SECR 2033 Computer Organization and Architecture 2019/2020-2

Programming 6: CONDITIONAL STRUCTURES

Part A – Programming review

A) Block-Structured IF Statements

Assembly language programmers can easily translate logical statements written in C++/Java into assembly language

```
if( op1 == op2 )
   X = 1;
else
   X = 2;
```

	mov	eax,op1
	cmp	eax,op2
	jne	L1
	mov	X,1
	jmp	L2
L1:	mov	X,2
L2:		

B) Compound Expressions

Logical AND Operator

When implementing the logical AND and OR operator, consider that high-level languages compilers for Java, C, and C++ use short-circuit evaluation for efficiency reasons. *The second expression is not evaluated if the first expression is false.* (*early exit*)

```
if (al > bl) AND (bl > cl)
  X = 1;

cmp al,bl ; first expression...
  jbe next ; quit if false
  cmp bl,cl ; second expression...
  jbe next ; quit if false
  mov X,1 ; both are true
  next:
```

Logical OR Operator

```
 \begin{array}{c} \text{cmp al, bl} & \text{; is AL} > \text{BL?} \\ \text{ja L1} & \text{; yes} \\ \text{cmp bl, cl} & \text{; no: is BL} > \text{CL?} \\ \text{jbe next} & \text{; no: skip next statement} \\ \text{L1:} & \text{mov X,l} & \text{; set X to l} \\ \text{next:} \end{array}
```

C) WHILE Loops

The WHILE structure tests a condition first before performing a block of statement. As long as the loop condition remains true, the statement is repeated.

```
while(eax < ebx)
  eax = eax + 1;

top:
    cmp eax,ebx    ; check loop condition
    jae next    ; false? exit loop
    inc eax    ; body of loop
    jmp top    ; repeat the loop
    next:</pre>
```

D) Assembly Code

The easiest way to generate the assembly code from a flowchart is to implement the code for each shape. Note the direct correlation between the flowchart labels and the labels used in the source code.


```
.data
sum DWORD 0
sample DWORD 50
array DWORD 10,60,20,33,72,89,45,65,72,18
ArraySize = ($ - Array) / TYPE array
.code
main PROC
    mov
          eax,0
                               ; sum
    mov
          edx,sample
    mov
          esi,0
                               ; index
    mov
          ecx, ArraySize
          esi,ecx
L1: cmp
                               ; if esi < ecx
    jl
          L2
    jmp
L2: cmp
          array[esi*4], edx ; if array[esi] > edx
    jg
    jmp
L3: add
          eax, array[esi*4]
L4: inc
          esi
    jmp
          L1
L5: mov
          sum, eax
```

Part B – Let's do a little programming on your own

1. Implement the following pseudocode in assembly language, using unsigned values. Please use short-circuit evaluation in your code.

```
IF (MY_MONEY < YOUR_MONEY)
  YOU_DONATE = 20;
ELSE
{
  YOU_DONATE = 10;
  I_DONATE = 10;
}</pre>
```

2. Implement the following pseudocode in assembly language, using unsigned values. Please use short-circuit evaluation in your code.

```
IF (EBX > ECX && ECX <= EDX)
{
   EAX = 9;
   EDX = 10;
}</pre>
```

3. Implement the following loop, using unsigned 32-bit integers. Please use the reverse condition to make the code shorter.

```
WHILE (VAR <= TRIAL)
{
   VAR++;
   PRINTF("Sorry your trial period has expired");
}</pre>
```

- 4. Rewrite the code from section (D) so it is functionally equivalent but uses fewer instructions.
- 5. Suppose a student wants to decide to go home or stay in UTM during online teaching & learning phase. Two criteria are used to determine whether the student will go home or not:
 - First is the student's hometown current zone, whether it is in green or red zone.
 - Second is the internet speed in the student's hometown. The speed must at least be 2MBps to have a decent teaching & learning experience.
 - a. Draw a flowchart of the program.
 - b. Write an assembly language program that ask the user to enter the inputs and suggest a decision to the student.