

School of Computing

Faculty of Engineering

UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

SUBJECT CODE: SECR 2033

SEMESTER: 2019/20-2

LAB TITLE: Programming 5: Comparison & Conditional Jumps

STUDENT INFO : Name Matric No.

SEE WEN XIANG A19EC0206

SECTION: 07

SUBMISSION DATE:

COMMENTS:

15/06/2020 (Mon)

SECR 2033 Computer Organization and Architecture 2019/2020-2

CMP Destination, Source

CMP BX, 00 ; Compare the value in BX with zero

JE TARGET ; Jump to TARGET if BX = 0

Programming 5: COMPARISON & CONDITIONAL JUMPS

Part A – Programming review

A) BOOLEAN and COMPARISON INSTRUCTIONS

Logical Instructions

The processor instruction set provides the instructions AND, OR, XOR, TEST and NOT

Boolean logic, which tests, sets and clears the bits according to the need of the program. These

instructions set the CF, OF, PF, SF and ZF flags.

Conditional Instructions

Sometimes a program needs to do different things depending on the result of an operation. As

shown in Figure 1, if the conditions are met then process A. Otherwise, proceed with process

B. This is conditional branching. This is different from unconditional branching (the JMP

instruction) previously studied.

Figure 1

Compare (CMP) instruction

First, let us look at the compare (CMP) instruction. This instruction is used in to test branching

conditions.

• The CMP instruction compares two operands.

• This instruction basically subtracts one operand from the other for comparing whether

the operands are equal or not.

• It does not disturb the destination or source operands (i.e. these does not change)

• The instruction format:

o The destination operand can be either register or memory.

o The source operand can be register, memory or immediate value.

Sneak-peek: JE is Jump if Equal

Are conditions

met?

Do Process B

Do Process A

YES
NO

2

HKM_S11415 MMS20192020-2 MMA20192020-2

J<condition> TARGET

Examples:

JE TARGET

JNZ TARGET

JL TARGET

B) CONDITIONAL JUMPS

Conditional Branching or Conditional Jump

This is performed by a set of jump instructions depending upon the condition. The conditional

instructions transfer the control by breaking the sequential flow and they do it by changing the

offset value in IP (Instruction Pointer). Written in the form J<condition>. Example: JE, JNZ,

JL, JG

• There are different groups of conditional jump instructions:

o Jumps based on specific flag values

o Jumps based on equality between operands or the value of (E)CX

o Jumps based on comparisons of unsigned operands

o Jumps based on comparisons of signed operands

• The instruction format:

Table 1: Jumps based on specific flag values

Instruction Description

JZ Jump if zero; ZF = 1

JNZ Jump if not zero; ZF = 0

JC Jump if carry; CF = 1

JNC Jump if not carry; CF = 0

JO Jump if overflow; OF = 1

JNO Jump if not overflow; OF = 0

JS Jump if signed; SF = 1

JNS Jump if not signed; SF = 0

JP Jump if parity (even); PF = 1

JNP Jump if not parity (odd); PF = 0

3

HKM_S11415 MMS20192020-2 MMA20192020-2

Table 2: Jumps based on equality between operands or the value of (E)CX

Instruction Description Instruction Description

JE Jump if equal JCXZ Jump if CX= 0

JNE Jump if not equal JECXZ Jump if ECX ≠ 0

Table 3: Jumps based on comparisons of unsigned operands

Instruction Description Instruction Description

JA Jump if above JNBE Jump if not below or equal

JAE Jump if above or equal JNB Jump if not below

JB Jump if below JNAE Jump if not above or equal

JBE Jump if below or equal JNA Jump if not above

Note: These are only meaningful when comparing unsigned values

Table 4: Jumps based on comparisons of signed operands

Instruction Description Instruction Description

JG Jump if above JNLE Jump if not less or equal

JGE Jump if above or equal JNL Jump if not less

JL Jump if less JNGE Jump if not greater or equal

JLE Jump if less or equal JNG Jump if not greater

Note: These are only meaningful when comparing signed values

C) DEFINING and USING PROCEDURES

PROC Directive

Creating Procedures

o Large problems can be divided into smaller tasks to make them more manageable

o A procedure is the ASM equivalent of a Java or C++ function

o Following is an assembly language procedure named sample:

