
Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 1

Programming 4: Interactive Usage of Link Libraries

Part A – Programming review

Link Library Overview

• A file containing procedures that have been compiled into machine code

• These procedures are ready to be used (via the CALL instruction) within your

program. They have their own unique name.

• Most, if not all, of these procedures run on pre-selected registers which you MUST

use.

Calling a Library Procedure

• Call a library procedure using the CALL instruction. Some procedures require input

arguments.

• The INCLUDE directive copies in the procedure prototypes

(declarations).

• The following example displays "1234" on the console (as shown in output):

INCLUDE Irvine32.inc

.code

 mov eax,1234h ; input argument call

WriteHex ; show hex number

 call Crlf ; end of line

• In the example above, register EAX must be used for it to work correctly. Try the

command below and see what happens.

INCLUDE Irvine32.inc

.code

 mov ax,1234h ; input argument

 call WriteHex ; show hex number

 call Crlf ; end of line

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 2

Library Procedures – Overview

Here are some of the procedures available to you. You can find more from the Internet and

reference books (Kip Irvine, Assembly Language programming books are a good place to

start).

• Clrscr - Clears the console and locates the cursor at the upper left corner.

• Crlf - Writes an end of line sequence to standard output.

• Delay - Pauses the program execution for a specified n millisecond interval.

• DumpMem - Writes a block of memory to standard output in hexadecimal.

• DumpRegs - Displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS,

and EIP registers in hexadecimal. Also displays the Carry, Sign, Zero, and Overflow

flags.

• GetCommandtail - Copies the program’s command-line arguments

(called the command tail) into an array of bytes.

• GetMseconds - Returns the number of milliseconds that have elapsed since

midnight.

• Gotoxy - Locates cursor at row and column on the console.

• Random32 - Generates a 32-bit pseudorandom integer in the range 0 to FFFFFFFFh.

• Randomize - Seeds the random number generator.

• RandomRange - Generates a pseudorandom integer within a specified range.

• ReadChar - Reads a single character from standard input.

• ReadHex - Reads a 32-bit hexadecimal integer from standard input, terminated by

the Enter key.

• ReadInt - Reads a 32-bit signed decimal integer from standard input, terminated by

the Enter key.

• ReadString - Reads a string from standard input, terminated by the Enter key.

• SetTextColor - Sets the foreground and background colors of all subsequent text

output to the console.

• WaitMsg - Displays message, waits for Enter key to be pressed.

• WriteBin - Writes an unsigned 32-bit integer to standard output in ASCII binary

format.

• WriteChar - Writes a single character to standard output.

• WriteDec - Writes an unsigned 32-bit integer to standard output in decimal format.

• WriteHex - Writes an unsigned 32-bit integer to standard output in hexadecimal

format.

• WriteInt - Writes a signed 32-bit integer to standard output in decimal format.

• WriteString - Writes a null-terminated string to standard output.

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 3

Part B – Let’s do a little programming by example

You are given a few examples here. Try them out.

Example 1

Clear the screen, delay the program for 500 milliseconds, and dump the registers and flags.

.code

 call Clrscr mov eax,500 call

Delay

 call DumpRegs

Example 2

Display a null-terminated string and move the cursor to the beginning of the next screen

line. Attach the output screen capture for this example.

.data

str1 BYTE "Assembly language is easy!",0

.code

 mov edx,OFFSET str1 call WriteString

 call Crlf

Example 3

Display an unsigned integer in binary, decimal, and hexadecimal, each on a separate line.

Attach the output screen capture for this example.

