

Mini Project Documentation

SECJ2013 DATA STRUCTURE AND ALGORITHM

SEMESTER I, SESSION 2020/2021

Topic: Food Ordering System

Lecturer: Dr. Johanna binti Ahmad

Name Matric No.

CHONG KAI JIE A19EC0036

DESMOND CHIENG CHEE HONG A19EC0040

YONG JING XUAN A19EC0177

CHEONG CHIEN LI A19EC0186

SEE WEN XIANG A19EC0206

Section: 06

Programme: Bachelor of Computer Science (Software Engineering)

1

1.0 Problem Analysis

 In this project, we will be developing a simple food ordering system. Before we start to identify

the problems that we should solve in order for this project to be successful, we should first understand

what a typical food ordering system should do, and how it functions.

In a typical food ordering system, there should be two main user groups, the first group being

the customers and the next group being the staff members, who will be preparing the foods ordered by

the customers. There are a few basic functionalities that the customers should be able to perform when

using the food ordering system.

First and foremost, the customers should be able to see what are the foods offered by the

restaurant, from their menu. This will allow users to have a list of available options to pick from, when

placing their orders. This brings us to the next basic functionality that a typical food ordering system

should have. Customers should be able to place orders on their desired food via the system. This is

because after looking through the menu, the customer’s next action should naturally be to place an

order. Then, during the ordering process, the customers should be able to see the total price of their

orders, so that they know how much they should be paying for the list of foods that they have ordered.

On the other hand, the staff members, or specifically the kitchen crew members of the

restaurant, would have several basic functionalities that any typical food ordering system should

provide. Firstly, the orders placed by the customers should be able to be sent to the kitchen crew

members, so that they can keep track of all the on-going orders. The main interface for the kitchen

crew users should be to see a list of all uncompleted orders, so that they could work on completing

them in sequence. Next, the system should allow the kitchen crew members to view every order in

greater details, showing them all the food that should be prepared within a specific order. This means

that kitchen crew members should be able to see what they should prepare for each order in order to

complete them. Lastly, a kitchen crew member should be able to complete an order whenever they are

done with preparing and delivering the foods ordered within that order. Completing an order would

mean that it would be removed from their list of on-going orders, so that they would not mistakenly

try to complete an already completed order.

Now that we know the basic functionalities that a typical food ordering system should have,

we can start to look into the problems that we will have to solve while working on this project. There

are a few problems that we will have to solve when developing this project.

2

Firstly, we should be able to solve the issue of displaying the menu of the restaurant within the

system, so that the customers would be able to easily view it. This process can be solved by reading

the information of the menu from an external file, and then displaying them within the system in an

organised manner, by applying linked-list to a queue data structure.

Next, the customers should have the ability to search through the menu according to food names

or their prices. Hence, one of the problems that we will have to solve when developing this project, is

to implement searching algorithms that allow the customers to search the menu based on given

searching keys. This can be solved by applying searching methods to search through the nodes within

the linked-lists to find the ones that matches with the user’s searches.

In addition, in order to allow users to place orders on specific foods from the menu, another

problem that we will have to solve in this project is to search through the nodes containing the

information of the foods, according to a specific identifier for the food. This will allow users to order

food by simply entering the unique identifier detail about the food that they wish to order.

Lastly, when the customers wish to complete their orders, we will have to solve the problem

of inserting a node of the order to the linked-list of orders that are kept track by the kitchen crew. This

means that we have to efficiently insert nodes into a queue of orders so that they can be monitored

accurately.

As for the kitchen crew users, we will have to solve problems such as displaying the

information of all nodes within the linked-list of orders placed by the customers. Then, we will have

to solve the problem of searching through the list of orders in order to identify a specific node to be

displayed for the kitchen crew to view. Lastly, we will have to solve the problem of efficiently deleting

nodes for the queue of orders whenever the kitchen crew completes an order.

These are the basic problems that we will have to face while developing this project. All of

these problems should be solved effectively when the final executable application file is produced, so

that we can test its ability to perform its expected functionalities. The success of this project will be

defined by the ability of our final application to perform all of the tasks as stated above, by

implementing the queue data structure using linked-list concepts.

3

2.0 Class Design

Kitchen_Crew

ListCustomerNodeCustomerCustomer

Has

Food

ListFood

NodeFood

Has
Contains

Has

Point

Has

-listCustomer: ListCustomer*

+completeOrder (int): void

+getListCustomer (): ListCustomer*

+setListCustomer (ListCustomer* listCustomer): void

+viewOrder (int): void

-head: NodeCustomer*

-tail: NodeCustomer*

+ListCustomer ()

+DequeueCustomer (int): void

+DisplayList (): void

+EnqueueCustomer (NodeCustomer*): void

+FindNodeCustomer (NodeCustomer): int

+FindNodeCustomerByID (int): NodeCustomer*

+getHead (): NodeCustomer*

+getSize (): int

+IsEmpty ():bool

+<<friend>>operator<< (ostream& os, ListCustomer&): ostream&

-customer: Customer

-next: NodeCustomer*

+NodeCustomer ()

+getCustomer ():Customer

+getNext ():NodeCustomer*

+setCustomer (Customer): void

+setNext (NodeCustomer*): void

+setNULL (): void

-order: ListFood

-OrderNumber: int

+Customer ()

+Customer (int)

+getOrderList (): ListFood*

+getOrderNumber (): int

+OrderFoodByList (ListFood): double

+setOrderNumber (int): void

-FoodID: int

-FoodName: string

-FoodPrice: double

+Food ()

+Food (int, string, double)

+getFoodID (): int

+getFoodName (): string

+getFoodPrice (): double

+setFoodName (string): void

+setFoodPrice (double): void

-head: NodeFood*

-tail: NodeFood*

+ListFood ()

+DequeueFood (NodeFood*): void

+DisplayList (): void

+EnqueueFood (NodeFood*): void

+FindNodeFood (NodeFood): int

+FindNodeFoodByID (int): NodeFood*

+FindNodeFoodByName (string): NodeFood*

+FindNodeFoodByPrice (double): vector

+getHead (): NodeFood*

+getSize (): int

+IsEmpty ():bool

+<<friend>>operator<<(ostream& is, ListFood&):

ostream&

-food: Food

-next: NodeFood*

+NodeFood ()

+getFood (): Food

+getNext (): NodeFood*

+setFood (Food): void

+setNext (NodeFood*): void

+setnull(): void

Figure 1: UML Class Diagram of Food Ordering System

4

3.0 Flowchart

Start

Role

Customer?

End

Choice 1
Choice 1

Add

Order

Choice 2

Search

Menu by

Name

Search menu with

specific lower price
Choice 3

Yes No

Continue

with other

role?

Yes

Yes

Yes

Yes
No

No

No

No

Complete

Order

View

Order
Choice 2

No

No

Yes

Yes

Figure 2: Flowchart of Entire Program

5

Display

Food_Menu

Get

Food

Order

Read

OrderFoodID

Calculate

TotalPrice

AddOrder

End

Display

FoodID,

FoodName,

Price

Read

FoodName

SearchMenubyName

End

Display

FoodID,

FoodName,

Price which in

budget

Read budget

SearchMenubyPriceLess

ThanAValue

End

Read

OrderID

CompleteOrder

End

Display

FoodID,

FoodName,

Price

Read

OrderID

ViewOrder

End

Figure 2.4 Flowchart of subroutines of the program

