’s complement representation for
37,,—17,, In 8 bit and 16 bit binary system.

45



(c) Multiplication

o

= Multiplication is a complex operation, whether performed in
hardware or software.

= The simpler problem of multiplying using unsigned integers, and
the most common techniques for multiplication of numbers is
two’s complement representation.

o _ Rules of Binary Multiplication:
= Multiplication of binary

numbers must always 0x0=0
use O and 1. O0x1=0
1x0=0
1x1=1

and no carry or borrow bit.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.353. 46



(c) Multiplication
Unsigned Integer

o

= Consist of operands called multiplicand and multiplier, and
final result as product.

Multiplicand

X Multiplier

Product

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.353.

47



Example 12:

2
o

Multiply the unsigned binary numbers of 1011, by 1101,.

If we ignore the
1011, - (11) Multiplicand sign bits, the
x 1101, - (13) Multiplier length of
1011 ] multiplication of an
0000 I n-bit multiplicand
1011 Partial products and an m-bit
1011 _ J multiplier is a
10001111, - (143) Product product that is
(n+m) bit long.

N o o8 e B

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.353. 48



o

. (c) Multiplication
Signed Integer: Two’s Complement

® We have seen that addition and subtraction can be performed
on numbers in two’s complement notation by treating them as
unsigned integers (positive numbers).

= Example: 1001

+ 0011
If these numbers are \ 1100 / As two’s complement

considered to be unsigned ™.__~Tintegers, we are adding -7
iIntegers, then we are (1001,) to 3 (0011,) to get
adding 9 (1001,) plus 3 -4 (1100,).

(0011,) to get 12 (1100,)

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.355. 49



o

= Unfortunately, this simple scheme will not work for multiplication.

Example 13: .
_ _ 1011, - (-5) Multiplicand

To see this, consider < 1101

: ==LV - (=3) Multiplier
again Example 12. 1011 -
Multiply the two’s 0000 i _
complement binary 1011 Partial products
numbers of 1011, by 1011 . |
1101,. 10001111, - (-113) Product

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.356.



—

® This example demonstrates that straightforward multiplication
will not work if both the multiplicand and/or multiplier are

negative.
f \ R I It- I- t- \
 ( egular multiplication
) clegrl lelds Iijncorrec:t
- yy
result ! P

m Solution : Multiplication algorithm.

This algorithm has the benefit of speeding up the
multiplication process, relative to a more
straightforward approach.

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.353.



o

A Multiplication Algorithm and Hardware
®

= Multiplication must cope with overflow because we frequently
want a 32-bit product as the result of multiplying two 32-bit
numbers.

» | In the next slides, assume that we are multiplying only positive
number (unsigned) with the 18t version of highly optimized
multiplication hardware.

52



32-bit multiplicand starts at right
half of multiplicand register

—

Multiplicand

Shift left [¢—

l64 bits
l .
\/ / Multiplier

<

64-bit ALU Shift right [¢—
32 bits

o
Product
. Control test
Write
| 64 bits /

Product register is initialized at O

Figure: First version of Multiplication Hardware.

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (51 Edition). United States: Elsevier, p.184.



=D

A

Multiplier0 = 1

A4

la. Add multiplicand to product and[]
place the result in Product register

1. Testl
MultiplierO

Multiplier0 = 0

\4

\4

2. Shift the Multiplicand register left 1 bit

\ 4

3. Shift the Multiplier register right 1 bit

Figure:
The Multiplication Algorithm
using the Hardware.

32nd repetition?

l

No: < 32 repetitions

Yes: 32 repetitions

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The k Done ‘)

Hardware/Software Interface (5" Edition). United States: Elsevier, p.185.

54



Example 14:

Multiplier0 = 1

Using 4-bit numbers,
multiply of 2,, X 34, -

A

y

=D

A

—_n Product (P) 1a. Add multiplicand to product and[]
2 X 3 - place the result in Product register

0010, X 0011,

1. Test
Multiplier0

Multiplier0 = 0

Multiplier (MP)
Multiplicand (MC)

Steps:
1 — Test multiplier (O or 1)

If 1then la: P =P + MC
If O then no operation
2 — Shift MC left
3 — Shift MP right
All bits done?
If still <max bit, repeat
If = max bit, stop

\4

A

y

2. Shift the Multiplicand register left 1 bit

Max bit = Number of
Iiteration.

—> Based on 4-bits
number system used.

J

55



210 X 319 = 10

Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value 0011 0000 0010 {0000 0000
la:P=P+MC 0000 0010

1 2: Shift MC left VOTL 0000 0100
3: Shift MP right 0001 e \
la: P =P+ MC 0000 0110

2 2: Shift MC left 0001 0000 1000 \ - /
3: Shift MP right 0000
1: No Operation 0000 V

3 2: Sh?ft MC I-eft 0001 0000 'g\gg\gegllo |
3: Shift MP right 0000 =6, |
1: No Operation
2: Shift MC left 0000 0010 0000

3: Shift MP right

0000




Exercise 2.2: .
_ . -

In 4-bit binary arithmetic, find the multiplication of 5,, with 4,, using
the 15t version of highly optimized multiplication hardware.