4

HKM_S11415 MMS20192020-2 MMA20192020-2

• Documenting Procedures

o A description of all tasks accomplished by the procedure

o Receives: A list of input parameters; state their usage and requirements

o Returns: A description of values returned by the procedure

o Requires: Optional list of requirements called preconditions that must be satisfied

before the procedure is called

Note: If a procedure is called without its preconditions satisfied, it will probably not

produce the expected output

RET Instructions

o The RET instruction returns from a procedure back to the next instruction after CALL

instruction

SECR 2033 Computer Organization and Architecture 2019/2020-2

MOV AL, ‘a’ ; AL = 01100001B = ‘a’

AND AL, 11011111B ; AL = 01000001B = ‘A’

MOV AX,4

CMP AX,4 ; compare AX with 4

JE L1 ; if AX = 4 then jump to L1

MOV BX,0AAAAH ; do this if AX ≠ 4

JMP HERE ; use this to guide the program sequence

L1:

MOV BX, 0BBBBH ; do this if AX = 4

HERE:

CALL DUMPREGS

Part B – Let’s do a little programming by example

You are given a few examples here. Try them out.

Example 1

Convert the character in AL to upper case.

(**Note: ‘A’ = 41h; ‘a’ = 61h; ‘Z’ = 5Ah; ‘z’ = 7Ah)

Does the same code work for ‘z’?

Example 2

Increment AX by 1 until reaches the value of 10. This is essentially doing a loop using a CMP

command.

;using CMP MOV

EAX,0

L1:

INC AX

CMP AX, 10

JL L1

MOV TOTAL, AX

;using LOOP

MOV EBX,0 MOV

ECX,10

L2:

INC BX

LOOP L2

MOV TOTALS, BX

Note: the result of both TOTAL and TOTALS are the same.

Example 3

Some conditional jumps examples.

6

HKM_S11415 MMS20192020-2 MMA20192020-2

MOV AX,7FH

MOV BX,80H

CMP AX,BX

JA L3 ; jump based on unsigned comparison

MOV CX,0AAAAH

JMP HERE

L3:

MOV CX, 0BBBBH

HERE:

CALL DUMPREGS

MOV AX,+127 ;signed version of 7FH

MOV BX,-128 ;signed version of 80H

CMP AX,BX

JG L4 ; jump based on signed comparison

MOV DX,0DDDDH

JMP SINI

L4:

MOV DX,0EEEEH

SINI:

CALL DUMPREGS

EXIT

MOV

SUB

AX,TOTAL

AX,2

;

say TOTAL can be 2 or

4

JZ L2 ; if ZF = 1,jump to L2

MOV BX,0AAAAH ; this is done if TOTAL = 4

JMP

L2:

MOV

HERE

BX,0BBBBH

;

this is

done

if TOTAL

= 2

HERE:

CALL DUMPREGS

Example 4

A look into signed and unsigned comparisons. The same value compared as signed and

unsigned will yield different results. JA is a jump based on unsigned comparison while JG is a

jump based on signed comparison. In the example below, JA will not go to L3 (unsigned 7Fh

is smaller than unsigned 80h) but JG will jump to L4 (signed 7Fh is larger than signed 80h).

7

HKM_S11415 MMS20192020-2 MMA20192020-2

Part C – Let’s do a little programming on your own

1. In the following instruction sequence, show the value of AL for each line of code. Write

the value in hexadecimal.