.data

 IntVal = 35

.code

 mov eax,IntVal call WriteBin ; display binary

 call Crlf

 call WriteDec ; display decimal

 call Crlf

 call WriteHex ; display hexadecimal

 call Crlf

Example 4

Input a string from the user (ReadString). EDX points to the string. Attach the output

screen capture for this example. (**Tips: It is always a good practice to have a string to ask for

input)

.data

str2 BYTE "Give me your name: ",0

buffer2 BYTE 21 DUP(0) ; input buffer

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 4

.code mov

edx,OFFSET

buffer2 ; point

to the buffer

mov

ecx,SIZEOF

buffer2 ; specify

max characters

 call ReadString ; input the string

 mov edx, OFFSET buffer2 ; point to the buffer

 call WriteString

 call crlf

Example 5

Input a decimal number from the user (ReadDec).. The procedure reads a 32bit unsigned

decimal integer from the keyboard and returns the value in EAX. Output a number to

screen (WriteDec). The procedure writes a 32-bit unsigned integer to the console window

in decimal format with no leading zeros. Pass the integer in EAX. Attach the output screen

capture for this example. (**Tips: It is always a good practice to have a string to ask for input)

.data

str1 BYTE "Enter a decimal: ",0 val1 dword ?

.code

 mov edx, offset str1

 call writestring

 call ReadDec mov

val1,eax

 mov eax,val1

 call WriteDec

Example 6

Generate and display ten pseudorandom signed integers in the range 0 – 99. Pass each

integer to WriteInt in EAX and display it on a separate line. Attach the output screen capture

for this example.

.code

 mov ecx,10 ; loop counter

L1: mov eax,100 ; ceiling value call RandomRange ;

generate random int call WriteInt ; display signed int

 call Crlf ; goto next display line

 loop L1 ; repeat loop

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 5

Part C – Let’s do a little programming on your own

Program 1

Figure 1: A hexagon

Figure 1 is illustrates a hexagon figure with same length of side. To calculate the perimeter

of the hexagon, the following formula is given.

Perimeter_hexagon1 = side1 + side2 + side3 + side4 + side5 + side6

Perimeter_hexagon2 = side1 + side2 + side3 + side4 + side5 + side6

TotalPerimeter = Perimeter_hexagon1 + Perimeter_hexagon2

Write a complete program using assembly language to calculate the perimeter of TWO

different hexagons with different sizes.

 In the program, you should do these steps:

i. Get two values from keyboard (32-bit unsigned integer) and save into the variable

name sideHex1 for the first hexagon and sideHex2 for the second hexagon.

ii. Calculate both of the perimeters (Example: Perimeter_hexagon1=18 →

3+3+3+3+3+3) by using LOOP instruction. Save the first result in

Perimeter_hexagon1 and the second result in Perimeter_hexagon2 (as 32-bit

unsigned integer).

iii. Then, add the two perimeters and save in TotalPerimeter variable.

iv. Display the output as shown in Figure 2.

Figure 2: The Output

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 6

Extra Challenge: Rewrite your program and add 3 more library procedures based on your

creativity.

Program 2

• Write a program in assembly language to multiply two unsigned numbers.

• Your program should ask the user to input the multiplicand (n) and the multiplier

(m).

• The program will do multiplication of (n x m) using MUL.

• Your program should store the multiplicand, multiplier and the result in these

variables multiplicand, multiplier and product respectively.

Sample output

Extra Challenge: Rewrite your program and ask either user want to continue the calculation

(Yes/No). If Yes, user can have a selection either perform MUL or DIV. If No, print “Thank

you” and exit the program.

Program 3

Write a program that will interactively ask the user to input the values of 6

integers in DWORD and you have to put the values into an array name HELLO.

• Example of HELLO array after the user input the values:

1st Value 2nd Value 3rd Value 4th Value 5th Value 6th Value

HELLO[0] HELLO[4] HELLO[8] HELLO[12] HELLO[16] HELLO[20]

32 65 77 89 14 54

Computer Organization and Architecture

SECR 2033

Semester 2, 2019/2020

 7

• Your CountEVEN will count the value of HELLO[0], HELLO[8] and HELLO[16]

and store it in variable name TotalEVEN

• Your CountODD will count the value of HELLO[4], HELLO[12] and

HELLO[20] store it in variable name TotalODD

• Lastly, display the value of TotalEVEN and TotalODD

• You must use LOOP instruction to do the addition process.

Sample output

 Extra Challenge: Rewrite your program and calculate the TotalALL by adding TotalODD

and TotalEVEN. Finally, display the value of TotalALL at the centre of the screen.