S7



. Solution 2.2;

Iteration Step Multiplier (MP) | Multiplicand (MC) Product (P)
0 Initial value
1 2: Shift MC left
3: Shift MP right
2 2: Shift MC left
3: Shift MP right
3 2: Shift MC left
3: Shift MP right
4 2: Shift MC left
3: Shift MP right

58



Aside:

m The multiplier (MP) must always in positive number.

m Do an additive inverse to the multiplicand (MC) and the MP.

Multiplicand X (—Multiplier) = (—Multicand) X Multiplier
MC x (—=MP) = (—=MC) x MP

m Examples:

7% (=5) = (=7) X5
(—7) X (=5) =7 x5

Linda Null and Julia Lobur (2003). The Essentials of Computer Organization and Architecture. United States: Jones and Bartlett Publishers. p.53.

59



Example 15: L

o =
Using a 4-bit binary arithmetic, multiply 2,,with (-3,,) using the 1st
version of highly optimized multiplication hardware.

. Solution:

> 2% (-3)

= Do an additive inverse to the multiplicand (MC) and the MP:
(—2) x 3

= Perform the multiplication as usual.

60



(- 210) X 34p=

10

-
Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)

0 Initial value
1 2: Shift MC left

3: Shift MP right
2 2. Shift MC left

3: Shift MP right
3 2. Shift MC left

3: Shift MP right
4 2. Shift MC left

3: Shift MP right




(- 210) X 34p=

10

P
Iteration Step Multiplier (MP) Multiplicand (MC) Product (P)
0 Initial value 0011 1111 1110 0000 0000
laaP=P+MC 1111 1110
; 0011
1 2: Shift MC left 1111 1100
: Shift MP righ discard
3: Shift right 0001 1
la:P=P+ MC 1111 1010
_ 0001 N
2 2: Shiit MC left 1111 1000 }check your answer: \
3: Shift MP right 0000 =
1) Flip the bit
1: No Operation 1111 1010 -> 0000
_ 0000 0101
3 2. Shift MC left 11711 0000 | 2Add1
0000 0101 + 1 =
3: Shift MP right 0000 90600 0110
1. No Operation 0000 1111 1010 is -6 in
4 | 2: Shift MC left 1110 0000 \* /

N

3: Shift MP right

0000




Activity 3

. Exercise 2.3:

o=

@
In 6-bit binary arithmetic, find the multiplication of 21,, with 14,
using the 1st version of highly optimized multiplication hardware.

64



. Solution 2.3;

Iteration Step Multiplier (MP) | Multiplicand (MC) Product (P)
0 Initial value 001110 0000 0001 0101|0000 0000 00O0O
1 2: Shift MC left
3: Shift MP right
2 2: Shift MC left
3: Shift MP right
3 2: Shift MC left
3: Shift MP right
4 2: Shift MC left
3: Shift MP right

65



Iteration

Step

Multiplier (MP)

Multiplicand (MC)

Product (P)

2: Shift MC left

3: Shift MP right

2: Shift MC left

3: Shift MP right

66



Activity 4

Exercise 2.4: .
_ . -

In 6-bit binary arithmetic, find the multiplication of 21,, with (-14,,)
by using:

a) the two's complement binary numbers. Proof that it yields
Incorrect result.

b) the 1stversion of highly optimized multiplication hardware.

67



. Solution 2.4 (a):
@

The two's complement binary numbers.

68



. Solution 2.4 (b):

The 15t version of highly optimized multiplication hardware.

Iteration Step Multiplier (MP) | Multiplicand (MC) Product (P)
0 Initial value 001110 0000 0001 0101|0000 0000 000O
1 2: Shift MC left
3: Shift MP right
2 2: Shift MC left
3: Shift MP right
3 2: Shift MC left
3: Shift MP right
4 2: Shift MC left
3: Shift MP right

09



Iteration

Step

Multiplier (MP)

Multiplicand (MC)

Product (P)

2: Shift MC left

3: Shift MP right

2: Shift MC left

3: Shift MP right

70



(d) Division

m More complex than multiplication but is based on the same
general principles.

m An operation that is even less frequent and even more quickly.

m It even offers the opportunity to perform a mathematically
invalid operations in dividing by 0.

= Two operands called
dividend and divisor, the
result as quotient with
secondary result called ... )
remainder. Remainder

Quotient
Divisor /Dividend

William Stallings (2013). Computer Organization and Architecture: Designing for Performance (9t Edition). United States: Pearson Education Limited, p.360.