Instructions Value of AL (H)

MOV AL,01100001B

AND AL,00011101B

61H

01H

MOV AL,12H

AND AL,3BH

12H

12H

MOV AL,00001111B

OR AL,72H

0FH

7FH

MOV AL,83H

XOR AL,26H

83H

A5H

2. Write instructions in assembly language code that:

a. Jumps to label L1 if either bit 4, 5 or 6 is set in the BL register.

Ans: test bl, 01110000b

 jnz L1

b. Jumps to label L1if bits 4, 5, and 6 are all set in the BL register.

Ans: push bx

 and bl, 01110000b

 cmp bl, 70h

 pop bx

 jz L1

c. Jumps to label L2 if AL has even parity.

Ans: or al, al

 jpe L2

d. Jumps to label L3 if EAX is negative.

Ans: cmp eax, 0

 jl L3

e. Jumps to label L4 is the expression (EBX – ECX) is greater than zero.

Ans: cmp ebx, ecx

 jg L4

8

HKM_S11415 MMS20192020-2 MMA20192020-2

CMP EAX, 20

JG L1

JL L2

L1:

MOV EBX, 1

JMP OUTT

L2:

MOV EBX, 0

OUTT:

3. Analyse the following code segment and answer the following questions.

a. If EAX=25, which conditional jump is taken. Please explain your answer. What

is the final value of EBX?

Ans: L1 conditional jump is taken.

 As EAX is greater than 20.

 The final value of EBX is 1 in decimal.

b. Why is the JMP OUTT instruction needed for this code segment? Please

elaborate your answer.

Ans: If not have JMP OUTT instruction, this code will go in L2.

 The final value of EBX will be affected.

9

HKM_S11415 MMS20192020-2 MMA20192020-2

4. Copy the assembly programming code below. Complete the three procedures (i),(ii) and

(iii) according to the comments given.

TITLE MASM Template (main.asm)

; Description:

;

; Revision date:

INCLUDE Irvine32.inc

INCLUDE Macros.inc

;

; Receives: SumProc, a summation procedure

; ECX as n, to calculate 1+2+...+n

;

mCallSumProc MACRO SumProc:REQ

push ecx ; decrements ESP and copies ECX into stack

call GetMseconds ; get start time

mov esi,eax

call SumProc

mWrite "&SumProc: " ; mWrite macro displays string on console

call WriteDec

call crlf

call GetMseconds ; get start time

sub eax,esi

call WriteDec ; display elapsed time

mWrite <' millisecond(s) used', 0Dh,0Ah, 0Dh,0Ah>

pop ecx

ENDM

.code

main PROC

call Clrscr

mWrite "To calculate 1+2+...+n, please enter n (1~4294967295): "

call ReadDec ; read value from user

mov ecx, eax

call crlf

mCallSumProc Using_LOOP

mCallSumProc Using_DEC_JNE

mCallSumProc Using_DEC_JECXZ_JMP

call WaitMsg

exit

main ENDP

10

HKM_S11415 MMS20192020-2 MMA20192020-2

 mov eax,0

L1:

 add eax, ecx

 loop L1

 mov eax,0

L2:

 add eax, ecx

 sub ecx,1

 cmp ecx, 0

 jne L2

 mov eax,0

L3:

 add eax, ecx

 sub ecx,1

 jecxz _Exit

 jmp L3

_Exit:

;

; (i) Receives: ECX, as n, an integer to calculate 1+2+...+n

; Returns: EAX, the sum of 1+2+...+n

;

Using_LOOP PROC

ret

Using_LOOP ENDP

;

; (ii) Receives: ECX, as n, an integer to calculate 1+2+...+n

; Returns: EAX, the sum of 1+2+...+n

;

Using_DEC_JNE PROC

ret

Using_DEC_JNE ENDP

;

; (iii)Receives: ECX, as n, an integer to calculate 1+2+...+n

; Returns: EAX, the sum of 1+2+...+n

;

Using_DEC_JECXZ_JMP PROC

ret

Using_DEC_JECXZ_JMP ENDP

END main