71



= Another way to express the relationship between the
components:

Dwidend = Quotient X Dwisor + Remainder
where the remainder is smaller than the divisor.

® Infrequently, programs use the divide instruction just to get the
remainder, ignoring the quotient.

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (51 Edition). United States: Elsevier, p.193. 72



(d) Division
Unsigned Integer

m The following figure shows an example of the long division of
unsigned binary integers of 147,, divided by 11,,.

00001101 <—— Quotient (13)
(11) | Divisor ——» 1011 /70010011 <~—— Dividend (147)

1011{11
001110
1011

Partial —- 001111

remainders 1011

100 <-—— Remainder (4)

William Stallings (2016). Computer Organization and Architecture: Designing for Performance (10t Edition). United States: Pearson Education Limited, p.348. 73



. (d) Division
Signed Integer: Two’s Complement

= Make both dividend and divisor positive and perform division.

= Make the sign of the remainder match to the dividend, no
matter what the signs of the divisor and quotient.

+7 = +2: Quotient = +3, Remawnder = +1
+7 + —=2: Quotient = —3, Remainder = +1
—7 + +2: Quotient = —3, Remainder = —1
—7 + —2: Quotient = +3, Remainder = —1

= Negate the quotient if dividend and divisor were of opposite
signs.

m The rules:

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (51 Edition). United States: Elsevier, p.193. 74



A Division Algorithm and Hardware
®

o=

= Binary division is restricted to O or 1, thereby simplifying binary
division.

= | In the next slides, assume that both the dividend and divisor
are positive number; Hence the quotient and remainder are
non-negative.

= Since iteration of the algorithm needs to move the divisor to
the right one digit, we start the divisor placed in the left half of
the 64-bit Divisor Register.

76



2

32-bit divisor starts at left half of divisor register .
-/
Divisor Y
Shift right |¢— Quotient register is
\64 bits initialized to be 0
l -/
\/ Quotient
64-bit ALU Shift left |«
32 bits
Remainder m
Write test
‘ 64 bits r\ T

\

Remainder register is initialized with the dividend at right

Figure: First version of Division Hardware.

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The Hardware/Software Interface (51 Edition). United States: Elsevier, p.190.

77



1. Subtract the Divisor register from the[
Remainder register and place the
result in the Remainder register

|

O

Remainder > 0 Remainder < 0

Test Remainder

\ 4 v

2a. Shift the Quotient register to the left, 2b. Restore the original value by adding
setting the new rightmost bit to 1 the Divisor register to the Remainder[
register and place the sum in the
Remainder register. Also shift the[
Quotient register to the left, setting thell
new least significant bit to 0

vy

FI g ure. 3. Shift the Divisor register right 1 bit

The Division Algorithm l
using the Hardware.

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

Patterson, D.A. and Hennessy, J.L. (2014). Computer Organization and Design: The < Done '
Hardware/Software Interface (5" Edition). United States: Elsevier, p.191.



( Start )

v

EX am p | e 16 1. Subtract the Divisor register from the[]
P Remainder register and place the
result in the Remainder register
Using 4-bit numbers, 1

Remainder > 0 ) Remainder <0
Test Remainder
Quotient (Q
7/2=7 ) 'l

0111,/0010, : :

2a. Shift the Quotient register to the left, 2b. Restore the original value by adding
setting the new rightmost bit to 1 the Divisor register to the Remainder[
register and place the sum in the

L .. Remainder register. Also shift thel
Dividend (DD) Divisor (D) Quotient register to the left, setting thel]
new least significant bit to 0
|
Steps:

1 — Remainder (R)=R-D
2 —Test new R
2a - If >=0 then Shift left Q (add 1 at LSB)
2b - If <O then R =D + R, Shift left Q (add 0 at LSB)
3 — Shift D right
All bits done?
If still <(max bit + 1), repeat
If = (max bit + 1), stop

~

Max bit + 1 =
Number of iteration.

- Based on 4-Dbits
number system used/

79



Dividend (DD)

101 200=

Divisor (D)

0111,/0010, {

Divisor start at left half
of divisor register

|

/

Quotient N/
Iteration Steps (Q) Divisor (D) Remainder (R)
0 Initial value 0000 0010 00000000 0111
1 :R=R-D Remainder registeris '~ _- 1110 0111
initialized with the
1 dividend at right /
\ y,
3 : D = Shift right
1-R—R—IDrlg RER=D
' =R+ (-D)
2
P ——— 0000 0111 (V)
— > +1110 0000 (2’s for D)
L -R=R-D 1110 0111
3
3 : D = Shift right

80



I

Divisor start at left half}

712= 0111,/0010, of divisor register !
Quotient
Iteration Steps (Q) Divisor (D) Remainder (R)
0 Initial value 0000 0010 0000|0000 0111
R=D+R
1:R=R-D 0010 0000 + 1110 0111 ‘ 1j110 0111
. |2:R<0;R=D+R | =[1]0000 0111 ~J0000 0111
Q: shiftLeft (+0) | 0000 ot DD J
3 : D = Shift right 0001 0000y “=222
b R=D+R
1:R=R-D 0001 0000 + 1111 0111 I—llll 0111
5 2b: R < 0: R = D+R =[1]0000 0111 ,~—10000 0111
Q: shiftLeft (+0) | 0000 J
3 : D = Shift right 0000 1000 -
1 :R=R-D R=D-+R | ffh11 1112
0000 1000 + 1111 111 |
, |20:R<OR=D+R ~T/0000 0111 0000 0111
Q : Shift Left (+0) 0000
3 : D = Shift right 0000 0100

81



. Try to complete the table for the remaining iterations:
R = 0000 0111,; Q = 0000,; D = 0000 0100, ( R=R-D = R+(-D) J

0000 0111 + 1111 1100 (2s)

: =[T]pooo 0011
Quotient
Iteration Steps (Q) Divisor (D) | Remainder (R)
1 :R=R-D 0000 0011
s | 2% No Operation oot PR
Q:ShiftLeft (+1) [ 0001 | Zfipooo coor
---------- N ]
3 : D = Shift right 0000 0010 ]
1:R=R-D {l0loo0 0001 | !
5 2a: No Operation T -------
Q:ShiftLeft(+1) [ 0011 / L
3 : D = Shift right o 10000 0001 7
v

%
Answer: 7 /2 = 3 remainder 1
82



Exercise 2.5: .
_ . -

Using a 4-bit binary arithmetic, find the division of (-7,,) by 2,, with
the 15t version of highly optimized division hardware.

We solve this by following the rules below - repeating the same steps
as the division of 7 by 2 1)Take the absolute value of 7 and 2 and
perform division. 2)Then change remainder sign as below. 3)Then the
guotient will be negated at the end because -7 and 2 have opposite
sign
= Make both dividend and divisor positive and perform division.

= Make the sign of the remainder match to the dividend, no
matter what the signs of the divisor and quotient.

m The rules:
+7 + +2: Quotient = +3, Remainder = +1

Dividend !
\Diziced, SN +2: Quotient = —3, Remainder = —1
—7 =+ —2:Quotient = +3, Remainder = —1

m Negate the quotient if dividend and divisor were of opposite
signs. 83



Dividend (DD)

0111,/0010, [

T10l200=____ 100%0102\

Divisor start at left half
of divisor register

|

‘ Divisor (D) Quotient
Iteration Steps (Q) Divisor (D) Remainder (R)
0 Initial value 0000 6\010 000010000 0111
‘R=R-=D Remainder registeris '~ _- 1110 0111
initialized with the
1 dividend at right
\ y,
| \
: D = Shift right
'R=R-D o
Make both dividend
2 and divisor positive
"D = Shift right and perform division
'R=R-D
3

: D = Shift right

84



”

Negate the quotient if dividend and

. Try to complete the table for the remajning iterations:

divisor were of opposite signs

| Make the sign of the remainder match
to the dividend, no matter what the
signs of the divisor and quotient

R =R-D =R+(-D)

N

R = 0000 0111,; Q = 0000,; D £ 0000 0100, ( J
00000111 + 1111 1100 (2s)

Quotient

=ooo 0011

P
lteration \ Steps (Q) \ Divisor (D) | Remainder (R)
1 :R=R-D \ 0jooo 0011
s | 25 NOQperstior \ [ oodiot 2D o
Q : Shift Left (+1) 0001 \ L ~[1Jp000 0001
3 : D = Shiftight 0000 0010[— ]
1 :R=R-D\ \ [ldlooo 00011
5 2a: No Operation\ | ..~ \ R
Q : Shift Left (+1 \

3 : D = Shift right

000§ 0001

If iter = (max
bit + 1), stop

N

\

Answer: 7 /2 = 3 remainder 1 /

,
’
, .
-

’
/.
4
7
)

Dividend (DD) —

(10! ?10 -_

L Divisor (D)

85



Activity 5

o

. Exercise 2.6:
@

Using a 4-bit binary arithmetic, find the division of the following
numbers with the 15t version of highly optimized division hardware.

a) 639by 39
b) 6,0by (—340)
c) (-124) by 54

86



Conclusion

o

m Unsigned integer vs signed integer
m The only arithmetic operation that a computer system does

S8  Addition

m Addition

= Subtraction - addition with signed integers (negative
numbers)

= Multiplication - repetitive addition of product to
multiplicand

= Division - repetitive subtraction of dividend with divisor

87



